Hurricane Season Enters Active Phase

Total Page:16

File Type:pdf, Size:1020Kb

Hurricane Season Enters Active Phase Hurricane season enters active phase By SUZETTE PORTER Article published on Monday, Sept. 8, 2014 Since hurricane season began in the Atlantic basin, four named tropical storms have formed Season summary and outlook and three have strengthened into hurricanes, but the busiest part of the season is just getting Hurricane Arthur was the first to form in 2014 started. and traveled along the east coast of the United States over the July 4 holiday, strengthening into Statistically, the majority of the activity in a a Category 2 hurricane before it made landfall on typical season happens in the second half, the Outer Banks of North Carolina July 4 with according to a media release from Pinellas wind gusts of more than 100 mph. County Communications. Since the hurricane record began in 1855, nearly 55 percent of all Next up was Hurricane Bertha, which started as a tropical storms and hurricanes formed during the tropical depression Aug. 1. Bertha posed no months of September and October. threat to land, staying well off the U.S. coast before moving out over the open waters of the “Strong and destructive storms such as 2012’s Atlantic. Hurricane Cristobal formed Aug. 28. Hurricane Sandy, 2005’s Wilma and the 1921 Although it remained well off the U.S. coast, it Tampa Bay Hurricane all made landfall in did create heavy surf to beaches along the October, serving as a reminder to stay prepared,” Atlantic coast just in time for the Labor Day county officials said. weekend. For more information, visit the National Hurricane The last to form thus far this year was Tropical Center’s climatology Storm Dolly, a short-lived system that developed website www.nhc.noaa.gov/climo. on Labor Day, Sept. 1, and made landfall along the coast of Mexico Sept. 3. Pinellas County is producing its eSeries: Prepare to Survive, which are 15-minute programs NOAA’s Climate Prediction Center updated its offering an in-depth look into specific disaster hurricane season Outlook Aug. 7. The new preparedness topics, including insurance, outlook, which included hurricanes Arthur and preparing pets and building codes. Bertha, predicts a 70 percent chance of the following ranges: seven to 12 named storms (top The September edition features a discussion with winds of 39 mph or higher); three to six Emergency Management director Sally Bishop hurricanes (top winds of 74 mph or higher), of about the county’s new Public Safety Building. which zero to two could become major hurricanes The show is available on PCC-TV, on YouTube (Category 3, 4, 5; winds of at least 111 mph). at www.youtube.com/PCCTV1, and online at www.pinellascounty.org/eseries. These ranges are below the 30-year seasonal average of 12 named storms, six hurricanes and Hurricane season continues through Nov. 30. three major hurricanes. The initial outlook in May predicted eight to 13 named storms, three to six hurricanes and one to two major hurricanes. For more information about how to prepare for hurricanes, visitwww.pinellascounty.org/emergency to find evacuation levels, learn about storm dangers and discover how to create a personal disaster plan. Additional information can be found in the hurricane guide atwww.TBNweekly.com. .
Recommended publications
  • Departamento De Física Tesis Doctoral
    Departamento de Física Tesis Doctoral ANALYSIS OF THE RAINFALL VARIABILITY IN THE SUBTROPICAL NORTH ATLANTIC REGION: BERMUDA, CANARY ISLANDS, MADEIRA AND AZORES Irene Peñate de la Rosa Las Palmas de Gran Canaria Noviembre de 2015 UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA Programa de doctorado Física Fundamental y Aplicada Departamento de Física ANALYSIS OF THE RAINFALL VARIABILITY IN THE SUBTROPICAL NORTH ATLANTIC REGION: BERMUDA, CANARY ISLANDS, MADEIRA AND THE AZORES Tesis Doctoral presentada por D" Irene Peñate de la Rosa Dirigida por el Dr. D. Juan Manuel Martin González y Codirigida por el Dr. D. Germán Rodríguez Rodríguez El Director, El Codirector, La Doctoranda, (firma) (firma) (firma) \ Las Palmas de Gran Canaria, a 17 de noviembre de 2015 DEPARTAMENTO DE FÍSICA PROGRAMA DE DOCTORADO: FÍSICA FUNDAMENTAL Y APLICADA TESIS DOCTORAL ANALYSIS OF THE RAINFALL VARIABILITY IN THE SUBTROPICAL NORTH ATLANTIC REGION: BERMUDA, CANARY ISLANDS, MADEIRA AND AZORES PRESENTADA POR: IRENE PEÑATE DE LA ROSA DIRIGA POR EL DR. D. JUAN MANUEL MARTÍN GONZÁLEZ CODIRIGIDA POR EL DR. D. GERMÁN RODRÍGUEZ RODRÍGUEZ LAS PALMAS DE GRAN CANARIA, 2015 Para Pedro y Ángela (mis padres), Andrés, Alejandra y Jorge Irene ACKNOWLEDGEMENTS This thesis has been carried out within the framework of a research collaboration between the Spanish Agency of Meteorology (AEMET) and the Bermuda Weather Service (BWS), such cooperative efforts have been very successful in accomplishing my meteorological training and research objectives. I would like to acknowledge the support to both institutions, especially to Mark Guishard (BWS) for his passionate discussions and by way of his outstanding knowledge about contemporary scientific theories relevant to tropical cyclone forecasting, including case studies of local events.
