Crystal Structure of 4-Diphosphocytidyl-2C-Methyl-D-Erythritol Kinase
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent -
(12) Patent Application Publication (10) Pub. No.: US 2014/0155567 A1 Burk Et Al
US 2014O155567A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0155567 A1 Burk et al. (43) Pub. Date: Jun. 5, 2014 (54) MICROORGANISMS AND METHODS FOR (60) Provisional application No. 61/331,812, filed on May THE BIOSYNTHESIS OF BUTADENE 5, 2010. (71) Applicant: Genomatica, Inc., San Diego, CA (US) Publication Classification (72) Inventors: Mark J. Burk, San Diego, CA (US); (51) Int. Cl. Anthony P. Burgard, Bellefonte, PA CI2P 5/02 (2006.01) (US); Jun Sun, San Diego, CA (US); CSF 36/06 (2006.01) Robin E. Osterhout, San Diego, CA CD7C II/6 (2006.01) (US); Priti Pharkya, San Diego, CA (52) U.S. Cl. (US) CPC ................. CI2P5/026 (2013.01); C07C II/I6 (2013.01); C08F 136/06 (2013.01) (73) Assignee: Genomatica, Inc., San Diego, CA (US) USPC ... 526/335; 435/252.3:435/167; 435/254.2: (21) Appl. No.: 14/059,131 435/254.11: 435/252.33: 435/254.21:585/16 (22) Filed: Oct. 21, 2013 (57) ABSTRACT O O The invention provides non-naturally occurring microbial Related U.S. Application Data organisms having a butadiene pathway. The invention addi (63) Continuation of application No. 13/101,046, filed on tionally provides methods of using Such organisms to produce May 4, 2011, now Pat. No. 8,580,543. butadiene. Patent Application Publication Jun. 5, 2014 Sheet 1 of 4 US 2014/O155567 A1 ?ueudos!SMS |?un61– Patent Application Publication Jun. 5, 2014 Sheet 2 of 4 US 2014/O155567 A1 VOJ OO O Z?un61– Patent Application Publication US 2014/O155567 A1 {}}} Hººso Patent Application Publication Jun. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
The Role of the Salvage Pathway in Nucleotide Sugar Biosynthesis
THE ROLE OF THE SALVAGE PATHWAY IN NUCLEOTIDE SUGAR BIOSYNTHESIS: IDENTIFICATION OF SUGAR KINASES AND NDP-SUGAR PYROPHOSPHORYLASES by TING YANG (Under the Direction of Maor Bar-Peled) ABSTRACT The synthesis of polysaccharides, glycoproteins, glycolipids, glycosylated secondary metabolites and hormones requires a large number of glycosyltransferases and a constant supply of nucleotide sugars. In plants, photosynthesis and the NDP-sugar inter-conversion pathway are the major entry points to form NDP-sugars. In addition to these pathways is the salvage pathway, a less understood metabolism that provides the flux of NDP-sugars. This latter pathway involves the hydrolysis of glycans to free sugars, sugar transport, sugar phosphorylation and nucleotidylation. The balance between glycan synthesis and recycling as well as its regulation at various plant developmental stages remains elusive as many of the molecular components are unknown. To understand how the salvage pathway contributes to the sugar flux and cell wall biosynthesis, my research focused on the functional identification of salvage pathway sugar kinases and NDP-sugar pyrophosphorylases. This research led to the first identification and enzymatic characterization of galacturonic acid kinase (GalA kinase), galactokinase (GalK), a broad UDP-sugar pyrophosphorylase (sloppy), two promiscuous UDP-GlcNAc pyrophosphorylases (GlcNAc-1-P uridylyltransferases), as well as UDP-sugar pyrophosphorylase paralogs from Trypanosoma cruzi and Leishmania major. To evaluate the salvage pathway in plant biology, we further investigated a sugar kinase mutant: galacturonic acid kinase mutant (galak) and determined if and how galak KO mutant affects the synthesis of glycans in Arabidopsis. Feeding galacturonic acid to the seedlings exhibited a 40-fold accumulation of free GalA in galak mutant, while the wild type (WT) plant readily metabolizes the fed-sugar. -
Generated by SRI International Pathway Tools Version 25.0, Authors S
