Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States Author(S): Diego J

Total Page:16

File Type:pdf, Size:1020Kb

Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States Author(S): Diego J Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States Author(s): Diego J. Inclan and John O. Stireman, III Source: Annals of the Entomological Society of America, 104(2):287-296. Published By: Entomological Society of America https://doi.org/10.1603/AN10047 URL: http://www.bioone.org/doi/full/10.1603/AN10047 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. CONSERVATION BIOLOGY AND BIODIVERSITY Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States 1 DIEGO J. INCLAN AND JOHN O. STIREMAN, III Department of Biological Sciences, 3640 Colonel Glenn Highway, 235A, BH, Wright State University, Dayton, OH 45435 Ann. Entomol. Soc. Am. 104(2): 287Ð296 (2011); DOI: 10.1603/AN10047 ABSTRACT Although tachinids are one of the most diverse families of Diptera and represent the largest group of nonhymenopteran parasitoids, their local diversity and distribution patterns of most species in the family are poorly known. In this study, 2 yr of samples from a Malaise trap were used to analyze the local richness and temporal distribution of a tachinid community in southwestern Ohio. In total, 883 tachinid specimens were collected, consisting of 117 species belonging to 69 genera. The majority of the specimens were collected in fall, followed by summer and spring, with 67, 22, and 11%, respectively. Estimated rarefaction curves indicate a predicted species richness of 217 species and suggest that we have sampled only a fraction of the diversity of Tachinidae occurring at this particular site. The species recorded in this study represent 16 and 19% of the species that are likely to occur in the northeastern United States and Ohio, respectively. In North America, there have been few, if any, previous attempts to quantify the diversity of tachinids on a local scale. Our results provide a baseline for understanding the temporal and spatial diversity of these ecologically and agronomically important parasitoids. KEY WORDS Tachinidae, species richness, parasitoid diversity, temporal distribution, voltinism Diptera or true ßies are one of the most anatomically There have been several recent studies focused on varied and ecologically diverse groups of insects. This species diversity and temporal distributions of tachin- group represents 10Ð15% of the worldÕs biodiversity ids in the Palaearctic region, such as Belshaw (1992, (Brown 2005, Yeates et al. 2007) and contains 1993, 1994), Ford and Shaw (1991), Ford et al. (2000), Ϸ157,000 described species (Thompson 2008). Esti- Avci and Kara (2002), Cerretti et al. (2004), and Rich- mates of the total diversity of Diptera suggest that this ter (2005), but there are few such studies for speciÞc order contains a minimum of 1,000,000 (Brown 2001b) areas of the Nearctic region (OÕHara 2002, Strazanac to 1,700,000 species (Stork 1997), suggesting that et al. 2001, Strazanac and Butler 2005, Tooker et al. Ͼ90% of Diptera species remain undescribed. In the 2006, Stireman 2008). Nearctic region, which probably has the best known In the Nearctic region, the family Tachinidae in- fauna after the Palearctic region, an estimated 65% of cludes 1,345 described species, classiÞed in 304 genera Diptera have been described, Ͻ25% have been revised of which 20% are endemic to the region (OÕHara taxonomically, and less than one percent have been 2008). In this region, there have been several studies studied in detail (Thompson 2009). Thus, document- of the tachinid parasitoid communities associated with ing and describing the diversity of Diptera represents particular host groups. For example, tachinids attack- a special need to Þll the large void in our knowledge ing Lepidoptera in Canada (McGugan 1958), northern of insect diversity. United States (Schaffner and Griswold 1934), eastern The parasitic ßy family Tachinidae includes United States (Strazanac et al. 2001), and southeastern Ϸ10,000 described species worldwide, classiÞed into Arizona (Stireman and Singer 2003). Similarly, coarse Ͼ1,500 genera (Brown 2001a,b; Irwin et al. 2003; information on the spatial distribution of tachinids can OÕHara 2008). Although tachinids are one of the most be gleaned from regional catalogs (e.g., OÕHara and species-rich families of Diptera (Irwin et al. 2003) and Wood 2004), but these provide little indication of the represent the largest group of nonhymenopteran para- richness of particular tachinid communities. To our sitoids (Belshaw 1994), the ecology of most species in knowledge, there is only a single published study the family is poorly known. Currently, our knowledge (Stireman 2008) documenting in detail the richness is limited in terms of the diversity and distribution of and composition of a tachinid community at a partic- populations across time and space, especially in the ular geographic locale in North America (although see Nearctic and Neotropical regions (Stireman 2008). Strazanac and Butler (2005) for an multiyear analysis of the abundance of macrolepidoptera attacking Ta- 1 Corresponding author, e-mail: [email protected]. chinidae). This is unfortunate given the diversity of 0013-8746/11/0287Ð0296$04.00/0 ᭧ 2011 Entomological Society of America 288 ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA Vol. 104, no. 2 this group and their importance as parasitoids of other [Lonicera maackii (Rupr.) Maxim.]