    [Show full text]
  • 2014 North Atlantic Hurricane Season Review
    2014 North Atlantic Hurricane Season Review WHITEPAPER Executive Summary The 2014 Atlantic hurricane season was a quiet season, closing with eight 2014 marks the named storms, six hurricanes, and two major hurricanes (Category 3 or longest period on stronger). record – nine Forecast groups predicted that the formation of El Niño and below consecutive years average sea surface temperatures (SSTs) in the Atlantic Main – that no major Development Region (MDR)1 through the season would inhibit hurricanes made development in 2014, leading to a below average season. While 2014 landfall over the was indeed quiet, these predictions didn’t materialize. U.S. The scientific community has attributed the low activity in 2014 to a number of oceanic and atmospheric conditions, predominantly anomalously low Atlantic mid-level moisture, anomalously high tropical Atlantic subsidence (sinking air) in the Main Development Region (MDR), and strong wind shear across the Caribbean. Tropical cyclone activity in the North Atlantic basin was also influenced by below average activity in the 2014 West African monsoon season, which suppressed the development of African easterly winds. The year 2014 marks the longest period on record – nine consecutive years since Hurricane Wilma in 2005 – that no major hurricanes made landfall over the U.S., and also the ninth consecutive year that no hurricane made landfall over the coastline of Florida. The U.S. experienced only one landfalling hurricane in 2014, Hurricane Arthur. Arthur made landfall over the Outer Banks of North Carolina as a Category 2 hurricane on July 4, causing minor damage. While Mexico and Central America were impacted by two landfalling storms and the Caribbean by three, Bermuda suffered the most substantial damage due to landfalling storms in 2014.Hurricane Fay and Major Hurricane Gonzalo made landfall on the island within a week of each other, on October 12 and October 18, respectively.
    [Show full text]
  • Hurricane and Tropical Storm
    State of New Jersey 2014 Hazard Mitigation Plan Section 5. Risk Assessment 5.8 Hurricane and Tropical Storm 2014 Plan Update Changes The 2014 Plan Update includes tropical storms, hurricanes and storm surge in this hazard profile. In the 2011 HMP, storm surge was included in the flood hazard. The hazard profile has been significantly enhanced to include a detailed hazard description, location, extent, previous occurrences, probability of future occurrence, severity, warning time and secondary impacts. New and updated data and figures from ONJSC are incorporated. New and updated figures from other federal and state agencies are incorporated. Potential change in climate and its impacts on the flood hazard are discussed. The vulnerability assessment now directly follows the hazard profile. An exposure analysis of the population, general building stock, State-owned and leased buildings, critical facilities and infrastructure was conducted using best available SLOSH and storm surge data. Environmental impacts is a new subsection. 5.8.1 Profile Hazard Description A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (National Oceanic and Atmospheric Administration [NOAA] 2013a). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development.
