Windows NT Architecture Previous Screen Gilbert Held Payoff Windows NT Is a Sophisticated Operating System for Workstations and Network Servers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Since Sliced Bread?
Douglas A. Hamilton WINDOWS NT NT: The Greatest Thing Since Sliced Bread? T'S OFFICIAL. Windows unlike OS/2, is not the only product in the family. Right around the corner is the NT is finally out of the Chicago technology that Microsoft will be using in DOS 7.0 and Windows 4.0. Earli oven. The pricing has est betas for software developers are I scheduled for early fall and products been set and delivery dates based on it should be out in 1994. Chicago is a rewrite of the same Win32 have been promised. Those API (application programming interface) seen on NT. Compared with NT, it leaves promises (back in May) out the security (how many of us need government-certified C2 security on our were that the base system personal machines?), portability to RISC processors and the OS/2 character-mode would ship within 60 days and POSIX subsystems. And it wouldn't surprise me if Unicode support were trimmed out or if the networking were and the Advanced Server version would ship 30 days unbundled. What Chicago leaves in is 32- bit flat virtual memory, preemptive multi later. So there's every chance that by the time you read tasking, threads, pipes and semaphores all the really good stuff in Win32. That be this, there'll be piles of Windows NT packages at your comes Windows 4.0. Subtract the graphi cal user interface and you get DOS 7.0. local computer store. Is there anyone left who wonders why developers are so excited about NT? It's After a false rumor that Microsoft might price NT at not just because NT is expected to do ex tremely well. -
A Survey on Architectures of Mobile Operating Systems: Challenges and Issues
International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Volume 2, Issue 3, March 2015, PP 73-76 ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online) www.arcjournals.org A Survey on Architectures of Mobile Operating Systems: Challenges and Issues Prof. Y. K. Sundara Krishna1 HOD, Dept. of Computer Science, Krishna University Mr. G K Mohan Devarakonda2 Research Scholar, Krishna University Abstract: In the early years of mobile evolution, Discontinued Platforms Current mobile devices are enabled only with voice services Platforms that allow the users to communicate with each other. Symbian OS Android But now a days, the mobile technology undergone Palm OS IOS various changes to a great extent so that the devices Maemo OS Windows Phone allows the users not only to communicate but also to Meego OS Firefox OS attain a variety of services such as video calls, faster Black Berry OS browsing services,2d and 3d games, Camera, 2.1 Symbian OS: This Operating system was Banking Services, GPS services, File sharing developed by NOKIA. services, Tracking Services, M-Commerce and so many. The changes in mobile technology may be due Architecture: to Operating System or Hardware or Network or Memory. This paper presents a survey on evolutions SYMBIAN OS GUI Library in mobile developments especially on mobile operating system Architectures, challenges and Issues in various mobile operating Systems. Application Engines JAVA VM 1. INTRODUCTION Servers (Operating System Services) A Mobile operating system is a System Software that is specifically designed to run on handheld devices Symbian OS Base (File Server, Kernel) such as Mobile Phones, PDA’s. -
Mobile Systems
CS 318 Principles of Operating Systems Fall 2017 Lecture 21: Mobile Systems Ryan Huang 11/30/17 CS 318 – Lecture 21 – Mobile Systems 2 Apply the security update immedidately! CS 318 – Lecture 21 – Mobile Systems Administrivia • Lab 4 deadline one week away • Groups of 2 students receive 2-day extra late hour • Groups of 3 students with 1 318 section student receive 1-day extra late-hour • Please, please don’t cheat • Homework 5 is released 11/30/17 CS 318 – Lecture 21 – Mobile Systems 4 Mobile Devices Become Ubiquitous Worldwide Devices Shipments by Device Type (Millions of Units) 3000 2500 2000 1500 1806.96 1879 1910 1959 1000 500 Google Nexus 6P 209.79 226 196 195 296.13 277 246 232 0 2013 2014 2015 2016 Traditional PCs Ultramobiles (Premium) Ultramobiles (Basic and Utility) Mobile Phones 5 History of Mobile OS (1) • Early “smart” devices are PDAs (touchscreen, Internet) • Symbian, first modern mobile OS - released in 2000 - run in Ericsson R380, the first ‘smartphone’ (mobile phone + PDA) - only support proprietary programs 11/30/17 CS 318 – Lecture 21 – Mobile Systems 6 History of Mobile OS (2) • Many smartphone and mobile OSes followed up - Kyocera 6035 running Palm OS (2001) • 8 MB non-expandable memory - Windows CE (2002) - Blackberry (2002) • was a prominent vendor • known for secure communications - Moto Q (2005) - Nokia N70 (2005) • 2-megapixel camera, bluetooth • 32 MB memory • Symbian OS • Java games 11/30/17 CS 318 – Lecture 21 – Mobile Systems 7 One More Thing… • Introduction of iPhone (2007) - revolutionize the smartphone industry - 4GB flash memory, 128 MB DRAM, multi-touch interface - runs iOS, initially only proprietary apps - App Store opened in 2008, allow third party apps 11/30/17 CS 318 – Lecture 21 – Mobile Systems 8 Android – An Unexpected Rival of iPhone • Android Inc. -