. The trap was insects (Stireman et al. 2006). Because tachinids be- monitored from 25 June until 17 November in 2008 and long to a higher trophic level, they may serve as sen- on 4 March until 12 November in 2009. It was peri- sitive indicators of the diversity and dynamics of pop- odically checked, once or twice per week, for the 2008 ulations of their host taxa. An understanding of how and 2009 seasons. Potassium cyanide was used as the tachinid communities vary over space and time can be killing agent in a dry trap head. Material collected in used as a proxy for understanding diversity patterns of the trap was taken to a laboratory at Wright State other insects, particularly Lepidoptera (Stireman et al. University, Dayton, OH, where specimens were 2006). Such information could provide an indication sorted, pinned, and identiÞed. of the health of ecological communities and poten- Identification. Tachinid specimens were initially tially inform local conservation efforts. Similarly, doc- sorted by morpho-species and then identiÞed to genus umenting occurrence/abundance patterns over time using the key to Nearctic genera of Tachinidae by can provide insight into tachinid life history, voltinism Wood (1987). Once the genus was identiÞed, species and developmental time, and potential host associa- identiÞcations were attempted using keys and descrip- tions, which could be used to assess their potential for tions from primary literature. Species designations biological control in forest and agricultural systems. were further reÞned or conÞrmed by comparison with Unfortunately, tachinids are a difÞcult group to iden- type or paratype specimens housed in the National tify, due in part to their great richness and diversity Museum of Natural History (NMNH) in Washington, and the incomplete taxonomic literature available for DC; the Canadian National Collection (CNC) in Ot- the identiÞcation of species. This remains an imped- tawa, ON, Canada; or both. For some particularly iment to their study and use as ecological indicators. difÞcult taxa (e.g., Lixophaga Townsend, Myopharus Here, we document and analyze the tachinid spe- Brauer & Bergenstamm, and Winthemia Robineau- cies richness obtained from a single trap over two Desvoidy), Þnal identiÞcations were made with the seasons and assess the temporal distribution of aid of Dr. D. M. Wood (Agriculture and Agri-Food abundance and voltinism of the tachinid commu- Canada). nity. This information provides a point estimate for Analysis. Estimated species accumulation curves understanding the geographic distribution of ta- (rarefaction curves) were calculated for sample and chinid diversity and potentially the diversity of their specimen accumulation. The 2008Ð2009 rarefaction host taxa. We also examine how tachinid abundance curve of samples and its 95% CL was calculated and and diversity varies seasonally and examine the phe- plotted using 1,000 permutations with the function nological patterns of a broad array of tachinid spe- “specaccum” from the vegan package (Oksanen et al. cies. Several new geographic records of Tachinidae 2007). Rarefaction curves using samples for individual also are documented. years were calculated using 1,000 randomizations with the
Recommended publications
  • ARTHROPOD COMMUNITIES and PASSERINE DIET: EFFECTS of SHRUB EXPANSION in WESTERN ALASKA by Molly Tankersley Mcdermott, B.A./B.S
    Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska Item Type Thesis Authors McDermott, Molly Tankersley Download date 26/09/2021 06:13:39 Link to Item http://hdl.handle.net/11122/7893 ARTHROPOD COMMUNITIES AND PASSERINE DIET: EFFECTS OF SHRUB EXPANSION IN WESTERN ALASKA By Molly Tankersley McDermott, B.A./B.S. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences University of Alaska Fairbanks August 2017 APPROVED: Pat Doak, Committee Chair Greg Breed, Committee Member Colleen Handel, Committee Member Christa Mulder, Committee Member Kris Hundertmark, Chair Department o f Biology and Wildlife Paul Layer, Dean College o f Natural Science and Mathematics Michael Castellini, Dean of the Graduate School ABSTRACT Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity.