    [Show full text]
  • Hurricane Arthur
    Meteorological Mainstream: Hurricane Arthur Hurricane Arthur was an Independence Day spoiler for North Carolina merchants. It spun up off of the Florida coast as a Tropical Depression on June 30 and strengthened into a hurricane July 3 as moved northward, taking a bead on the North Carolina shore early on the morning of July 4. It was the earliest visit by a hurricane to the area since records began in 1851. The eye of “Arthur” crossing Pamlico Sound, North Carolina early on the morning of July 4 / NWS radar data. Hurricane Warnings had people running for high ground and leaving beaches deserted during a traditionally very busy…and profitable…summer weekend. The storm reached Category 2 intensity with 100-mph winds as it paralleled the coastline of the Tar-Heel State. There were trees and power lines downed and some roof and beach damage; Cape Lookout weather equipment measured the highest wind gust at 101 mph. However, the sustained 100-mph winds remained mostly offshore. Had Arthur’s track been just 40 miles farther west the story would have been much different, and for the worse, not only due to winds but because of a considerable storm surge. As it was, the surge maxed out at about four feet above normal. There was flooding, but it was far from catastrophic. Arthur turned northeastward and headed out to sea quickly on the morning of July 4, allowing for some of the Holiday weekend to be salvaged. Downed power lines and in some cases damaged roadways did hinder the flow of tourists but it was not a total loss for area businesses.
    [Show full text]
  • Orleans Parish Hazard Mitigation Plan
    Hazard Mitigation Plan City of New Orleans Office of Homeland Security and Emergency Preparedness January 7, 2021 1300 Perdido Street, Suite 9W03 (504) 658-8740 ready.nola.gov/hazard-mitigation DRAFT – January 7, 2020 1 Table of Contents Section 1: Introduction ................................................................................................................... 9 1.1 New Orleans Community Profile ...................................................................................................... 11 1.1.1 Location ..................................................................................................................................... 11 1.1.2 History of Orleans Parish ........................................................................................................... 12 1.1.3 Climate ....................................................................................................................................... 14 1.1.4 Transportation ............................................................................................................................ 15 1.1.5 Community Assets ..................................................................................................................... 17 1.1.6 Land Use and Zoning ................................................................................................................. 18 1.1.7 Population .................................................................................................................................. 24 1.1.8
    [Show full text]
  • Hurricane & Tropical Storm
    5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard.
    [Show full text]
  • The Atlantic Hurricane Season Summary – 2014
    THE ATLANTIC HURRICANE SEASON SUMMARY – 2014 SPECIAL FOCUS ON ANTIGUA AND BARBUDA (PRELIMINARY) Dale C. S. Destin (follow @anumetservice) Antigua and Barbuda Meteorological Service Climate Section December 4, 2014 Satellite Image: Hurricane Gonzalo – Oct 13, 12:45 pm 2014 1 The Atlantic Hurricane Season Summary – 2014 Special Focus on Antigua and Barbuda Dale C. S. Destin (follow @anumetservice) Antigua and Barbuda Meteorological Service Climate Section December 3, 2014 The Season in Brief The 2014 Atlantic hurricane season was relatively quiet generally but relatively average for Antigua. It produced eight (8) named storms. Of the eight (8) storms, six (6) became hurricanes and two reached major hurricane status - category three (3) or higher on the Saffir-Simpson Hurricane Wind Scale. The strongest tropical cyclone for the season was Major Hurricane Gonzalo with peak winds of 145 mph and minimum pressure of 940 mb (see figure 2). Gonzalo impacted Antigua and Barbuda and most of the other northeast Caribbean islands causing loss of lives and 100s of millions of dollars in damage. Relative to Antigua and Barbuda Relative to Antigua and Barbuda, the rest of the Leeward Islands and the British Virgin Islands, two (2) tropical cyclones entered or formed in our defined monitored area (10N 40W – 10N 55W – 15N 70W – 20N 70W – 20N 55W – 15N 40W – 10N 40W) - Bertha and Gonzalo. Gonzalo impacted the northeast Caribbean with hurricane force winds, passing directly over Antigua, St. Martin and Anguilla. This is the first time since Jose in 1999, Antigua has had sustained hurricane force winds, ending our 14 year hurricane drought. In terms of number of named storms, it was not a quiet season for Antigua but rather an average one; however, with respect to hurricanes, we were a year over due since one affects us every three years on average.