Windows XP History and Versions
Lecture 23: Windows XP History and Versions n Mid-80ies Microsoft and IBM cooperated to develop OS/2 n Windows XP is produced by Microsoft Co. n 1988 - Microsoft started to develop its own new technology (NT) OS n XP is multi-user, multi-process, preemptive multitasking OS, 30M lines of source code capable of running OS/2, Windows and Unix apps. Hired Dave Cutler - architect of DEC VAX/VMS to head the design n It is developed to support multiple platforms and targeted towards enterprise workstations and server market as well as n NT v. 3.1 first released commercially July 1993 desktops n NT v 4.0 adopted Windows 95 user interface, graphics code moved into kernel to improve performance n In today’s lecture n 2000 – improved networking and laptop support, support for plug-and- u XP’s predecessors, the history of XP design, XP versions play devices, support for more processors (up to 8) and memory, u design principles becomes true multi-user through terminal server u components n XP (released Oct 2001) – update for 2000 replacement for 95/98 F hardware abstraction layer u simplifies user interface, improved reliability, performance F executive improvements, partial 64-bit support F environmental subsystems n versions F file system u desktop: XP personal – 95/98 replacement, professional – advanced features like POSIX support, some network features 1 u server: .NET – support for web/print service, clusters, large memory2 and multiple processors Design goals Components n XP is microkernel-based, modular n security – NT was C-2 certified (US -
A Hardware Abstraction Layer in Java
A Hardware Abstraction Layer in Java MARTIN SCHOEBERL Vienna University of Technology, Austria STEPHAN KORSHOLM Aalborg University, Denmark TOMAS KALIBERA Purdue University, USA and ANDERS P. RAVN Aalborg University, Denmark Embedded systems use specialized hardware devices to interact with their environment, and since they have to be dependable, it is attractive to use a modern, type-safe programming language like Java to develop programs for them. Standard Java, as a platform independent language, delegates access to devices, direct memory access, and interrupt handling to some underlying operating system or kernel, but in the embedded systems domain resources are scarce and a Java virtual machine (JVM) without an underlying middleware is an attractive architecture. The contribution of this paper is a proposal for Java packages with hardware objects and interrupt handlers that interface to such a JVM. We provide implementations of the proposal directly in hardware, as extensions of standard interpreters, and finally with an operating system middleware. The latter solution is mainly seen as a migration path allowing Java programs to coexist with legacy system components. An important aspect of the proposal is that it is compatible with the Real-Time Specification for Java (RTSJ). Categories and Subject Descriptors: D.4.7 [Operating Systems]: Organization and Design—Real-time sys- tems and embedded systems; D.3.3 [Programming Languages]: Language Classifications—Object-oriented languages; D.3.3 [Programming Languages]: Language Constructs and Features—Input/output General Terms: Languages, Design, Implementation Additional Key Words and Phrases: Device driver, embedded system, Java, Java virtual machine 1. INTRODUCTION When developing software for an embedded system, for instance an instrument, it is nec- essary to control specialized hardware devices, for instance a heating element or an inter- ferometer mirror. -
Operating Systems Principles Design and Implementation Policies And