    [Show full text]
  • International Code of Zoological Nomenclature
    International Commission on Zoological Nomenclature INTERNATIONAL CODE OF ZOOLOGICAL NOMENCLATURE Fourth Edition adopted by the International Union of Biological Sciences The provisions of this Code supersede those of the previous editions with effect from 1 January 2000 ISBN 0 85301 006 4 The author of this Code is the International Commission on Zoological Nomenclature Editorial Committee W.D.L. Ride, Chairman H.G. Cogger C. Dupuis O. Kraus A. Minelli F. C. Thompson P.K. Tubbs All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying or otherwise), without the prior written consent of the publisher and copyright holder. Published by The International Trust for Zoological Nomenclature 1999 c/o The Natural History Museum - Cromwell Road - London SW7 5BD - UK © International Trust for Zoological Nomenclature 1999 Explanatory Note This Code has been adopted by the International Commission on Zoological Nomenclature and has been ratified by the Executive Committee of the International Union of Biological Sciences (IUBS) acting on behalf of the Union's General Assembly. The Commission may authorize official texts in any language, and all such texts are equivalent in force and meaning (Article 87). The Code proper comprises the Preamble, 90 Articles (grouped in 18 Chapters) and the Glossary. Each Article consists of one or more mandatory provisions, which are sometimes accompanied by Recommendations and/or illustrative Examples. In interpreting the Code the meaning of a word or expression is to be taken as that given in the Glossary (see Article 89).
    [Show full text]
  • Please Scroll Down for Article
    This article was downloaded by: [USDA National Agricultural Library] On: 1 October 2008 Access details: Access Details: [subscription number 790740294] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Biocontrol Science and Technology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713409232 A critical evaluation of host ranges of parasitoids of the subtribe Diabroticina (Coleoptera: Chrysomelidae: Galerucinae: Luperini) using field and laboratory host records Stefan Toepfer a; Guillermo Cabrera Walsh b; Astrid Eben c; Rebeca Alvarez-Zagoya d; Tim Haye a; Feng Zhang a; Ulrich Kuhlmann a a CABI Europe-Switzerland, Delémont, Switzerland b USDA ARS South American Biocontrol Laboratory, Hurlingham, Buenos Aires, Argentina c Departamento de Ecología Funcional, Instituto de Ecología, Xalapa, Veracruz, Mexico d Instituto Politécnico Nacional, CIIDR-IPN, Durango, Mexico Online Publication Date: 01 January 2008 To cite this Article Toepfer, Stefan, Cabrera Walsh, Guillermo, Eben, Astrid, Alvarez-Zagoya, Rebeca, Haye, Tim, Zhang, Feng and Kuhlmann, Ulrich(2008)'A critical evaluation of host ranges of parasitoids of the subtribe Diabroticina (Coleoptera: Chrysomelidae: Galerucinae: Luperini) using field and laboratory host records',Biocontrol Science and Technology,18:5,483 — 504 To link to this Article: DOI: 10.1080/09583150802001742 URL: http://dx.doi.org/10.1080/09583150802001742 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
    [Show full text]
  • Tachinid Times Issue 29
    Walking in the Footsteps of American Frontiersman Daniel Boone The Tachinid Times Issue 29 Exploring Chile Curious case of Girschneria Kentucky tachinids Progress in Iran Tussling with New Zealand February 2016 Table of Contents ARTICLES Update on New Zealand Tachinidae 4 by F.-R. Schnitzler Teratological specimens and the curious case of Girschneria Townsend 7 by J.E. O’Hara Interim report on the project to study the tachinid fauna of Khuzestan, Iran 11 by E. Gilasian, J. Ziegler and M. Parchami-Araghi Tachinidae of the Red River Gorge area of eastern Kentucky 13 by J.E. O’Hara and J.O. Stireman III Landscape dynamics of tachinid parasitoids 18 by D.J. Inclán Tachinid collecting in temperate South America. 20 Expeditions of the World Tachinidae Project. Part III: Chile by J.O. Stireman III, J.E. O’Hara, P. Cerretti and D.J. Inclán 41 Tachinid Photo 42 Tachinid Bibliography 47 Mailing List 51 Original Cartoon 2 The Tachinid Times Issue 29, 2016 The Tachinid Times February 2016, Issue 29 INSTRUCTIONS TO AUTHORS Chief Editor JAMES E. O’HARA This newsletter accepts submissions on all aspects of tach- InDesign Editor SHANNON J. HENDERSON inid biology and systematics. It is intentionally maintained as a non-peer-reviewed publication so as not to relinquish its status as Staff JUST US a venue for those who wish to share information about tachinids in an informal medium. All submissions are subjected to careful ISSN 1925-3435 (Print) editing and some are (informally) reviewed if the content is thought to need another opinion. Some submissions are rejected because ISSN 1925-3443 (Online) they are poorly prepared, not well illustrated, or excruciatingly bor- ing.
