Canines and Childhood Cancer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Late Effects Among Long-Term Survivors of Childhood Acute Leukemia in the Netherlands: a Dutch Childhood Leukemia Study Group Report
0031-3998/95/3805-0802$03.00/0 PEDIATRIC RESEARCH Vol. 38, No.5, 1995 Copyright © 1995 International Pediatric Research Foundation, Inc. Printed in U.S.A. Late Effects among Long-Term Survivors of Childhood Acute Leukemia in The Netherlands: A Dutch Childhood Leukemia Study Group Report A. VAN DER DOES-VAN DEN BERG, G. A. M. DE VAAN, J. F. VAN WEERDEN, K. HAHLEN, M. VAN WEEL-SIPMAN, AND A. J. P. VEERMAN Dutch Childhood Leukemia Study Group,' The Hague, The Netherlands A.8STRAC ' Late events and side effects are reported in 392 children cured urogenital, or gastrointestinal tract diseases or an increased vul of leukemia. They originated from 1193 consecutively newly nerability of the musculoskeletal system was found. However, diagnosed children between 1972 and 1982, in first continuous prolonged follow-up is necessary to study the full-scale late complete remission for at least 6 y after diagnosis, and were effects of cytostatic treatment and radiotherapy administered treated according to Dutch Childhood Leukemia Study Group during childhood. (Pediatr Res 38: 802-807, 1995) protocols (70%) or institutional protocols (30%), all including cranial irradiation for CNS prophylaxis. Data on late events (relapses, death in complete remission, and second malignancies) Abbreviations were collected prospectively after treatment; late side effects ALL, acute lymphocytic leukemia were retrospectively collected by a questionnaire, completed by ANLL, acute nonlymphocytic leukemia the responsible pediatrician. The event-free survival of the 6-y CCR, continuous first complete remission survivors at 15 y after diagnosis was 92% (±2%). Eight late DCLSG, Dutch Childhood Leukemia Study Group relapses and nine second malignancies were diagnosed, two EFS, event free survival children died in first complete remission of late toxicity of HR, high risk treatment, and one child died in a car accident. -
The Effects of Pediatric Acute Lymphoblastic Leukemia on Social Competence: an Investigation Into the First Three Months of Treatment
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2010 The Effects of Pediatric Acute Lymphoblastic Leukemia on Social Competence: An Investigation into the First Three Months of Treatment Rachel L. Duchoslav Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Clinical Psychology Commons Recommended Citation Duchoslav, Rachel L., "The Effects of Pediatric Acute Lymphoblastic Leukemia on Social Competence: An Investigation into the First Three Months of Treatment" (2010). All Graduate Theses and Dissertations. 549. https://digitalcommons.usu.edu/etd/549 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. THE EFFECTS OF PEDIATRIC ACUTE LYMPHOBLASTIC LEUKEMIA ON SOCIAL COMPETENCE: AN INVESTIGATION INTO THE FIRST THREE MONTHS OF TREATMENT by Rachel L. Duchoslav A thesis submitted in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE in Psychology Approved: Clinton E. Field, Ph.D. J. Dennis Odell, M.D. Major Professor Committee Member M. Scott DeBerard, Ph. D. Byron R. Burnham, Ed.D. Committee Member Dean of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2010 ii Copyright © Rachel L. Duchoslav 2010 All rights reserved iii ABSTRACT The Effects of Pediatric Acute Lymphoblastic Leukemia on Social Competence: An Investigation into the First Three Months of Treatment by Rachel L. Duchoslav, Master of Science Utah State University, 2010 Major Professor: Clinton E. -
The Following Programs Have Been Identified As Examples of Successful Practices
National Leadership Forum Sept. 28, 2006 American Humane’s Getting to Zero Initiative is a critical, national undertaking based on the profound belief that American society can ultimately reduce to zero the number of healthy or treatable dogs, cats and other companion animals that are euthanized in animal care and control facilities. American Humane has made the reduction and eventual practices” in spay/neuter, transfer, adoption, foster care and elimination of shelter and animal control euthanasia of healthy training. Phase Two is this Leadership Forum to shed light on dogs and cats one of its highest priorities. Although many the problem and highlight some of the best practices in use Americans maintain a deep love and affection for animals, and today. Phase Three is the funding and implementation phase. pets are cherished members of millions of families, the millions With funding secured, American Humane will implement the of healthy, adoptable dogs and cats euthanized each year replication and delivery process to facilities, starting initially remains a source of shame for our country. with six animal welfare agencies or consortia of animal care and control entities in six geographic regions in each of the next two In order to combat this problem, American Humane is years, for a total of 12 community-based programs during the committed to helping identify, support and obtain funding for initial phase of the campaign. Animal care and control facilities the replication of community-based interventions that have will apply and be assessed as to their potential to implement the demonstrated success in reducing the euthanasia of healthy or best practices. -
