Hurricane Arthur Information from NHC Advisory 10A, 8:00 AM EDT Thursday July 3, 2014 Arthur’S Outer Rain-Bands Are Now Reaching Southern Portions of North Carolina

Total Page:16

File Type:pdf, Size:1020Kb

Hurricane Arthur Information from NHC Advisory 10A, 8:00 AM EDT Thursday July 3, 2014 Arthur’S Outer Rain-Bands Are Now Reaching Southern Portions of North Carolina HURRICANE TRACKING ADVISORY eVENT™ Hurricane Arthur Information from NHC Advisory 10A, 8:00 AM EDT Thursday July 3, 2014 Arthur’s outer rain-bands are now reaching southern portions of North Carolina. On the forecast track Arthur is expected to move near the North Carolina Outer Banks tonight. Additional strengthening is forecast during the next 48 hours. Intensity Measures Position & Heading U.S. Landfall (NHC) Max Sustained Wind 80 mph Position Relative to 300 miles SW of Speed: (category 1) Land: Cape Hatteras, North Carolina Est. Time & Region: n/a Min Central Pressure: 983 mb Coordinates: 31.8 N, 78.7 W Trop. Storm Force Est. Max Sustained Wind 90 miles Bearing/Speed: NNE or 15 degrees at 9 mph n/a Winds Extent: Speed: Forecast Summary Tropical storm conditions are expected to spread northward in the tropical storm and hurricane warning areas later today and tonight. Hurricane conditions are expected within portions of the hurricane waning area by tonight. Isolated tornadoes are possible over portions of coastal NC. The combination of a dangerous storm surge and the tide will cause normally dry areas near the coast to be flooded. The water could reach the following heights above ground if the peak surge occurs at high-tide: 2 to 4 feet on the NC outer banks, Pamlico Sound and Albemarle Sound; 1 to 3 feet on southern NC and northeastern SC; 1 to 2 feet on extreme southeastern VA. Arthur is expected to produce total rainfall accumulations of 2 to 4 inches, with isolated maximums of 6 inches, over coastal areas of NC through Friday. Rainfall accumulations of 1 to 2 inches are possible along the upper coast of SC. The current NHC forecast map (below left) keeps Arthur just off the East Coast, passing near Cape Hatteras NC at Category 1 hurricane strength. The windfield map (below right) – based on the AVNO forecast, one of many used to inform the NHC forecast – provides an alternative perspective. It has Arthur taking a slightly more westerly track, bringing tropical storm force winds to portions of SC, NC and VA. The forecast track for this model is shown in bold gray and the NHC’s forecast track is shown in bold black. To illustrate the uncertainty in Arthur’s forecast track, forecast tracks for all current models are shown on the map in pale gray. Forecast Track for Hurricane Arthur Forecast Windfield for Hurricane Arthur (National Hurricane Center) (Based on AVNO at 06:00 UTC) from Kinetic Analysis Corp. 07-06 Saint-Pierre 07-06 Canada LakeLake HuronHuron Ottawa Montreal LakeLake OntarioOntario Toronto Rochester Storm Category ! Toronto ÏD Trop Dep weak TS LakeLake ErieErie Buffalo Boston United States 07-05 strong TS ! ÏS Trop Storm Cleveland Brooklyn New York Cat 1 Cleveland 07-05 Cat 2 Pittsburgh !1 Washington D.C. Cat 3 Ï Cat 1 Cat 4 !2 NHC track Ï Cat 2 AV NO trac k All Fcst Tracks !3 Ï Cat 3 07-04 ! Ï4 Cat 4 07-04 !5 Hamilton Ï Cat 5 07-03 07-03 05001,000250 Miles Jacksonville © Copyright 2014 Willis Limited / Willis Re Inc. All rights reserved: No part of this publication may be reproduced, disseminated, distributed, stored in a retrieval system, transmitted or otherwise transferred in any form or by any means, whether electronic, mechanical, photocopying, recording, or otherwise, without the permission of Willis Limited / Willis Re Inc. Some information contained in this document may be compiled Hazard and damage potential maps produced from third party sources and we do not guarantee and are not responsible for the accuracy of such. This document is for general guidance only and is not intended to be relied upon. Any action based on or in by Willis are based on numerical modeling connection with anything contained herein should be taken only after obtaining specific advice from independent professional advisors of your choice. The views expressed in this document are not necessarily those results from Kinetic Analysis Corporation. of Willis Limited / Willis Re Inc., its parent companies, sister companies, subsidiaries