Hardware Abstraction Layer for Microcontrollers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Survey on Architectures of Mobile Operating Systems: Challenges and Issues
International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Volume 2, Issue 3, March 2015, PP 73-76 ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online) www.arcjournals.org A Survey on Architectures of Mobile Operating Systems: Challenges and Issues Prof. Y. K. Sundara Krishna1 HOD, Dept. of Computer Science, Krishna University Mr. G K Mohan Devarakonda2 Research Scholar, Krishna University Abstract: In the early years of mobile evolution, Discontinued Platforms Current mobile devices are enabled only with voice services Platforms that allow the users to communicate with each other. Symbian OS Android But now a days, the mobile technology undergone Palm OS IOS various changes to a great extent so that the devices Maemo OS Windows Phone allows the users not only to communicate but also to Meego OS Firefox OS attain a variety of services such as video calls, faster Black Berry OS browsing services,2d and 3d games, Camera, 2.1 Symbian OS: This Operating system was Banking Services, GPS services, File sharing developed by NOKIA. services, Tracking Services, M-Commerce and so many. The changes in mobile technology may be due Architecture: to Operating System or Hardware or Network or Memory. This paper presents a survey on evolutions SYMBIAN OS GUI Library in mobile developments especially on mobile operating system Architectures, challenges and Issues in various mobile operating Systems. Application Engines JAVA VM 1. INTRODUCTION Servers (Operating System Services) A Mobile operating system is a System Software that is specifically designed to run on handheld devices Symbian OS Base (File Server, Kernel) such as Mobile Phones, PDA’s. -
Windows NT Architecture Previous Screen Gilbert Held Payoff Windows NT Is a Sophisticated Operating System for Workstations and Network Servers
50-30-19 Windows NT Architecture Previous screen Gilbert Held Payoff Windows NT is a sophisticated operating system for workstations and network servers. This article helps network managers to understand the communications capability of workstations and servers running on Windows NT, and data base administrators to determine the suitability of this platform for a structured query language (SQL) data base server. Introduction Windows NT is a 32-bit, preemptive multitasking operating system that includes comprehensive networking capabilities and several levels of security. Microsoft markets two version of Windows NT: one for workstations—appropriately named Windows NT Workstation—and a second for servers—Windows NT Server. This article, which describes the workings of the NT architecture, collectively references both versions as Windows NT when information is applicable to both versions of the operating system. Similarly, it references a specific version of the operating system when the information presented is specific to either Windows NT Workstation or Windows NT Server. Architecture Windows NT consists of nine basic modules. The relationship of those modules to one another, as well as to the hardware platform on which the operating system runs, is illustrated in Exhibit 1. Windows NT Core Modules Hardware Abstraction Layer The hardware abstraction layer (HAL) is located directly above the hardware on which Windows NT operates. HAL actually represents a software module developed by hardware manufacturers that is bundled into Windows NT to allow it to operate on a specific hardware platform, such as Intel X86, DEC Alpha, or IBM PowerPC. HAL hides the specifics of the hardware platform from the rest of the operating system and represents the lowest level of Windows NT. -
Mobile Systems