Health | Childhood Cancer America's Children and the Environment
Health | Childhood Cancer Childhood Cancer Cancer is not a single disease, but includes a variety of malignancies in which abnormal cells divide in an uncontrolled manner. These cancer cells can invade nearby tissues and can migrate by way of the blood or lymph systems to other parts of the body.1 The most common childhood cancers are leukemias (cancers of the white blood cells) and cancers of the brain or central nervous system, which together account for more than half of new childhood cancer cases.2 Cancer in childhood is rare compared with cancer in adults, but still causes more deaths than any factor, other than injuries, among children from infancy to age 15 years.2 The annual incidence of childhood cancer has increased slightly over the last 30 years; however, mortality has declined significantly for many cancers due largely to improvements in treatment.2,3 Part of the increase in incidence may be explained by better diagnostic imaging or changing classification of tumors, specifically brain tumors.4 However, the President’s Cancer Panel recently concluded that the causes of the increased incidence of childhood cancers are not fully understood, and cannot be explained solely by the introduction of better diagnostic techniques. The Panel also concluded that genetics cannot account for this rapid change. The proportion of this increase caused by environmental factors has not yet been determined.5 The causes of cancer in children are poorly understood, though in general it is thought that different forms of cancer have different causes. According to scientists at the National Cancer Institute, established risk factors for the development of childhood cancer include family history, specific genetic syndromes (such as Down syndrome), high levels of radiation, and certain pharmaceutical agents used in chemotherapy.4,6 A number of studies suggest that environmental contaminants may play a role in the development of childhood cancers. -
Biology and Disease Associations of Epstein±Barr Virus
doi 10.1098/rstb.2000.0783 Biology and disease associations of Epstein±Barr virus Dorothy H. Crawford Division of Biomedical and Clinical Laboratory Sciences, Edinburgh University Medical School,Teviot Place, Edinburgh EH89AG, UK ([email protected]) Epstein^Barr virus (EBV) is a human herpesvirus which infects almost all of the world's population subclinically during childhood and thereafter remains in the body for life. The virus colonizes antibody- producing (B) cells, which, as relatively long-lived resting cells, are an ideal site for long-term residence. Here EBV evades recognition and destruction by cytotoxic Tcells. EBV is passed to naive hosts in saliva, but how the virus gains access to this route of transmission is not entirely clear. EBVcarries a set of latent genes that, when expressed in resting B cells, induce cell proliferation and thereby increase the chances of successful virus colonization of the B-cell system during primary infection and the establishment of persis- tence. However, if this cell proliferation is not controlled, or if it is accompanied by additional genetic events within the infected cell, it can lead to malignancy. Thus EBV acts as a step in the evolution of an ever-increasing list of malignancies which are broadly of lymphoid or epithelial cell origin. In some of these, such as B-lymphoproliferative disease in the immunocompromised host, the role of the virus is central and well de¢ned; in others, such as Burkitt's lymphoma, essential cofactors have been identi¢ed which act in concert with EBV in the evolution of the malignant clone. -
Interplay Between Epstein-Barr Virus Infection and Environmental Xenobiotic Exposure in Cancer Francisco Aguayo1* , Enrique Boccardo2, Alejandro Corvalán3, Gloria M