or affiliates (hereinafter “Willis”). Willis is not responsible for the accuracy or completeness of the contents herein and expressly disclaims any responsibility or liability for the reader's application of any of the contents herein to any analysis or other matter, or for any results or conclusions based upon, arising from or in connection with the contents herein, nor do the contents herein guarantee, and should not be construed to guarantee, any particular result or outcome. Willis accepts no responsibility for the content or quality of any third party websites to which we refer. The TAOS real-time hazard and impact forecast information is provided "as is" and without warranties as to performance or any other warranties whether expressed or implied. The user is strongly cautioned to recognize that natural hazards modeling and analysis are subject to many uncertainties. These uncertainties include, but are not limited to, the uncertainties inherent in weather and climate, incomplete or inaccurate weather data, changes to the natural and built environment, limited historical records, and limitations in the state of the art of modeling, as well as limits to the scientific understanding of storm weather phenomena. Anyone making use of the hazard and impact information provided by KAC, or the information contained within, assumes all liability deriving from such use, and agrees to "hold harmless" any and all agencies or individuals associated with its creation. The user agrees to provide any subsequent users of this data with this disclaimer. The publication of the material contained herein is not intended as a representation or warranty that this information is suitable for any general or particular use. 1 of 2 Coastal Watches and Warnings A hurricane warning– meaning that hurricane conditions are expected somewhere within the warning area – is in effect for Surf City NC to the NC/VA border, Pamlico Sound and eastern Albemarle Sound. A hurricane watch – meaning that hurricane conditions are possible within the watch area – is in effect for Little River Inlet to south of Surf City. A tropical storm warning – meaning that tropical storm conditions are expected somewhere within the warning area – is in effect for south Santee River SC, to south of Surf City, the NC/VA border to Cape Charles Light VA including the mouth of the Chesapeake Bay, and western Albemarle Sound. Summary of Atlantic Hurricane Activity to Date Benchmarking the 2014 Atlantic Season to Date 2014 Activity versus Average Activity for the years 1950 - 2011 Tropical Total Cat 3-5 12 Tropical Storm avg '50‐'11 Tropical Storm 2014 Storms Hurricanes Hurricanes Hurricane avg '50‐'11 Hurricane 2014 Major Hurricane avg '50‐'11 Major Hurricane 2014 2014 year to date (1/1/14 – 7/3/14) 1 1 0 2013 year to date (1/1/13 – 7/3/13) 2 0 0 8 1995-2011 season average 14.7 7.9 3.8 1950-2011 season average 10.7 6.2 2.7 2014 CSU season forecasts 4 10 4 1 (Colorado State University at June 2) 2014 NOAA season forecasts TS Arthur 8-13 3-6 1-2 HU Arthur (NOAAs Climate Prediction Center at May 22) 0 Jun Jul Aug Sep Oct Nov Dec Tropical Storm Activity to Date 2014 Tropical Storm Activity versus Average Activity Arthur is the first named storm and the first hurricane of the 2014 The graph above shows 2014 Atlantic Hurricane Season activity and Atlantic Hurricane Season. Two named storms had occurred by this average occurrence rates since 1950 by date, category and order. It date last year, but the first hurricane, Humberto, did not occur until shows, for example, that Arthur became the first tropical storm of mid-September of 2013. The next tropical storm of 2014 will be named the season on July 1 and the first hurricane on July 3, close to the Bertha. average date of the season’s first tropical storm but nearly a month earlier than the average date of the first hurricane. The graph also shows that the average season has 10.7 tropical storms, 6.2 hurricanes and 2.7 major hurricanes (categories 3-5). New Tropical Cyclone Potential and Average Remaining Risk NHC Estimates of New Atlantic Tropical Cyclone Formation Average Risk Remaining in the 2014 Atlantic Hurricane Season The map below illustrates the NHC’s estimate of tropical cyclone Atlantic hurricane activity and major hurricane activity (categories 3-5) formation potential over the next 48 hours in the Atlantic. There both peak in September, as the graph below illustrates. The average are currently no identified areas of additional tropical cyclone remaining percentage of days with Atlantic hurricane activity at July 3 is formation potential. 