Betriebssysteme ws2000/2001 Operating Systems Principles Design and Implementation Policies and Mechanisms S 2004 CS325 1 Textbook: L.Bic and A.C Shaw: "Operating Systems Principles" Other references: • A.S. Tanenbaum, „Modern Operating Systems“, Prentice-Hall • Other references – see web site: cs.nmt.edu/~cs325 S 2004 CS325 2 Prof. H. D. Clausen 1 Betriebssysteme ws2000/2001 Simple hardware configuration control CPU data addres s controller controller main memory device_1 device_2 user IO subsystem S 2004 CS325 3 Typical hardware configuration main CPU memory IOC IOC/PPU controller controller controller controller device device device S 2004 CS325 4 Prof. H. D. Clausen 2 Betriebssysteme ws2000/2001 Processor performance This chart plots relative performance as measured by the SPECint benchmarks with base of one being a VAX 11/780. S 2004 CS325 5 Memory cost Prices of DRAMs (from 16K bits to 64M bits) over time in 1977 dollars. S 2004 CS325 6 Prof. H. D. Clausen 3 Betriebssysteme ws2000/2001 API application program application support API SVC SysCall systems programs kernel programs SW CISC driver programs RISC HW S 2004 CS325 7 Principle of abstraction • Higher-level function: – Read( file, logical_block, main_memory ) • Lower-level functions – Calculate position of logical_block on the disk; – Move Read/Write head to corresponding track; – Check for „seek“ errors; – Read physical block; – Check for „read“ errors; – Copy block to main_memory; S 2004 CS325 8 Prof. H. D. Clausen 4 Betriebssysteme ws2000/2001 Principle of abstraction extended -
Modeling of Hardware and Software for Specifying Hardware Abstraction
Modeling of Hardware and Software for specifying Hardware Abstraction Layers Yves Bernard, Cédric Gava, Cédrik Besseyre, Bertrand Crouzet, Laurent Marliere, Pierre Moreau, Samuel Rochet To cite this version: Yves Bernard, Cédric Gava, Cédrik Besseyre, Bertrand Crouzet, Laurent Marliere, et al.. Modeling of Hardware and Software for specifying Hardware Abstraction Layers. Embedded Real Time Software and Systems (ERTS2014), Feb 2014, Toulouse, France. hal-02272457 HAL Id: hal-02272457 https://hal.archives-ouvertes.fr/hal-02272457 Submitted on 27 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Modeling of Hardware and Software for specifying Hardware Abstraction Layers Yves BERNARD1, Cédric GAVA2, Cédrik BESSEYRE1, Bertrand CROUZET1, Laurent MARLIERE1, Pierre MOREAU1, Samuel ROCHET2 (1) Airbus Operations SAS (2) Subcontractor for Airbus Operations SAS Abstract In this paper we describe a practical approach for modeling low level interfaces between software and hardware parts based on SysML operations. This method is intended to be applied for the development of drivers involved on what is classically called the “hardware abstraction layer” or the “basic software” which provide high level services for resources management on the top of a bare hardware platform. -
Flexible Hardware Abstraction for Wireless Sensor Networks
Flexible Hardware Abstraction for Wireless Sensor Networks Vlado Handziski∗, Joseph Polastrey, Jan-Hinrich Hauer∗, Cory Sharpy, Adam Wolisz∗ and David Cullery ∗Technische Universitat¨ Berlin; Telecommunication Networks Group Sekr. FT 5, Einsteinufer 25, 10587 Berlin, GERMANY yUniversity of California, Berkeley; Computer Science Department Berkeley, CA 94720 US Abstract— We present a flexible Hardware Abstraction Our analysis of several embedded and general- Architecture (HAA) that balances conflicting requirements purpose operating systems (eCos [1], WindowsCE [2], of Wireless Sensor Networks (WSNs) applications and the NetBSD [3] and Linux[4]) that have mature hardware ab- desire for increased portability and streamlined develop- straction architectures has shown us that existing designs ment of applications. Our three-layer design gradually are poorly suited to the flexible abstraction required by adapts the capabilities of the underlying hardware plat- forms to the selected platform-independent hardware inter- WSNs. Their interfaces are rigid and expose the capa- face between the operating system core and the application bilities of the hardware at a single level of abstraction, code. At the same time, it allows the applications to utilize preventing an application from taking full advantage of a platform’s full capabilities – exported at the second layer, the hardware’s capabilities when needed. when the performance requirements outweigh the need for Thus, we need a better Hardware Abstraction Archi- cross-platform compatibility. We demonstrate the practical tecture (HAA) that can strike a balance between the value of our approach by presenting how it can be applied two conflicting goals that are present in the WSNs to the most important hardware modules that are found context. -
Installing the IPM Client on Windows NT