Aguayo et al. Infectious Agents and Cancer (2021) 16:50 https://doi.org/10.1186/s13027-021-00391-2 REVIEW Open Access Interplay between Epstein-Barr virus infection and environmental xenobiotic exposure in cancer Francisco Aguayo1* , Enrique Boccardo2, Alejandro Corvalán3, Gloria M. Calaf4,5 and Rancés Blanco6 Abstract Epstein-Barr virus (EBV) is a herpesvirus associated with lymphoid and epithelial malignancies. Both B cells and epithelial cells are susceptible and permissive to EBV infection. However, considering that 90% of the human population is persistently EBV-infected, with a minority of them developing cancer, additional factors are necessary for tumor development. Xenobiotics such as tobacco smoke (TS) components, pollutants, pesticides, and food chemicals have been suggested as cofactors involved in EBV-associated cancers. In this review, the suggested mechanisms by which xenobiotics cooperate with EBV for carcinogenesis are discussed. Additionally, a model is proposed in which xenobiotics, which promote oxidative stress (OS) and DNA damage, regulate EBV replication, promoting either the maintenance of viral genomes or lytic activation, ultimately leading to cancer. Interactions between EBV and xenobiotics represent an opportunity to identify mechanisms by which this virus is involved in carcinogenesis and may, in turn, suggest both prevention and control strategies for EBV-associated cancers. Keywords: Epstein-Barr virus, environmental, cancer Introduction persistently infects approximately 90% of the world Approximately 13% of the cancer burden worldwide is population [5]. This virus establishes latent persistent in- etiologically related to viral infections with variations de- fections in B cells and is transmitted via nasopharyngeal pending on sociodemographic factors [1, 2]. The long- secretions [6]. -
Approved Cancer Drugs for Children
U.S. FOOD & DRUG li1 ADMINISTRATION Approved Cancer Drugs for Children Amy Barone, MD, MSCI March 15, 2019 Frequent Criticism: Too few drugs approved for pediatric cancer “Since 1980, only 4 drugs have been approved for the first instance for use in children.” - Coalition Against Childhood Cancer “In the last 20 years, only two new drugs have been approved that were specifically developed to treat children with cancer.” – St. Baldricks “Over the past 20 years, the FDA has approved about 190 new cancer treatments for adults but only three for children.” USA Today “Since 1980, fewer than 10 drugs have been developed for use in children with cancer. Only three drugs have been approved for use in children. Only four additional new drugs have been approved for use by both adults and children.” - National Pediatric Cancer Foundation “15 oncology drugs were approved by the FDA for pediatric use between 1948 and 2003.” – Managed Care “From 1980 to 2017, only 11 drugs (already approved in adults) have been approved to use in children with cancer” - Coalition Against Childhood Cancer 2 Question: How many drugs are FDA approved to treat pediatric cancer? • A: 11 • B: 34 • C: 4 • D: 15 3 “There’s no tragedy in life like the death of a child.” - Dwight D. Eisenhower 4 Antitoxin Contamination • Early 1900s – Animal anti-sera given to patients with cholera, typhoid, etc. • A Horse named “Jim” – Contaminated serum – Anti-toxin resulted in deaths of 13 children • Second incident – Contaminated smallpox vaccine killed 9 children Laws Enacted 1902 – Biologics Control Act 1906 – Pure Food and Drug Act 6 Elixir Sulfanilamide Tragedy O ' 7 Law Enacted The Food, Drug and Cosmetic (FDC) Act of 1938 8 Thalidomide T~~:••~ ~ . -
Journal of Animal & Natural Resource
JOURNAL OF ANIMAL & NATURAL RESOURCE LAW Michigan State University College of Law MAY 2019 VOLUME XV The Journal of Animal & Natural Resource Law is published annually by law students at Michigan State University College of Law. The Journal of Animal & Natural Resource Law received generous support from the Animal Legal Defense Fund and the Michigan State University College of Law. Without their generous support, the Journal would not have been able to publish and host its annual symposium. The Journal also is funded by subscription revenues. Subscription requests and article submissions may be sent to: Professor David Favre, Journal of Animal & Natural Resource Law, Michigan State University College of Law, 368 Law College Building, East Lansing MI 48824, or by email to msujanrl@ gmail.com. Current yearly subscription rates are $27.00 in the U.S. and current yearly Internet subscription rates are $27.00. Subscriptions are renewed automatically unless a request for discontinuance is received. Back issues may be obtained from: William S. Hein & Co., Inc., 1285 Main Street, Buffalo, NY 14209. The Journal of Animal & Natural Resource Law welcomes the submission of articles, book reviews, and notes & comments. Each manuscript must be double spaced, in 12 point, Times New Roman; footnotes must be single spaced, 10 point, Times New Roman. Submissions should be sent to [email protected] using Microsoft Word or PDF format. Submissions should conform closely to the 19th edition of The Bluebook: A Uniform System of Citation. All articles contain a 2019 author copyright unless otherwise noted at beginning of article. Copyright © 2019 by the Journal of Animal & Natural Resource Law, Michigan State University College of Law. -
Government Regulations of Shechita (Jewish Religious Slaughter) in the Twenty-First Century: Are They Ethical?