    [Show full text]
  • £Arasites Associated with Lepidopterous Pests of Alfalfa in .Qklahoma
    £ARASITES ASSOCIATED WITH LEPIDOPTEROUS PESTS OF ALFALFA IN .QKLAHOMA By KATHLEEN MARY SENST I' Bachelor of Arts Wartburg College Waverly, Iowa 1974 Master of Science Oklahoma State University Stillwater, Oklahoma 1978 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY July, 1982 PARASITES ASSOCIATED WITH LEPIDOPTEROUS PESTS OF ALFALFA IN OKLAHOMA Thesis Approved: . ~ \ . ii 1143730 j ACKNOWLEDGMENTS I w.isb. to expres.s. my deep appreciation to my major adviser, Dr. Ricb.ard Berberet, for hi:s willi.ngness. to advise and help, and for his friendsb.i.p duri.ng thi:s: s:tudy and preparation of this manuscript. Appreciation is. expressed to Ors. Ray Eikenbary, Jerry Young, Robert Burton, and John Caddel for serving as members of my graduate committee, and to Or. Ron McNeu for his help in analyzing the data. Thanks. are extended to Mary Hininger, Melinda Davis, Donna Ridge, Phoebe Courtney, and Debbie Lauchner for their assistance in the lab­ oratory, and to Doug Sander and Kevin Mussett for their assistance in the fi.el d. Special thanks goes to Ms. Anne Hunt for clerical review and typing of this manuscript. My most sincere appreciation is reserved for my husband, John (Soteres}, for his encouragement, understanding, and patience while I was completing this work. I share the credit for this work with my family, whose love and support have been a constant source of encourage­ ment in my life. iii TABLE OF CONTENTS Chapter Page I. GENERAL INTRODUCTION 1 II.
    [Show full text]
  • Scientific Notes 365
    Scientific Notes 365 FENNAH, R. G. 1942. The citrus pests investigation in the Windward and Leeward Is- lands, British West Indies 1937-1942. Agr. Advisory Dept., Imp. Coll. Tropical Agr. Trinidad, British West Indies. pp. 1-67. JONES, T. H. 1915. The sugar-cane weevil root-borer (Diaprepes sprengleri Linn.) In- sular Exp. Stn. (Rio Piedras, P. R.) Bull. 14: 1-9, 11. SCHROEDER, W. J. 1981. Attraction, mating, and oviposition behavior in field popula- tions of Diaprepes abbreviatus on citrus. Environ. Entomol. 10: 898-900. WOLCOTT, G. N. 1933. Otiorhynchids oviposit between paper. J. Econ. Entomol. 26: 1172. WOLCOTT, G. N. 1936. The life history of Diaprepes abbreviatus at Rio Piedras, Puerto Rico. J. Agr. Univ. Puerto Rico 20: 883-914. WOODRUFF, R. E. 1964. A Puerto Rican weevil new to the United States (Coleoptera: Curculionidae). Fla. Dept. Agr., Div. Plant Ind., Entomol. Circ. 30: 1-2. WOODRUFF, R. E. 1968. The present status of a West Indian weevil Diaprepes abbre- viatus (L.) in Florida (Coleoptera: Curculionidae). Fla. Dept. Agr., Div. Plant Ind., Entomol. Circ. 77: 1-4. ♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ PARASITISM OF EASTERN LUBBER GRASSHOPPER BY ANISIA SEROTINA (DIPTERA: TACHINIDAE) IN FLORIDA MAGGIE A. LAMB, DANIEL J. OTTO AND DOUGLAS W. WHITMAN* Behavior, Ecology, Evolution, and Systematics Section Department of Biological Sciences, Illinois State University Normal, IL 61790-4120 The eastern lubber grasshopper, Romalea microptera Beauvois (= guttata; see Otte 1995) is a large romaleid grasshopper (adults = 2-12 g) that occurs sporadically throughout the southeastern USA, but in relatively high densities in the Everglades- Big Cypress area of south Florida (Rehn & Grant 1959, 1961).