CS 318 Principles of Operating Systems Fall 2017 Lecture 21: Mobile Systems Ryan Huang 11/30/17 CS 318 – Lecture 21 – Mobile Systems 2 Apply the security update immedidately! CS 318 – Lecture 21 – Mobile Systems Administrivia • Lab 4 deadline one week away • Groups of 2 students receive 2-day extra late hour • Groups of 3 students with 1 318 section student receive 1-day extra late-hour • Please, please don’t cheat • Homework 5 is released 11/30/17 CS 318 – Lecture 21 – Mobile Systems 4 Mobile Devices Become Ubiquitous Worldwide Devices Shipments by Device Type (Millions of Units) 3000 2500 2000 1500 1806.96 1879 1910 1959 1000 500 Google Nexus 6P 209.79 226 196 195 296.13 277 246 232 0 2013 2014 2015 2016 Traditional PCs Ultramobiles (Premium) Ultramobiles (Basic and Utility) Mobile Phones 5 History of Mobile OS (1) • Early “smart” devices are PDAs (touchscreen, Internet) • Symbian, first modern mobile OS - released in 2000 - run in Ericsson R380, the first ‘smartphone’ (mobile phone + PDA) - only support proprietary programs 11/30/17 CS 318 – Lecture 21 – Mobile Systems 6 History of Mobile OS (2) • Many smartphone and mobile OSes followed up - Kyocera 6035 running Palm OS (2001) • 8 MB non-expandable memory - Windows CE (2002) - Blackberry (2002) • was a prominent vendor • known for secure communications - Moto Q (2005) - Nokia N70 (2005) • 2-megapixel camera, bluetooth • 32 MB memory • Symbian OS • Java games 11/30/17 CS 318 – Lecture 21 – Mobile Systems 7 One More Thing… • Introduction of iPhone (2007) - revolutionize the smartphone industry - 4GB flash memory, 128 MB DRAM, multi-touch interface - runs iOS, initially only proprietary apps - App Store opened in 2008, allow third party apps 11/30/17 CS 318 – Lecture 21 – Mobile Systems 8 Android – An Unexpected Rival of iPhone • Android Inc. -
Silicon Labs to Acquire Energy Micro, a Leader in Low Power ARM Cortex-Based Microcontrollers and Radios
June 7, 2013 Silicon Labs to Acquire Energy Micro, a Leader in Low Power ARM Cortex-Based Microcontrollers and Radios Companies' Combined Portfolios Enable the Internet of Things, Smart Energy and Portable Electronics AUSTIN, Texas & OSLO, Norway--(BUSINESS WIRE)-- Silicon Labs (Nasdaq: SLAB), a leader in high-performance, analog- intensive, mixed-signal ICs, today announced that it has signed a definitive agreement to acquire Energy Micro AS. Based in Oslo, Norway, the late-stage privately held company offers the industry's most power-efficient portfolio of 32-bit microcontrollers (MCUs) and is developing multi-protocol wireless RF solutions based on the industry-leading ARM® Cortex-M architecture. Energy Micro's energy-friendly MCU and radio solutions are designed to enable a broad range of power-sensitive applications for the Internet of Things (IoT), smart energy, home automation, security and portable electronics markets. This strategic acquisition accelerates Silicon Labs' growth opportunities and positions the company as the foremost innovator in energy-friendly embedded solutions. The growth of the IoT market, coupled with continued deployment of smart grid and smart energy infrastructure, is driving strong demand for energy-efficient processing and wireless connectivity technology to enable connected devices in which low-power capabilities are increasingly important. Industry experts predict that the number of connected devices for the IoT will top 15 billion nodes by 2015 and reach 50 billion nodes by 2020. Energy Micro's portfolio complements Silicon Labs' 32-bit Precision32™ MCU, Ember® ZigBee® and sub-GHz wireless products and targets a growing embedded market. The acquisition greatly expands Silicon Labs' MCU portfolio, adding nearly 250 ARM- based EFM32 Gecko MCU products ranging from extreme-low-power, small-footprint MCUs based on the ARM Cortex-M0+ core to higher-performance, energy-friendly MCUs powered by the Cortex-M4 core capable of DSP and floating-point operations. -
Windows XP History and Versions
Lecture 23: Windows XP History and Versions n Mid-80ies Microsoft and IBM cooperated to develop OS/2 n Windows XP is produced by Microsoft Co. n 1988 - Microsoft started to develop its own new technology (NT) OS n XP is multi-user, multi-process, preemptive multitasking OS, 30M lines of source code capable of running OS/2, Windows and Unix apps. Hired Dave Cutler - architect of DEC VAX/VMS to head the design n It is developed to support multiple platforms and targeted towards enterprise workstations and server market as well as n NT v. 3.1 first released commercially July 1993 desktops n NT v 4.0 adopted Windows 95 user interface, graphics code moved into kernel to improve performance n In today’s lecture n 2000 – improved networking and laptop support, support for plug-and- u XP’s