98% for all hurricanes and 99% for major hurricanes. National Hurricane Center Tropical Cyclone Formation Estimates on July 3, 2014 Percentage of Days with Active Hurricanes since 1900 60% 100% 48% 80% 36% 60% 24% 40% 12% 20% Risk Daily Average Average RemainingRisk 0% 0% Jun Jul Aug Sep Oct Nov Dec All Hurricanes (1-5) Major Hurricanes (3-5) Contact us Roy Cloutier 7760 France Avenue South Minneapolis, MN 55435 [email protected] +1 (952) 841-6652 Page 2 of 2 .
Recommended publications
  • 2014 North Atlantic Hurricane Season Review
    2014 North Atlantic Hurricane Season Review WHITEPAPER Executive Summary The 2014 Atlantic hurricane season was a quiet season, closing with eight 2014 marks the named storms, six hurricanes, and two major hurricanes (Category 3 or longest period on stronger). record – nine Forecast groups predicted that the formation of El Niño and below consecutive years average sea surface temperatures (SSTs) in the Atlantic Main – that no major Development Region (MDR)1 through the season would inhibit hurricanes made development in 2014, leading to a below average season. While 2014 landfall over the was indeed quiet, these predictions didn’t materialize. U.S. The scientific community has attributed the low activity in 2014 to a number of oceanic and atmospheric conditions, predominantly anomalously low Atlantic mid-level moisture, anomalously high tropical Atlantic subsidence (sinking air) in the Main Development Region (MDR), and strong wind shear across the Caribbean. Tropical cyclone activity in the North Atlantic basin was also influenced by below average activity in the 2014 West African monsoon season, which suppressed the development of African easterly winds. The year 2014 marks the longest period on record – nine consecutive years since Hurricane Wilma in 2005 – that no major hurricanes made landfall over the U.S., and also the ninth consecutive year that no hurricane made landfall over the coastline of Florida. The U.S. experienced only one landfalling hurricane in 2014, Hurricane Arthur. Arthur made landfall over the Outer Banks of North Carolina as a Category 2 hurricane on July 4, causing minor damage. While Mexico and Central America were impacted by two landfalling storms and the Caribbean by three, Bermuda suffered the most substantial damage due to landfalling storms in 2014.Hurricane Fay and Major Hurricane Gonzalo made landfall on the island within a week of each other, on October 12 and October 18, respectively.
    [Show full text]
  • Hurricane Arthur
    Meteorological Mainstream: Hurricane Arthur Hurricane Arthur was an Independence Day spoiler for North Carolina merchants. It spun up off of the Florida coast as a Tropical Depression on June 30 and strengthened into a hurricane July 3 as moved northward, taking a bead on the North Carolina shore early on the morning of July 4. It was the earliest visit by a hurricane to the area since records began in 1851. The eye of “Arthur” crossing Pamlico Sound, North Carolina early on the morning of July 4 / NWS radar data. Hurricane Warnings had people running for high ground and leaving beaches deserted during a traditionally very busy…and profitable…summer weekend. The storm reached Category 2 intensity with 100-mph winds as it paralleled the coastline of the Tar-Heel State. There were trees and power lines downed and some roof and beach damage; Cape Lookout weather equipment measured the highest wind gust at 101 mph. However, the sustained 100-mph winds remained mostly offshore. Had Arthur’s track been just 40 miles farther west the story would have been much different, and for the worse, not only due to winds but because of a considerable storm surge. As it was, the surge maxed out at about four feet above normal. There was flooding, but it was far from catastrophic. Arthur turned northeastward and headed out to sea quickly on the morning of July 4, allowing for some of the Holiday weekend to be salvaged. Downed power lines and in some cases damaged roadways did hinder the flow of tourists but it was not a total loss for area businesses.