Authors: Pallavi Subhraveti Peter D Karp Ingrid Keseler An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Anamika Kothari Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000442315Cyc: Rubellimicrobium thermophilum DSM 16684 Cellular Overview Connections between pathways are omitted for legibility. Ron Caspi lipid II (meso phosphate diaminopimelate sn-glycerol containing) phosphate dCTP 3-phosphate predicted ABC RS07495 RS12165 RS03605 transporter RS13105 of phosphate lipid II (meso dCTP sn-glycerol diaminopimelate phosphate 3-phosphate containing) phosphate Secondary Metabolite Degradation Storage Compound Biosynthesis Tetrapyrrole Biosynthesis Hormone Biosynthesis Aromatic Compound Aldehyde Degradation UDP-N-acetyl- Biosynthesis undecaprenyl- a mature (4R)-4-hydroxy- an L-glutamyl- a [protein]-L- queuosine at Macromolecule Modification myo-inositol degradation I α-D-glucosamine adenosylcobinamide a purine L-canavanine 5'-deoxyadenosine sec Metabolic Regulator Biosynthesis Amine and Polyamine Biosynthesis polyhydroxybutanoate biosynthesis siroheme biosynthesis methylglyoxal degradation I diphospho-N- peptidoglycan 2-oxoglutarate Gln β-isoaspartate glu position 34 ser a tRNA indole-3-acetate -
Supplementary Table 2
Supplementary Table 2. Differentially Expressed Genes following Sham treatment relative to Untreated Controls Fold Change Accession Name Symbol 3 h 12 h NM_013121 CD28 antigen Cd28 12.82 BG665360 FMS-like tyrosine kinase 1 Flt1 9.63 NM_012701 Adrenergic receptor, beta 1 Adrb1 8.24 0.46 U20796 Nuclear receptor subfamily 1, group D, member 2 Nr1d2 7.22 NM_017116 Calpain 2 Capn2 6.41 BE097282 Guanine nucleotide binding protein, alpha 12 Gna12 6.21 NM_053328 Basic helix-loop-helix domain containing, class B2 Bhlhb2 5.79 NM_053831 Guanylate cyclase 2f Gucy2f 5.71 AW251703 Tumor necrosis factor receptor superfamily, member 12a Tnfrsf12a 5.57 NM_021691 Twist homolog 2 (Drosophila) Twist2 5.42 NM_133550 Fc receptor, IgE, low affinity II, alpha polypeptide Fcer2a 4.93 NM_031120 Signal sequence receptor, gamma Ssr3 4.84 NM_053544 Secreted frizzled-related protein 4 Sfrp4 4.73 NM_053910 Pleckstrin homology, Sec7 and coiled/coil domains 1 Pscd1 4.69 BE113233 Suppressor of cytokine signaling 2 Socs2 4.68 NM_053949 Potassium voltage-gated channel, subfamily H (eag- Kcnh2 4.60 related), member 2 NM_017305 Glutamate cysteine ligase, modifier subunit Gclm 4.59 NM_017309 Protein phospatase 3, regulatory subunit B, alpha Ppp3r1 4.54 isoform,type 1 NM_012765 5-hydroxytryptamine (serotonin) receptor 2C Htr2c 4.46 NM_017218 V-erb-b2 erythroblastic leukemia viral oncogene homolog Erbb3 4.42 3 (avian) AW918369 Zinc finger protein 191 Zfp191 4.38 NM_031034 Guanine nucleotide binding protein, alpha 12 Gna12 4.38 NM_017020 Interleukin 6 receptor Il6r 4.37 AJ002942 -
Review Galactokinase: Structure, Function and Role in Type II
CMLS, Cell. Mol. Life Sci. 61 (2004) 2471–2484 1420-682X/04/202471-14 DOI 10.1007/s00018-004-4160-6 CMLS Cellular and Molecular Life Sciences © Birkhäuser Verlag, Basel, 2004 Review Galactokinase: structure, function and role in type II galactosemia H. M. Holden a,*, J. B. Thoden a, D. J. Timson b and R. J. Reece c,* a Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (USA), Fax: +1 608 262 1319, e-mail: [email protected] b School of Biology and Biochemistry, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, (United Kingdom) c School of Biological Sciences, The University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, (United Kingdom), Fax: +44 161 275 5317, e-mail: [email protected] Received 13 April 2004; accepted 7 June 2004 Abstract. The conversion of beta-D-galactose to glucose unnatural sugar 1-phosphates. Additionally, galactoki- 1-phosphate is accomplished by the action of four en- nase-like molecules have been shown to act as sensors for zymes that constitute the Leloir pathway. Galactokinase the intracellular concentration of galactose and, under catalyzes the second step in this pathway, namely the con- suitable conditions, to function as transcriptional regula- version of alpha-D-galactose to galactose 1-phosphate. tors. This review focuses on the recent X-ray crystallo- The enzyme has attracted significant research attention graphic analyses of galactokinase and places the molecu- because of its important metabolic role, the fact that de- lar architecture of this protein in context with the exten- fects in the human enzyme can result in the diseased state sive biochemical data that have accumulated over the last referred to as galactosemia, and most recently for its uti- 40 years regarding this fascinating small molecule ki- lization via ‘directed evolution’ to create new natural and nase. -
The Role of Hexokinase and Hexose Transporters in Preferential Use of Glucose Over Fructose and Downstream Metabolic Pathways in the Yeast Yarrowia Lipolytica