    [Show full text]
  • Phylogenetic Relationships of Tachinid Flies in Subfamily Exoristinae Tachinidae: Diptera) Based on 28S Rdna and Elongation Factor-1A
    Systematic Entomology *2002) 27,409±435 Phylogenetic relationships of tachinid flies in subfamily Exoristinae Tachinidae: Diptera) based on 28S rDNA and elongation factor-1a JOHN O. STIREMAN III Department of Ecology and Evolutionary Biology,University of Arizona,Tucson,U.S.A. Abstract. The phylogenetic relationships within the largest subfamily of Tachi- nidae,Exoristinae,were explored using nucleotide sequences of two genes *EF-1 a and 28S rDNA). A total of fifty-five and forty-three taxa were represented in the analyses for each gene,respectively,representing forty-three genera. Neighbour joining,parsimony and maximum likelihood inference methods were employed to reconstruct phylogenetic relationships in separate analyses of each gene,and parsimony was used to analyse the combined dataset. Although certain taxa were highly mobile,phylogenetic reconstructions generally supported recent clas- sification schemes based on reproductive habits and genitalia. Generally,the monophyly of Tachinidae and Exoristinae was supported. Tribes Winthemiini, Exoristini and Blondeliini were repeatedly constructed as monophyletic groups, with the former two clades often occupying a basal position among Exoristinae. Goniini and Eryciini generally clustered together as a derived clade within Exoristinae; however,they were never reconstructed as two distinct clades. These results suggest that the possession of unembryonated eggs is plesiomorphic within the subfamily and that there may have been multiple transitions between micro- type and macrotype egg forms. Introduction 1987; Williams et al.,1990; Eggleton & Belshaw,1993), and the wide variety of mechanisms by which they attack Tachinidae is generally regarded as a relatively recent, them *O'Hara,1985). These oviposition strategies include actively radiating clade of parasitic flies *Crosskey,1976).
    [Show full text]
  • Addenda to the Insect Fauna of Al-Baha Province, Kingdom of Saudi Arabia with Zoogeographical Notes Magdi S
    JOURNAL OF NATURAL HISTORY, 2016 VOL. 50, NOS. 19–20, 1209–1236 http://dx.doi.org/10.1080/00222933.2015.1103913 Addenda to the insect fauna of Al-Baha Province, Kingdom of Saudi Arabia with zoogeographical notes Magdi S. El-Hawagrya,c, Mostafa R. Sharafb, Hathal M. Al Dhaferb, Hassan H. Fadlb and Abdulrahman S. Aldawoodb aEntomology Department, Faculty of Science, Cairo University, Giza, Egypt; bPlant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia; cSurvey and Classification of Agricultural and Medical Insects in Al-Baha Province, Al-Baha University, Al-Baha, Saudi Arabia ABSTRACT ARTICLE HISTORY The first list of insects (Arthropoda: Hexapoda) of Al-Baha Received 1 April 2015 Province, Kingdom of Saudi Arabia (KSA) was published in 2013 Accepted 30 September 2015 and contained a total of 582 species. In the present study, 142 Online 9 December 2015 species belonging to 51 families and representing seven orders KEYWORDS are added to the fauna of Al-Baha Province, bringing the total Palaearctic; Afrotropical; number of species now recorded from the province to 724. The Eremic; insect species; reported species are assigned to recognized regional zoogeogra- Arabian Peninsula; Tihama; phical regions. Seventeen of the species are recorded for the first Al-Sarah; Al-Sarawat time for KSA, namely: Platypleura arabica Myers [Cicadidae, Mountains Hemiptera]; Cletomorpha sp.; Gonocerus juniperi Herrich-Schäffer [Coreidae, Hemiptera]; Coranus lateritius (Stål); Rhynocoris bipus- tulatus (Fieber) [Reduviidae, Hemiptera]; Cantacader iranicus Lis; Dictyla poecilla Drake & Hill [Tingidae, Hemiptera]; Mantispa scab- ricollis McLachlan [Mantispidae, Neuroptera]; Cerocoma schreberi Fabricius [Meloidae, Coleoptera]; Platypus parallelus (Fabricius) [Curculionidae, Coleoptera]; Zodion cinereum (Fabricius) [Conopidae, Diptera]; Ulidia ?ruficeps Becker [Ulidiidae, Diptera]; Atherigona reversura Villeneuve [Muscidae, Diptera]; Aplomya metallica (Wiedemann); Cylindromyia sp.