predecessors, the history of XP design, XP versions play devices, support for more processors (up to 8) and memory, u design principles becomes true multi-user through terminal server u components n XP (released Oct 2001) – update for 2000 replacement for 95/98 F hardware abstraction layer u simplifies user interface, improved reliability, performance F executive improvements, partial 64-bit support F environmental subsystems n versions F file system u desktop: XP personal – 95/98 replacement, professional – advanced features like POSIX support, some network features 1 u server: .NET – support for web/print service, clusters, large memory2 and multiple processors Design goals Components n XP is microkernel-based, modular n security – NT was C-2 certified (US -
A Hardware Abstraction Layer in Java
A Hardware Abstraction Layer in Java MARTIN SCHOEBERL Vienna University of Technology, Austria STEPHAN KORSHOLM Aalborg University, Denmark TOMAS KALIBERA Purdue University, USA and ANDERS P. RAVN Aalborg University, Denmark Embedded systems use specialized hardware devices to interact with their environment, and since they have to be dependable, it is attractive to use a modern, type-safe programming language like Java to develop programs for them. Standard Java, as a platform independent language, delegates access to devices, direct memory access, and interrupt handling to some underlying operating system or kernel, but in the embedded systems domain resources are scarce and a Java virtual machine (JVM) without an underlying middleware is an attractive architecture. The contribution of this paper is a proposal for Java packages with hardware objects and interrupt handlers that interface to such a JVM. We provide implementations of the proposal directly in hardware, as extensions of standard interpreters, and finally with an operating system middleware. The latter solution is mainly seen as a migration path allowing Java programs to coexist with legacy system components. An important aspect of the proposal is that it is compatible with the Real-Time Specification for Java (RTSJ). Categories and Subject Descriptors: D.4.7 [Operating Systems]: Organization and Design—Real-time sys- tems and embedded systems; D.3.3 [Programming Languages]: Language Classifications—Object-oriented languages; D.3.3 [Programming Languages]: Language Constructs and Features—Input/output General Terms: Languages, Design, Implementation Additional Key Words and Phrases: Device driver, embedded system, Java, Java virtual machine 1. INTRODUCTION When developing software for an embedded system, for instance an instrument, it is nec- essary to control specialized hardware devices, for instance a heating element or an inter- ferometer mirror. -
Operating Systems Principles Design and Implementation Policies And
Betriebssysteme ws2000/2001 Operating Systems Principles Design and Implementation Policies and Mechanisms S 2004 CS325 1 Textbook: L.Bic and A.C Shaw: "Operating Systems Principles" Other references: • A.S. Tanenbaum, „Modern Operating Systems“, Prentice-Hall • Other references – see web site: cs.nmt.edu/~cs325 S 2004 CS325 2 Prof. H. D. Clausen 1 Betriebssysteme ws2000/2001 Simple hardware configuration control CPU data addres s controller controller main memory device_1 device_2 user IO subsystem S 2004 CS325 3 Typical hardware configuration main CPU memory IOC IOC/PPU controller controller controller controller device device device S 2004 CS325 4 Prof. H. D. Clausen 2 Betriebssysteme ws2000/2001 Processor performance This chart plots relative performance as measured by the SPECint benchmarks with base of one being a VAX 11/780. S 2004 CS325 5 Memory cost Prices of DRAMs (from 16K bits to 64M bits) over time in 1977 dollars. S 2004 CS325 6 Prof. H. D. Clausen 3 Betriebssysteme ws2000/2001 API application program application support API SVC SysCall systems programs kernel programs SW CISC driver programs RISC HW S 2004 CS325 7 Principle of abstraction • Higher-level function: – Read( file, logical_block, main_memory ) • Lower-level functions – Calculate position of logical_block on the disk; – Move Read/Write head to corresponding track; – Check for „seek“ errors; – Read physical block; – Check for „read“ errors; – Copy block to main_memory; S 2004 CS325 8 Prof. H. D. Clausen 4 Betriebssysteme ws2000/2001 Principle of abstraction extended -