    [Show full text]
  • Hurricane & Tropical Storm
    5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard.
    [Show full text]
  • Sensitivity Analysis of Hurricane Arthur (2014) Storm Surge Forecasts to WRF Physics Parameterizations and Model Configurations
    OCTOBER 2017 Z H A N G E T A L . 1745 Sensitivity Analysis of Hurricane Arthur (2014) Storm Surge Forecasts to WRF Physics Parameterizations and Model Configurations FAN ZHANG AND MING LI Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland ANDREW C. ROSS Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania SERENA BLYTH LEE Griffith School of Engineering, Griffith Climate Change Response Program, Griffith Centre for Coastal Management, Griffith University, Gold Coast, Queensland, Australia DA-LIN ZHANG Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland (Manuscript received 13 December 2016, in final form 17 July 2017) ABSTRACT Through a case study of Hurricane Arthur (2014), the Weather Research and Forecasting (WRF) Model and the Finite Volume Coastal Ocean Model (FVCOM) are used to investigate the sensitivity of storm surge forecasts to physics parameterizations and configurations of the initial and boundary conditions in WRF. The turbulence closure scheme in the planetary boundary layer affects the prediction of the storm intensity: the local closure scheme produces lower equivalent potential temperature than the nonlocal closure schemes, leading to significant reductions in the maximum surface wind speed and surge heights. On the other hand, higher-class cloud microphysics schemes overpredict the wind speed, resulting in large overpredictions of storm surge at some coastal locations. Without cumulus parameterization in the outermost domain, both the wind speed and storm surge are grossly underpredicted as a result of large precipitation decreases in the storm center. None of the choices for the WRF physics parameterization schemes significantly affect the prediction of Arthur’s track.
    [Show full text]
  • Full Report on NC 12 Hot Spots
    NC 12 Hot Spots AREAS LOCATED FROM MARC BASNIGHT BRIDGE (FORMERLY “BONNER BRIDGE”) TO OCRACOKE ISLAND Midgett, Craig A NCDOT DIV 1 June 2021 Oregon Inlet NC 12 Hot Spots Canal Zone 1 2 Pea Island Visitor Center Rodanthe 3 'S' Curves Raleigh ! Avon 4 Buxton 5 Frisco Hatteras 6 Ocracoke Island Hatteras Inlet 7 ± Legend Hot Spots NC 12 Ocracoke Inlet Introduction Since 2010 more than $72 million dollars has been spent to make NC 12 passable in locations south of Bonner Bridge to, and including, Ocracoke Island following various storm events. The events listed in the table below include hurricanes, nor’easters and other severe storms that have caused rising tides that breached dunes in particular areas, indicated as Hot Spots, that have been constructed to keep ocean water from washing over NC 12. Noted below in the table there were two years, 2014 and 2015, when Ocracoke was exclusively majorly impacted by hurricanes. 2010 Hurricane Earl 2011 Hurricane Irene 2012 Hurricane Sandy 2013 No Named Storm 2014 No Named Storm; Hurricane Arthur (Ocracoke) 2015 No Named Storm; Hurricane Joaquin (Ocracoke) 2016 TS Hermine/Hurricane Matthew 2017 Hurricane Florence 2018 No Named Storm 2019 Hurricane Dorian November Nor'easter 2020 Nor'easter As sea levels continue to rise and with water temperatures increasing leading to more frequent and severe storm events the expectation is an increase in the need for maintenance until more permanent mitigation can be achieved through future projects. 1 NC 12 Hot Spot Canal Zone (1) The Canal Zone Hot Spot is just south of the new Marc Basnight Bridge.