    [Show full text]
  • Sensitivity Analysis of Hurricane Arthur (2014) Storm Surge Forecasts to WRF Physics Parameterizations and Model Configurations
    OCTOBER 2017 Z H A N G E T A L . 1745 Sensitivity Analysis of Hurricane Arthur (2014) Storm Surge Forecasts to WRF Physics Parameterizations and Model Configurations FAN ZHANG AND MING LI Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland ANDREW C. ROSS Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania SERENA BLYTH LEE Griffith School of Engineering, Griffith Climate Change Response Program, Griffith Centre for Coastal Management, Griffith University, Gold Coast, Queensland, Australia DA-LIN ZHANG Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland (Manuscript received 13 December 2016, in final form 17 July 2017) ABSTRACT Through a case study of Hurricane Arthur (2014), the Weather Research and Forecasting (WRF) Model and the Finite Volume Coastal Ocean Model (FVCOM) are used to investigate the sensitivity of storm surge forecasts to physics parameterizations and configurations of the initial and boundary conditions in WRF. The turbulence closure scheme in the planetary boundary layer affects the prediction of the storm intensity: the local closure scheme produces lower equivalent potential temperature than the nonlocal closure schemes, leading to significant reductions in the maximum surface wind speed and surge heights. On the other hand, higher-class cloud microphysics schemes overpredict the wind speed, resulting in large overpredictions of storm surge at some coastal locations. Without cumulus parameterization in the outermost domain, both the wind speed and storm surge are grossly underpredicted as a result of large precipitation decreases in the storm center. None of the choices for the WRF physics parameterization schemes significantly affect the prediction of Arthur’s track.
    [Show full text]
  • Full Report on NC 12 Hot Spots
    NC 12 Hot Spots AREAS LOCATED FROM MARC BASNIGHT BRIDGE (FORMERLY “BONNER BRIDGE”) TO OCRACOKE ISLAND Midgett, Craig A NCDOT DIV 1 June 2021 Oregon Inlet NC 12 Hot Spots Canal Zone 1 2 Pea Island Visitor Center Rodanthe 3 'S' Curves Raleigh ! Avon 4 Buxton 5 Frisco Hatteras 6 Ocracoke Island Hatteras Inlet 7 ± Legend Hot Spots NC 12 Ocracoke Inlet Introduction Since 2010 more than $72 million dollars has been spent to make NC 12 passable in locations south of Bonner Bridge to, and including, Ocracoke Island following various storm events. The events listed in the table below include hurricanes, nor’easters and other severe storms that have caused rising tides that breached dunes in particular areas, indicated as Hot Spots, that have been constructed to keep ocean water from washing over NC 12. Noted below in the table there were two years, 2014 and 2015, when Ocracoke was exclusively majorly impacted by hurricanes. 2010 Hurricane Earl 2011 Hurricane Irene 2012 Hurricane Sandy 2013 No Named Storm 2014 No Named Storm; Hurricane Arthur (Ocracoke) 2015 No Named Storm; Hurricane Joaquin (Ocracoke) 2016 TS Hermine/Hurricane Matthew 2017 Hurricane Florence 2018 No Named Storm 2019 Hurricane Dorian November Nor'easter 2020 Nor'easter As sea levels continue to rise and with water temperatures increasing leading to more frequent and severe storm events the expectation is an increase in the need for maintenance until more permanent mitigation can be achieved through future projects. 1 NC 12 Hot Spot Canal Zone (1) The Canal Zone Hot Spot is just south of the new Marc Basnight Bridge.