Modeling of Hardware and Software for Specifying Hardware Abstraction
Modeling of Hardware and Software for specifying Hardware Abstraction Layers Yves Bernard, Cédric Gava, Cédrik Besseyre, Bertrand Crouzet, Laurent Marliere, Pierre Moreau, Samuel Rochet To cite this version: Yves Bernard, Cédric Gava, Cédrik Besseyre, Bertrand Crouzet, Laurent Marliere, et al.. Modeling of Hardware and Software for specifying Hardware Abstraction Layers. Embedded Real Time Software and Systems (ERTS2014), Feb 2014, Toulouse, France. hal-02272457 HAL Id: hal-02272457 https://hal.archives-ouvertes.fr/hal-02272457 Submitted on 27 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Modeling of Hardware and Software for specifying Hardware Abstraction Layers Yves BERNARD1, Cédric GAVA2, Cédrik BESSEYRE1, Bertrand CROUZET1, Laurent MARLIERE1, Pierre MOREAU1, Samuel ROCHET2 (1) Airbus Operations SAS (2) Subcontractor for Airbus Operations SAS Abstract In this paper we describe a practical approach for modeling low level interfaces between software and hardware parts based on SysML operations. This method is intended to be applied for the development of drivers involved on what is classically called the “hardware abstraction layer” or the “basic software” which provide high level services for resources management on the top of a bare hardware platform. -
A Full Stack Approach to FPGA Integration in the Cloud
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2018.2877290, IEEE Micro THEME ARTICLE: HARDWARE ACCELERATION Galapagos: A Full Stack Approach to FPGA Integration in the Cloud Naif Tarafdar Field-Programmable Gate Arrays (FPGAs) have University of Toronto shown to be quite beneficial in the cloud due to their Nariman Eskandari energy-efficient application-specific acceleration. University of Toronto These accelerators have always been difficult to use Varun Sharma University of Toronto and at cloud scale, the difficulty of managing these Charles Lo devices scales accordingly. We approach the University of Toronto challenge of managing large FPGA accelerator Paul Chow clusters in the cloud using abstraction layers and a University of Toronto new hardware stack that we call Galapagos. The hardware stack abstracts low-level details while providing flexibility in the amount of low-level access users require to reach their performance needs. Computing today has evolved towards using large-scale data centers that are the basis of what many call the cloud. Within the cloud, large-scale applications for Big Data and machine learn- ing can use thousands of processors. At this scale, even small efficiency gains in performance and power consumption can translate to significant amounts. In the data center, power consump- tion is particularly important as 40 % of the costs are due to power and cooling [1]. Accelerators, which are more efficient for classes of computations, have become an important approach to ad- dressing both performance and power efficiency. -
W4118 Operating Systems OS Overview
W4118 Operating Systems OS Overview Junfeng Yang Outline OS definitions OS abstractions/concepts OS structure OS evolution What is OS? A program that acts as an intermediary between a user of a computer and the computer hardware. User App stuff between OS HW Two popular definitions Top-down perspective: hardware abstraction layer , turn hardware into something that applications can use Bottom-up perspective: resource manager/coordinator , manage your computers resources OS = hardware abstraction layer standard library OS as virtual machine E.g. printf(hello world), shows up on screen App can make system calls to use OS services Why good? Ease of use : higher level of abstraction, easier to program Reusability : provide common functionality for reuse E.g. each app doesnt have to write a graphics driver Portability / Uniformity : stable, consistent interface, different OS/version/hardware look same E.g. scsi/ide/flash disks Why abstraction hard? What are the right abstractions ??? Too low level ? Lose advantages of abstraction Too high level? All apps pay overhead, even those dont need Worse, may work against some apps E.g. Database Next: example OS abstractions Two