International Journal of Molecular Sciences Article The Role of Hexokinase and Hexose Transporters in Preferential Use of Glucose over Fructose and Downstream Metabolic Pathways in the Yeast Yarrowia lipolytica Piotr Hapeta 1 , Patrycja Szczepa ´nska 1, Tadeusz Witkowski 1, Jean-Marc Nicaud 2 , Anne-Marie Crutz-Le Coq 2 and Zbigniew Lazar 1,* 1 Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmo´nskiegoStreet 37, 51-630 Wrocław, Poland; [email protected] (P.H.); [email protected] (P.S.); [email protected] (T.W.) 2 Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78352 Jouy-en-Josas, France; [email protected] (J.-M.N.); [email protected] (A.-M.C.-L.C.) * Correspondence: [email protected] Abstract: The development of efficient bioprocesses requires inexpensive and renewable substrates. Molasses, a by-product of the sugar industry, contains mostly sucrose, a disaccharide composed of glucose and fructose, both easily absorbed by microorganisms. Yarrowia lipolytica, a platform for the production of various chemicals, can be engineered for sucrose utilization by heterologous invertase expression, yet the problem of preferential use of glucose over fructose remains, as fructose consumption begins only after glucose depletion what significantly extends the bioprocesses. We Citation: Hapeta, P.; Szczepa´nska,P.; investigated the role of hexose transporters and hexokinase (native and fructophilic) in this prefer- Witkowski, T.; Nicaud, J.-M.; ence. Analysis of growth profiles and kinetics of monosaccharide utilization has proven that the Crutz-Le Coq, A.-M.; Lazar, Z. The glucose preference in Y. -
Biochemical and Proteomic Profiling of Maize Endosperm Texture and Protein Quality Kyla J
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses, Dissertations, and Student Research in Agronomy and Horticulture Department Agronomy and Horticulture 7-2015 Biochemical and Proteomic Profiling of Maize Endosperm Texture and Protein Quality Kyla J. Morton University of Nebraska-Lincoln Follow this and additional works at: http://digitalcommons.unl.edu/agronhortdiss Part of the Agricultural Science Commons, Agronomy and Crop Sciences Commons, Plant Biology Commons, and the Plant Breeding and Genetics Commons Morton, Kyla J., "Biochemical and Proteomic Profiling of Maize Endosperm Texture and Protein Quality" (2015). Theses, Dissertations, and Student Research in Agronomy and Horticulture. 88. http://digitalcommons.unl.edu/agronhortdiss/88 This Article is brought to you for free and open access by the Agronomy and Horticulture Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research in Agronomy and Horticulture by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. BIOCHEMICAL AND PROTEOMIC PROFILING OF MAIZE ENDOSPERM TEXTURE AND PROTEIN QUALITY by Kyla J. Morton A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Agronomy and Horticulture (Plant Breeding and Genetics) Under the Supervision of Professor David R. Holding Lincoln, Nebraska July, 2015 BIOCHEMICAL AND PROTEOMIC ANALYSIS OF MAIZE ENDOSPERM KERNEL TEXTURE AND PROTEIN QUALITY Kyla J. Morton, Ph.D. University of Nebraska, 2015 Advisor: David R. Holding The research described herein, focuses on the biochemical and proteomic analysis of the maize endosperm and what influences kernel texture. -
Divergent Metabolism Between Trypanosoma Congolense
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.05.425368; this version posted January 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Divergent metabolism between Trypanosoma 2 congolense and Trypanosoma brucei results in 3 differential drug sensitivity 4 5 P. C. Steketee1*, E. A. Dickie2, J. Iremonger1, K. Crouch2, E. Paxton1, S. Jayaraman1, O. A. 6 Alfituri1, G. Awuah-Mensah3, R. Ritchie2, A. Schnaufer4, H. P. de Koning5, C. Gadelha3, B. 7 Wickstead3, M. P. Barrett2,6 and L. J. Morrison1 8 1The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, 9 Edinburgh, UK 10 2Wellcome Centre foar Integrative Parasitology, Institute of Infection, Immunity and 11 Inflammation, University of Glasgow, Glasgow, UK 12 3School of Life Sciences, University of Nottingham, Nottingham, UK 13 4Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK 14 5Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK 15 6Glasgow Polyomics, University of Glasgow, UK 16 *Corresponding author: [email protected] 17 18 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.05.425368; this version posted January 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 Abstract 20 Animal African Trypanosomiasis (AAT) is a debilitating livestock disease prevalent across 21 sub-Saharan Africa, a main cause of which is the protozoan parasite Trypanosoma 22 congolense. -