    [Show full text]
  • Current Water Conditions in Massachusetts July 10, 2014
    Current Water Conditions in Massachusetts July 10, 2014 • June precipitation was much below normal in central and eastern regions • June streamflows and ground water levels were normal • Some reservoir levels were below normal in the Central, Northeast and Southeast regions at the end of June • A minority of Drought Management Plan indices were tripping thresholds at the end of June in the Central, Northeast, Southeast, and Cape Cod/Islands regions. The conditions are expected to have been mitigated by July rainfall. Precipitation Conditions Estimated June state-wide average precipitation is 2.92 inches, which is 76 percent of the long-term average for the month. The regions of Massachusetts received between 51 (Central) and 133 percent (West) of average precipitation during June. The MA Drought Management Plan precipitation index at the end of June was at the advisory level for Cape Cod and Islands. A table of June 2014 estimated precipitation statistics, based on preliminary precipitation data from the Department of Conservation and Recreation and National Weather Service precipitation monitoring networks, is attached. A map at the back of this report shows the distribution of June rainfall. Thunderstorms and Hurricane Arthur have brought several inches of rain to Massachusetts during the beginning of July. Heavy rain associated with Hurricane Arthur caused urban flooding in Southeast Massachusetts. National Weather Service storm reports indicate that Cape Cod received one to five inches of rain and Southeast MA received two to eight inches of rain from Hurricane Arthur. A microburst associated with severe thunderstorms on July 7, 2014 was confirmed by National Weather Service in Bedford, MA, and straight-line wind damage occurred in many locations within Massachusetts on that date.
    [Show full text]
  • Quarterly Climate Impacts and Outlook Gulf of Maine Region
    Quarterly Climate Impacts Gulf of Maine Region and Outlook September 2014 Gulf of Maine Significant Events - for June–August 2014 Rounds of heavy rain occurred throughout the region in June. New Brunswick saw 50–80 mm (2–3 in.) of rain from June 5–7, with the highest total of 95 mm (3.75 in.) in Grand Manan. From June 25–26, parts of Maine and New Hampshire saw up to 118 mm (4.66 in.) of rain, which caused flash flooding. everal consecutive days of heat and high humidity occurred in late June and S In early July, Hurricane early July. Heat warnings were in place for New Brunswick for up to a week. Arthur’s high winds caused On July 2, Miramichi, NB, set a daily record high of 34.5°C (94°F), and Caribou, power outages region- ME, tied its all-time warmest low temperature of 21.7°C (71°F). In addition, wide, while its heavy Caraquet, NB, had its warmest July on record (since 1889). rain triggered some flash Extreme rainfall set urricane Arthur moved through the region on July 4–6. New Brunswick, flooding in parts of New H records and caused eastern Maine, and coastal Massachusetts saw heavy rain, with many sites Brunswick, Maine, and flash flooding in Massachusetts. exceeding 100 mm (3.94 in.). The greatest total was reported at Upsalquitch mid-August in parts Lake, NB, at 192 mm (7.56 in.). Wind gusts exceeded 90 km/h (56 mph) at of the region. nearly 30 locations in the Maritimes, with a max gust of 138 km/h (86 mph) in Greenwood, NS.