    [Show full text]
  • No Slide Title
    Tachinidae: The “other” parasitoids Diego Inclán University of Padova Outline • Briefly (re-) introduce parasitoids & the parasitoid lifestyle • Quick survey of dipteran parasitoids • Introduce you to tachinid flies • major groups • oviposition strategies • host associations • host range… • Discuss role of tachinids in biological control Parasite vs. parasitoid Parasite Life cycle of a parasitoid Alien (1979) Life cycle of a parasitoid Parasite vs. parasitoid Parasite Parasitoid does not kill the host kill its host Insects life cycles Life cycle of a parasitoid Some facts about parasitoids • Parasitoids are diverse (15-25% of all insect species) • Hosts of parasitoids = virtually all terrestrial insects • Parasitoids are among the dominant natural enemies of phytophagous insects (e.g., crop pests) • Offer model systems for understanding community structure, coevolution & evolutionary diversification Distribution/frequency of parasitoids among insect orders Primary groups of parasitoids Diptera (flies) ca. 20% of parasitoids Hymenoptera (wasps) ca. 70% of parasitoids Described Family Primary hosts Diptera parasitoid sp Sciomyzidae 200? Gastropods: (snails/slugs) Nemestrinidae 300 Orth.: Acrididae Bombyliidae 5000 primarily Hym., Col., Dip. Pipunculidae 1000 Hom.:Auchenorrycha Conopidae 800 Hym:Aculeata Lep., Orth., Hom., Col., Sarcophagidae 1250? Gastropoda + others Lep., Hym., Col., Hem., Tachinidae > 8500 Dip., + many others Pyrgotidae 350 Col:Scarabaeidae Acroceridae 500 Arach.:Aranea Hym., Dip., Col., Lep., Phoridae 400?? Isop.,Diplopoda
    [Show full text]
  • Insects and Related Arthropods Associated with of Agriculture
    USDA United States Department Insects and Related Arthropods Associated with of Agriculture Forest Service Greenleaf Manzanita in Montane Chaparral Pacific Southwest Communities of Northeastern California Research Station General Technical Report Michael A. Valenti George T. Ferrell Alan A. Berryman PSW-GTR- 167 Publisher: Pacific Southwest Research Station Albany, California Forest Service Mailing address: U.S. Department of Agriculture PO Box 245, Berkeley CA 9470 1 -0245 Abstract Valenti, Michael A.; Ferrell, George T.; Berryman, Alan A. 1997. Insects and related arthropods associated with greenleaf manzanita in montane chaparral communities of northeastern California. Gen. Tech. Rep. PSW-GTR-167. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Dept. Agriculture; 26 p. September 1997 Specimens representing 19 orders and 169 arthropod families (mostly insects) were collected from greenleaf manzanita brushfields in northeastern California and identified to species whenever possible. More than500 taxa below the family level wereinventoried, and each listing includes relative frequency of encounter, life stages collected, and dominant role in the greenleaf manzanita community. Specific host relationships are included for some predators and parasitoids. Herbivores, predators, and parasitoids comprised the majority (80 percent) of identified insects and related taxa. Retrieval Terms: Arctostaphylos patula, arthropods, California, insects, manzanita The Authors Michael A. Valenti is Forest Health Specialist, Delaware Department of Agriculture, 2320 S. DuPont Hwy, Dover, DE 19901-5515. George T. Ferrell is a retired Research Entomologist, Pacific Southwest Research Station, 2400 Washington Ave., Redding, CA 96001. Alan A. Berryman is Professor of Entomology, Washington State University, Pullman, WA 99164-6382. All photographs were taken by Michael A. Valenti, except for Figure 2, which was taken by Amy H.