    [Show full text]
  • ! 1! NASA's Hurricane and Severe Storm Sentinel (HS3) Investigation
    https://ntrs.nasa.gov/search.jsp?R=20170005486 2019-08-31T16:22:19+00:00Z 1! NASA’s Hurricane and Severe Storm Sentinel (HS3) Investigation 2! 3! Scott A. Braun, Paul A. Newman, Gerald M. Heymsfield 4! NASA Goddard Space Flight Center, Greenbelt, Maryland 5! 6! Submitted to Bulletin of the American Meteor. Society 7! October 14, 2015 8! 9! 10! 11! Corresponding author: Scott A. Braun, NASA Goddard Space Flight Center, Code 612, 12! Greenbelt, MD 20771 13! Email: [email protected] 14! ! 1! 15! Abstract 16! The National Aeronautics and Space Administrations’s (NASA) Hurricane and Severe Storm 17! Sentinel (HS3) investigation was a multi-year field campaign designed to improve understanding 18! of the physical processes that control hurricane formation and intensity change, specifically the 19! relative roles of environmental and inner-core processes. Funded as part of NASA’s Earth 20! Venture program, HS3 conducted five-week campaigns during the hurricane seasons of 2012-14 21! using the NASA Global Hawk aircraft, along with a second Global Hawk in 2013 and a WB-57f 22! aircraft in 2014. Flying from a base at Wallops Island, Virginia, the Global Hawk could be on 23! station over storms for up to 18 hours off the East Coast of the U.S. to about 6 hours off the 24! western coast of Africa. Over the three years, HS3 flew 21 missions over 9 named storms, along 25! with flights over two non-developing systems and several Saharan Air Layer (SAL) outbreaks. 26! This article summarizes the HS3 experiment, the missions flown, and some preliminary findings 27! related to the rapid intensification and outflow structure of Hurricane Edouard (2014) and the 28! interaction of Hurricane Nadine (2012) with the SAL.
    [Show full text]
  • 2014 Atlantic Hurricane Season Outlook: Aug 15, 2014 This Seasonal Forecast Briefing Is the Third and Final Update
    WILLIS RE ANALYTICS eVENT™ 2014 Atlantic Hurricane Season Outlook: Aug 15, 2014 This seasonal forecast briefing is the third and final update. In this briefing, we provide a summary of how the remainder of the hurricane season appears to be shaping up. Current situation Forecasts The 2014 North Atlantic hurricane has been Forecast skill is generally higher for forecasts issued part way through fairly average so far. The season got off to an the hurricane season due to shorter lead-time and the fact that some of early start with Tropical Storm Arthur the season has already passed. The major centers remain unanimous in attaining hurricane status over a month continuing to forecast below average activity (Table 1) with a slight before the long-term average date of the first nudge downward in forecast activity from their forecasts issued in early hurricane. Hurricane Bertha followed in early July. August and remained out over the open ocean where it re-curved toward Europe and caused The CSU forecast is based on their new early-August statistical significant flooding across the U.K. prediction scheme that is then moderated by the average activity in five analog years and some qualitative adjustment for factors not directly As we enter the peak of the hurricane season considered in their calculations. Their forecast for a quiet season is the storms to watch will be those that develop guided by cooler than normal ocean temperatures and higher than in the far eastern Atlantic just off the African normal wind shear over the tropical North Atlantic, and a forecast for coast since these have greater potential to weak El Niño conditions throughout the remainder of the season.
    [Show full text]
  • Current Water Conditions in Massachusetts July 10, 2014
    Current Water Conditions in Massachusetts July 10, 2014 • June precipitation was much below normal in central and eastern regions • June streamflows and ground water levels were normal • Some reservoir levels were below normal in the Central, Northeast and Southeast regions at the end of June • A minority of Drought Management Plan indices were tripping thresholds at the end of June in the Central, Northeast, Southeast, and Cape Cod/Islands regions. The conditions are expected to have been mitigated by July rainfall. Precipitation Conditions Estimated June state-wide average precipitation is 2.92 inches, which is 76 percent of the long-term average for the month. The regions of Massachusetts received between 51 (Central) and 133 percent (West) of average precipitation during June. The MA Drought Management Plan precipitation index at the end of June was at the advisory level for Cape Cod and Islands. A table of June 2014 estimated precipitation statistics, based on preliminary precipitation data from the Department of Conservation and Recreation and National Weather Service precipitation monitoring networks, is attached. A map at the back of this report shows the distribution of June rainfall. Thunderstorms and Hurricane Arthur have brought several inches of rain to Massachusetts during the beginning of July. Heavy rain associated with Hurricane Arthur caused urban flooding in Southeast Massachusetts. National Weather Service storm reports indicate that Cape Cod received one to five inches of rain and Southeast MA received two to eight inches of rain from Hurricane Arthur. A microburst associated with severe thunderstorms on July 7, 2014 was confirmed by National Weather Service in Bedford, MA, and straight-line wind damage occurred in many locations within Massachusetts on that date.
    [Show full text]