    [Show full text]
  • 2014 Atlantic Hurricane Season
    NATIONAL HURRICANE CENTER ANNUAL SUMMARY 2014 ATLANTIC HURRICANE SEASON Richard J. Pasch 1 May 2015 NASA MODIS VISIBLE IMAGE OF HURRICANE GONZALO AT 1745 UTC 16 OCTOBER 2014 ABSTRACT The 2014 Atlantic hurricane season was below average in several respects. Although the number of hurricanes, six, equaled the long-term average, there were two major hurricanes (category 3 or higher intensity on the Saffir-Simpson Hurricane Wind Scale) and eight named storms, compared to the long- term averages of three and 12, respectively. The NOAA Accumulated Cyclone Energy (ACE) index, which is a measure of the strength and duration of (sub)tropical storms and hurricanes, was about 72% of the long-term median. Although most of the tropical cyclone activity occurred well east of the east coast of the United States, Hurricane Arthur made landfall on the North Carolina coast in July. Bermuda was hit by two hurricanes, Fay and Gonzalo, in less than a week’s time in October. 2014 Atlantic Hurricane Season 2 OVERVIEW Tropical cyclone activity was somewhat below average in the Atlantic basin during 2014. Eight tropical storms formed, of which six became hurricanes, and two intensified into major hurricanes. In comparison the long-term (1981-2010) averages are 12 named storms, 6 hurricanes, and 3 major hurricanes. The NOAA Accumulated Cyclone Energy (ACE) index for 2014 was 72% of the long-term median. While most land areas were spared from tropical cyclones in 2014, Hurricane Arthur made landfall on the North Carolina coast, and Bermuda was struck by Hurricanes Fay and Gonzalo within a six-day period.
    [Show full text]
  • Hurricanes.Ca
    2014 TROPICAL CYCLONE SEASON SUMMARY Canadian Hurricane Centre Meteorological Service of Canada 45 Alderney Drive Dartmouth, Nova Scotia, Canada Cat. No.: En55-8E-PDF Unless otherwise specified, you may not reproduce materials in this publication, in whole or in part, for the purposes of commercial redistribution without prior written permission from Environment Canada's copyright administrator. To obtain permission to reproduce Government of Canada materials for commercial purposes, apply for Crown Copyright Clearance by contacting: Environment Canada Inquiry Centre 10 Wellington Street, 23rd Floor Gatineau QC K1A 0H3 Telephone: 819-997-2800 Toll Free: 1-800-668-6767 (in Canada only) Fax: 819-994-1412 TTY: 819-994-0736 Email: [email protected] © Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment, 2015 Aussi disponible en français Canadian Hurricane Centre Meteorological Service of Canada 45 Alderney Drive Dartmouth, Nova Scotia B2Y 2N6 CANADA Website: www.hurricanes.ca 2014 TROPICAL CYCLONE SEASON SUMMARY After a very inactive season in 2013 for storms of tropical origin affecting Canadian territory, 2014 was significantly more active. The first storm to affect Canada was very early in the season. Post-Tropical Storm Arthur brought hurricane-force gusts and caused significant damage to trees and the electrical grid in the Maritimes on July 5th and 6th. A weakened Arthur gave strong gusty winds to Newfoundland later on July 6th, however these winds remained below warning criteria. The next two storms activating the Canadian Hurricane Centre’s (CHC) operations, Bertha and Cristobal, had relatively minimal impact over land in Canada.
    [Show full text]
  • Water Resources Management Division C/O Government Purchasing Agency 30 Strawberry Marsh Road St
    WRMD Newfoundland and Labrador Weather Forecast Services for 2014-2015 Flood Alert and Flood Forecasting Services Hurricane Summary Report Issued for 2014-2015 WEATHER FORECAST SERVICES FOR 2014-2015 FLOOD ALERT AND FLOOD FORECASTING SERVICES FOR THE GOVERNMENT OF NEWFOUNDLAND AND LABRADOR ISSUED FOR 2014-2015 HURRICANE SUMMARY REPORT Submitted to: Water Resources Management Division c/o Government Purchasing Agency 30 Strawberry Marsh Road St. John’s, NL, A1B 4R4 Submitted by: AMEC Environment & Infrastructure A Division of AMEC Americas Limited 133 Crosbie Road, PO Box 13216 St. John's, NL, A1B 4A5 210 ColonnadeJanuary Road 16 South,, 2015 Unit 300, Ottawa, Ontario, K2E 7L5 1 WRMD Newfoundland and Labrador Weather Forecast Services for 2014-2015 Flood Alert and Flood Forecasting Services Hurricane Summary Report Issued for 2014-2015 1. SUMMARY OF 2014 ATLANTIC HURRICANE SEASON OUTLOOK In June 2014, AMEC provided an Atlantic Hurricane Season outlook for WRMD. Forecasters predicted that the Atlantic Basin would have a near to below normal season, and that Newfoundland was mostly likely to be impacted by 1-3 tropical/post-tropical cyclones through the hurricane season. As indicated in the outlook report, there were several factors favouring a near-normal or below-normal hurricane season for the Atlantic Basin: The development of El Niño over the summer. Sea-surface temperatures (SST) in the Main Development Region (MDR) of the Atlantic Ocean were expected to remain near average to below average. We were in the warm phase of the Atlantic Multidecadal Oscillation (AMO) going into the hurricane season but there was not sufficient evidence to support a continuation of this warm phase.