    [Show full text]
  • Information on Tachinid Fauna (Diptera, Tachinidae) of the Phasiinae Subfamily in the Far East of Russia
    International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-9 Issue-2, December, 2019 Information on Tachinid Fauna (Diptera, Tachinidae) Of the Phasiinae Subfamily in the Far East of Russia Markova T.O., Repsh N.V., Belov A.N., Koltun G.G., Terebova S.V. Abstract: For the first time, a comparative analysis of the For example, for the Hemyda hertingi Ziegler et Shima tachinid fauna of the Phasiinae subfamily of the Russian Far species described in the Primorsky Krai in 1996 for the first East with the fauna of neighboring regions has been presented. time the data on findings in Western, Southern Siberia and The Phasiinae fauna of the Primorsky Krai (Far East of Russia) is characterized as peculiar but closest to the fauna of the Khabarovsk Krai were given. For the first time, southern part of Khabarovsk Krai, Amur Oblast and Eastern Redtenbacheria insignis Egg. for Eastern Siberia and the Siberia. The following groups of regions have been identified: Kuril Islands, Phasia barbifrons (Girschn.) for Western Southern, Western and Eastern Siberia; Amur Oblast and Siberia, and Elomya lateralis (Mg.) and Phasia hemiptera Primorsky Krai, which share many common Holarctic and (F.) were indicated.At the same time, the following species Transpalaearctic species.Special mention should be made of the have been found in the Primorsky Krai, previously known in fauna of the Khabarovsk Krai, Sakhalin Oblast, which are characterized by poor species composition and Japan (having a Russia only in the south of Khabarovsk Krai and in the subtropical appearance). Amur Oblast (Markova, 1999): Phasia aurigera (Egg.), Key words: Diptera, Tachinidae, Phasiinae, tachinid, Phasia zimini (D.-M.), Leucostoma meridianum (Rond.), Russian Far East, fauna.
    [Show full text]
  • A Parasitoid of Diabrotica Virgifera Virgifera (Coleoptera: Chrysomelidae)
    Bulletin of Entomological Research (2003) 93, 569–575 DOI: 10.1079/BER2003264 Basic biology and small-scale rearing of Celatoria compressa (Diptera: Tachinidae), a parasitoid of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) F. Zhang, S. Toepfer and U. Kuhlmann* CABI Bioscience Switzerland Centre, Rue des Grillons 1, 2800 Delémont, Switzerland Abstract The tachinid Celatoria compressa Wulp has been evaluated as a candidate biological control agent for the western corn rootworm, Diabrotica virgifera virgifera LeConte, in Europe, where it is an invasive alien pest of maize. Special emphasis has been placed on understanding aspects of the parasitoid basic biology and on developing a rearing technique for a small-scale production of C. compressa puparia. The age of C. compressa adults was found to be the most crucial factor in achieving mating. Only newly emerged, 1-h-old females, mated successfully with 2- to 5-day-old males, achieving a success rate of 74%. After mating, a prelarviposi- tion period of 4 days occurred. The 5-day-old C. compressa females inserted their eggs containing fully-developed first instars directly into adults of D. v. virgifera. Total larval and pupal developmental time, including a pre-larviposition period of 4 days, was 29 days under quarantine laboratory conditions (25°C daytime, 15°C at night, L:D 14:10, 50% ± 10% r.h). Females of C. compressa were capable of producing on average 30 puparia throughout a female’s mean larviposition period of 15 days. A large number of host attacks by C. compressa were unsuccessful, resulting in a mean larviposition success rate of 24% per female.
    [Show full text]