Incretin Receptors for Glucagon-Like Peptide 1 and Glucose
ORIGINAL ARTICLE Incretin Receptors for Glucagon-Like Peptide 1 and Glucose-Dependent Insulinotropic Polypeptide Are Essential for the Sustained Metabolic Actions of Vildagliptin in Mice Grace Flock, Laurie L. Baggio, Christine Longuet, and Daniel J. Drucker OBJECTIVE—Dipeptidyl peptidase-4 (DPP4) inhibitors lower CONCLUSIONS—These findings illustrate that although GLP-1 blood glucose in diabetic subjects; however, the mechanism of and GIP receptors represent the dominant molecular mecha- action through which these agents improve glucose homeostasis nisms for transducing the glucoregulatory actions of DPP4 remains incompletely understood. Although glucagon-like pep- inhibitors, prolonged DPP4 inhibition modulates the expression tide (GLP)-1 and glucose-dependent insulinotropic polypeptide of genes important for lipid metabolism independent of incretin (GIP) represent important targets for DPP4 activity, whether receptor action in vivo. Diabetes 56:3006–3013, 2007 additional substrates are important for the glucose-lowering actions of DPP4 inhibitors remains uncertain. RESEARCH DESIGN AND METHODS—We examined the ncretins are peptide hormones secreted after meal efficacy of continuous vildagliptin administration in wild-type ingestion that potentiate glucose-stimulated insulin (WT) and dual incretin receptor knockout (DIRKO) mice after 8 secretion. The two predominant incretins are glu- weeks of a high-fat diet. Icose-dependent insulinotropic polypeptide (GIP) RESULTS—Vildagliptin had no significant effect on food intake, and glucagon-like peptide (GLP)-1. GIP and GLP-1 act via energy expenditure, body composition, body weight gain, or specific receptors on -cells to increase insulin biosynthe- insulin sensitivity in WT or DIRKO mice. However, glycemic sis and secretion, thereby maintaining the ability of the excursion after oral glucose challenge was significantly reduced endocrine pancreas to regulate the disposal and storage of in WT but not in DIRKO mice after vildagliptin treatment. -
Organization of the Mevalonate Kinase (MVK)
European Journal of Human Genetics (2001) 9, 253 ± 259 ã 2001 Nature Publishing Group All rights reserved 1018-4813/01 $15.00 www.nature.com/ejhg ARTICLE Organization of the mevalonate kinase (MVK)geneand identification of novel mutations causing mevalonic aciduria and hyperimmunoglobulinaemia D and periodic fever syndrome Sander M Houten1, Janet Koster1, Gerrit-Jan Romeijn1, Joost Frenkel2, Maja Di Rocco3, Ubaldo Caruso3, Pierre Landrieu4, Richard I Kelley5, Wietse Kuis2, Bwee Tien Poll-The1,2, K Michael Gibson6, Ronald JA Wanders1 and Hans R Waterham*,1 1Departments of Pediatrics and Clinical Chemistry, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; 2Departments of General Pediatrics, Immunology and Metabolic Disorders, University Children's Hospital `Het Wilhelmina Kinderziekenhuis', Utrecht, The Netherlands; 3Department of Pediatrics, Instituto `G. Gaslini', Genova, Italy; 4Centre Hospitalier Universitaire Paris-Sud-BiceÃtre, Laboratoire de Biochemie et Service de NeuropeÂdiatrie, Le Kremlin-BiceÃtre, France; 5Kennedy Krieger Institute and John Hopkins University School of Medicine, Baltimore, MD, USA; 6Oregon Health Sciences University, Department of Molecular and Medical Genetics and Biochemical Genetics Laboratory, Portland, OR, USA Mevalonic aciduria (MA) and hyperimmunoglobulinaemia D and periodic fever syndrome (HIDS) are two autosomal recessive inherited disorders both caused by a deficient activity of the enzyme mevalonate kinase (MK) resulting from mutations in the encoding MVK gene. Thus far, disease-causing mutations only could be detected by analysis of MVK cDNA. We now describe the genomic organization of the human MVK gene. It is 22 kb long and contains 11 exons of 46 to 837 bp and 10 introns of 379 bp to 4.2 kb.