    [Show full text]
  • The 2014 Hurricane Season Review (Belated)
    SHORELINES – February 2015 As presented to the Island Review magazine The 2014 Hurricane Season Review (belated) Although we’re a few weeks into 2015, perhaps it’s still not too late to entertain one last “year in review” story, which smartly leads us to our annual r e cap of the 2014 hurricane season ( June 1 st – November 30 th ) . The 2014 hurricane season started with a bang (or a blow) as Hurricane Arthur c rossed the very eastern tip of Shackleford Banks as a category 2 hurricane on July 3 rd. It was the strongest hurricane to strike the U.S. since 2008 - Hurricane Ike was also Category 2 at landfall . However the impacts f r o m Arthur were very minor thanks to the rapid forward speed of the hurricane – there simply wasn’t enough time for the seas to develop along the oceanfront or the wind to pile water up on our sound and creek shorelines. After crossing Shackleford Banks, Arthur whisked away rather quietly across Pamlico Sound and into the Atlantic Ocean as the July 4 th weekend festivities w ere as celebratory and full of visitors as usual (perhaps even more so). Figure 1 – Graphic prepared by the National Weather Service depicting cyclone tracks and intensities reported for the 2014 hurricane season. F rom a broader perspective most experts agree the Atlantic Ocean basin continues to be in a heightened trend of tropical cyclone activity compliments of cyclical ocean- atmosphere interactions ; however a convergence of factors helped suppress cyclone formation in 201 4 (Figure 1) .
    [Show full text]
  • Fall 2014 Edition
    National Weather Service, Newport/Morehead City, NC http://weather.gov/Newport —> Bookmark it!! Fall 2014 Edition Sixtieth Anniversary of Hurricane Hazel October 15, 2014 will mark the 60th Anniversary of Hurricane Hazel. The Category 4 storm is the strongest hurricane to ever make landfall in North Carolina and the only Category 4 ever to strike the state. Hazel made landfall near Calabash, North Carolina, close to the North Carolina/ South Carolina state border. The hurricane brought a storm surge of over 18 feet to a large area of the North Carolina coastline, producing severe coastal damage. Intensifying the damage was the fact that the hurricane coincided with the highest lunar tide of the year. Brunswick County suffered the heaviest damage, where most coastal dwellings were either completely destroyed or severely dam- aged. As a result of the high storm surge, the low-lying sandy barrier islands were completely flood- ed. An official report from the Weather Bureau in Raleigh stated that as a result of Hazel, "all traces of civilization on the immediate waterfront between the state line and Cape Fear were practically an- nihilated." The December 1954 NOAA report on the hurricanes of the year states that "every pier in a distance of 170 miles of coastline was demolished". The coastal area near the landfall was battered by winds estimated to have been as high 150 mph. Winds of 98 mph were measured in Wilmington while winds were estimated at 125 mph at Wrightsville Beach and 140 mph at Oak Island. A storm surge of over 12 feet inundated a large area of coastline reaching as high as 18 feet at Calabash, where the storm surge coincided with the time of the lunar high tide and Hazel nearly wiped out Garden City, SC.
    [Show full text]