J Agric Environ Ethics (2012) 25:747–763 DOI 10.1007/s10806-011-9324-4 ARTICLES Government Regulations of Shechita (Jewish Religious Slaughter) in the Twenty-First Century: Are They Ethical? Ari Z. Zivotofsky Accepted: 1 July 2011 / Published online: 15 July 2011 Ó Springer Science+Business Media B.V. 2011 Abstract Human beings have engaged in animal husbandry and have slaughtered animals for food for thousands of years. During the majority of that time most societies had no animal welfare regulations that governed the care or slaughter of animals. Judaism is a notable exception in that from its earliest days it has included such rules. Among the Jewish dietary laws is a prohibition to consume meat from an animal that dies in any manner other than through the rigorously defined method of slaughter known as shechita. In recent decades more and more attempts have been initiated by governments around the world to either outright ban or to control and modify the practice of shechita. This paper presents the requisite background about shechita and then analyzes the ethics of some of the recent legislation. The analysis includes a rebuttal of the assertion that shechita is an inhumane method of slaughter. It further presents the consequences on the Jewish community of legislation to impose pre-slaughter stunning and explains why such legislation is unethical. The actual effect of labeling laws is discussed and it is shown why such laws are also un- ethical. Keywords Animal welfare Á Ethics Á Government regulations Á Religious slaughter Á Shechita Introduction Human beings have historically maintained animals for food production, labor, and companionship. -
Guidelines for the Safe Use of Animals in Filmed Media When Using Animals, Call the American Humane Association Early in Pre-Production
American Humane Association ® Guidelines for the Safe Use of Animals in Filmed Media When Using Animals, Call the American Humane Association Early in Pre-production American Humane Association’s Film & Television Unit Phone: 818-501-0123 FAX: 818-501-8725 E-Mail: [email protected] Web site: www.americanhumane.org/film Registration forms and these Guidelines are available online Questions or concerns about animals on a film? Call American Humane’s 24-Hour Animal Safety Hotline: 800-677-3420 Table Of Contents A Legacy of Protection Since 1940 ....................................................................3 Basic Principles ..................................................................................................4 Definitions ..........................................................................................................4 Producers’ Checklist ..........................................................................................5 Problem Solving/P.R. Checklist ........................................................................7 Ch. 1 General Guidelines.................................................................................. 9 Ch. 2 Veterinary Care Guidelines....................................................................15 Ch. 3 Guidelines for Production, Cast, & Crew ............................................17 Ch. 4 Costume, Make-up, Rigging, & Props ..................................................19 Ch. 5 Location and/or Set Safety....................................................................21 -
A Brain Tumor Epidemiology Consortium Review
Published OnlineFirst September 5, 2014; DOI: 10.1158/1055-9965.EPI-14-0207 Cancer Epidemiology, Review Biomarkers & Prevention Childhood Brain Tumor Epidemiology: A Brain Tumor Epidemiology Consortium Review Kimberly J. Johnson1, Jennifer Cullen2, Jill S. Barnholtz-Sloan3, Quinn T. Ostrom3, Chelsea E. Langer4,5,6, Michelle C. Turner4,5,6,7, Roberta McKean-Cowdin8, James L. Fisher9, Philip J. Lupo10,11, Sonia Partap12, Judith A. Schwartzbaum9, and Michael E. Scheurer10,11 Abstract Childhood brain tumors are the most common pediatric solid tumor and include several histologic subtypes. Although progress has been made in improving survival rates for some subtypes, understanding of risk factors for childhood brain tumors remains limited to a few genetic syndromes and ionizing radiation to the head and neck. In this report, we review descriptive and analytical epidemiology childhood brain tumor studies from the past decade and highlight priority areas for future epidemiology investigations and methodological work that is needed to advance our understanding of childhood brain tumor causes. Specifically, we summarize the results of a review of studies published since 2004 that have analyzed incidence and survival in different international regions and that have examined potential genetic, immune system, developmental and birth characteristics, and environmental risk factors. Cancer Epidemiol Biomarkers Prev; 23(12); 2716–36. Ó2014 AACR. Introduction Descriptive Epidemiology Brain and central nervous system (CNS) tumors are the There are >100 different histologic subtypes of CNS most common solid tumor and the second leading cause tumors with the incidence of each varying by age and of cancer-related death in individuals 0 to 19 years of age histologic subtype. -
Next Steps After Treatment
cancer.org | 1.800.227.2345 After Neuroblastoma Treatment Living as a Neuroblastoma Survivor For many people, cancer treatment often raises questions about next steps as a survivor. ● What Happens After Treatment for Neuroblastoma? Cancer Concerns After Treatment Neuroblastoma survivors are at risk for possible late effects of their cancer treatment. It’s important to discuss what these possible effects might be with your child’s medical team so you know what to watch for and report to the doctor. ● Late and Long-Term Effects of Neuroblastoma and Its Treatment What Happens After Treatment for Neuroblastoma? During treatment for neuroblastoma, the main concerns for most families are the daily aspects of getting through treatment and beating the cancer. After treatment, the concerns tend to shift toward the long-term effects of neuroblastoma and its treatment, as well as worries about neuroblastoma coming back. 1 ____________________________________________________________________________________American Cancer Society cancer.org | 1.800.227.2345 It's certainly normal to want to put neuroblastoma and its treatment behind you and to get back to a life that doesn’t revolve around cancer. But getting the right follow-up care offers your child the best chance for recovery and long-term survival. Follow-up exams and tests After treatment, the doctor will probably order follow-up tests, which may include lab tests and imaging tests1 (MIBG scans, PET scans, ultrasound, CT scans, and/or MRI scans) to see if there is any tumor remaining. The tests done will depend on the child's risk group2, the size and location of the tumor, and other factors.