popular definitions Top-down perspective: hardware abstraction layer, turn hardware into something that applications can use Bottom-up perspective: resource manager/coordinator , manage your computers resources OS = resource manager/coordinator Computer has resources, OS must manage. Resource = CPU, Memory, disk, device, bandwidth, Shell ppt gcc browser System Call Interface CPU Memory File system scheduling management management OS Network Device Disk system stack drivers management CPU Memory Disk NIC Hardware OS = resource manager/coordinator (cont.) Why good? Sharing/Multiplexing : more than 1 app/user to use resource Protection : protect apps from each other, OS from app Who gets what when Performance : efficient/fair access to resources Why hard? Mechanisms v.s. -
ARM® Cortex® -M3 & M4 MCU Architecture
ARM® Cortex ® -M3 & M4 MCU Architecture Introduction Many embedded developers are familiar with the ARM Cortex processor architecture, but few have the opportunity to become intimately acquainted enough of this popular architecture to take full advantage of its unique features and capabilities. This is especially true for the new ARM Cortex-M4 processor, which boasts an improved architecture, native digital signal processing (DSP) capabilities and an optional floating-point accelerator, which a savvy programmer or hardware engineer can exploit to their ad- vantage. Let’s take a closer look at some of the more interesting (and often-overlooked) features found in Cortex-M3 based microcontrollers (MCUs) as well as new M4 variants. Since many target applications for Cortex-M based MCUs are portable and derive their power from bat- teries or energy harvesting systems, most of the ideas we will explore involve techniques for reducing a design’s overall energy consumption. In many cases, however, these energy conservation techniques are also helpful tools for designing processor-optimized applications that provide: • More cost-effective solutions • More processing margin available for upgrades and new features • Performance and features that help products stand out in crowded markets. ARM Cortex Basics Much like the original 16-bit processor cores created by Advanced RISC Machines (ARM) in the 1980s, the ARM Cortex series is based on a Harvard-style RISC machine with a modest silicon footprint that en- ables high performance as well as code -
Vypracovane Otazky K Bakalarskym Statnicim
Učební texty k státní bakalářské zkoušce Obecná informatika študenti MFF 15. augusta 2008 1 Vážený študent/čitateľ, toto je zbierka vypracovaných otázok pre bakalárske skúšky Informatikov. Otáz- ky boli vypracované študentmi MFF počas prípravy na tieto skúšky, a teda zatiaľ neboli overené kvalifikovanými osobami (profesormi/dokotorandmi mff atď.) - preto nie je žiadna záruka ich správnosti alebo úplnosti. Väčšina textov je vypracovaná v čestine resp. slovenčine, prosíme dodržujte túto konvenciu (a obmedzujte teda používanie napr. anglických textov). Ak nájdete ne- jakú chybu, nepresnosť alebo neúplnú informáciu - neváhajte kontaktovať adminis- trátora alebo niektorého z prispievateľov, ktorý má write-prístup k svn stromu, s opravou :-) Podobne - ak nájdete v „texteÿ veci ako ??? a TODO, znamená to že danú informáciu je potrebné skontrolovať, resp. doplniť... Texty je možné ďalej používať a šíriť pod licenciou GNU GFDL (čo pre všet- kých prispievajúcich znamená, že musia súhlasiť so zverejnením svojich úprav podľa tejto licencie). Veríme, že Vám tieto texty pomôžu k úspešnému zloženiu skúšok. Hlavní writeři :-) : • ajs • andree – http://andree.matfyz.cz/ • Hydrant • joshis / Petr Dvořák • kostej • nohis • tuetschek – http://tuetschek.wz.cz/ Úvodné verzie niektorých textov vznikli prepisom otázok vypracovaných „pí- somne na papierÿ, alebo inak ne-TEX-ovsky. Autormi týchto pôvodných verzií sú najmä nasledujúce osoby: gASK, Grafi, Kate (mat-15), Nytram, Oscar, Stando, xSty- ler. Časť je prebratá aj z pôvodných súborkových textov... Všetkým patrí naša/vaša vďaka. 2 Obsah 1 Logika 4 1.1 Logika – jazyk, formule, sémantika, tautologie . 4 1.2 Rozhodnutelnost, splnitelnost, pravdivost a dokazatelnost . 6 1.3 Věty o kompaktnosti a úplnosti výrokové a predikátové logiky . 11 1.4 Normální tvary výrokových formulí, prenexní tvary formulí prediká- tové logiky .