CHAPTER 6 Installing the IPM Client on Windows NT IPM supports running only the IPM client software on a Windows NT system. However, you can run the IPM client on Windows NT with an IPM server that resides on a different operating system platform such as Sun Solaris. The IPM client software can be installed from the CD-ROM or it can be downloaded for installation using the IPM server’s web server. This chapter provides the following information about installing the IPM client software on Windows NT: • Requirements for the IPM Client on Windows NT on page 6-2 • Installing the IPM Client on Windows NT from the CD-ROM on page 6-3 • Installing the IPM Client on Windows NT Using the Web Server on page 6-4 • Verifying the IPM Client Installation on Windows NT on page 6-6 • Modifying the IPM Client Configuration on Windows NT on page 6-7 • Uninstalling the IPM Client on Windows NT on page 6-10 Installing the IPM Client on Windows NT 6-1 Requirements for the IPM Client on Windows NT Requirements for the IPM Client on Windows NT The following hardware and software is required to install the IPM client on a Windows NT system: • Windows NT version 4.0 with Service Pack 3 Note IPM software release 2.0 has not been tested with Windows NT Service Pack 4. • 64 MB RAM minimum (128 MB recommended) • 30 MB hard disk space Before you install the IPM client on a workstation running Windows NT, you should know the following information: • IPM server port number for the Naming server (the default is 44342) • Name of the host where the IPM server software is installed Tips The IPM server port number is obtained using the pkgparam -v CSCOcwbS | grep OSAGENT_PORT command on the Solaris server system. -
Level One Benchmark Windows NT 4.0 Operating Systems V1.0.5
Level One Benchmark Windows NT 4.0 Operating Systems V1.0.5 Copyright 2003, The Center for Internet Security www.cisecurity.org Page 2 of 32 Terms of Use Agreement Background. CIS provides benchmarks, scoring tools, software, data, information, suggestions, ideas, and other services and materials from the CIS website or elsewhere (“Products”) as a public service to Internet users worldwide. Recommendations contained in the Products (“Recommendations”) result from a consensus-building process that involves many security experts and are generally generic in nature. The Recommendations are intended to provide helpful information to organizations attempting to evaluate or improve the security of their networks, systems and devices. Proper use of the Recommendations requires careful analysis and adaptation to specific user requirements. The Recommendations are not in any way intended to be a “quick fix” for anyone’s information security needs. No representations, warranties and covenants. CIS makes no representations, warranties or covenants whatsoever as to (i) the positive or negative effect of the Products or the Recommendations on the operation or the security of any particular network, computer system, network device, software, hardware, or any component of any of the foregoing or (ii) the accuracy, reliability, timeliness or completeness of any Product or Recommendation. CIS is providing the Products and the Recommendations “as is” and “as available” without representations, warranties or covenants of any kind. User agreements. By using the Products and/or the Recommendations, I and/or my organization (“we”) agree and acknowledge that: 1. No network, system, device, hardware, software or component can be made fully secure; 2. -
Windows 95 & NT
Windows 95 & NT Configuration Help By Marc Goetschalckx Version 1.48, September 19, 1999 Copyright 1995-1999 Marc Goetschalckx. All rights reserved Version 1.48, September 19, 1999 Marc Goetschalckx 4031 Bradbury Drive Marietta, GA 30062-6165 tel. (770) 565-3370 fax. (770) 578-6148 Contents Chapter 1. System Files 1 MSDOS.SYS..............................................................................................................................1 WIN.COM..................................................................................................................................2 Chapter 2. Windows Installation 5 Setup (Windows 95 only)...........................................................................................................5 Internet Services Manager (Windows NT Only)........................................................................6 Dial-Up Networking and Scripting Tool....................................................................................6 Direct Cable Connection ..........................................................................................................16 Fax............................................................................................................................................17 Using Device Drivers of Previous Versions.............................................................................18 Identifying Windows Versions.................................................................................................18 User Manager (NT Only) .........................................................................................................19 -
Windows 10: Considered Harmful
Windows 10: Considered Harmful 26 August, 2016 Last Updated: 25 September 2016 Previously I made a series of articles against Windows 10, consisting of basic explanation, open letters, and even a long-winded chance.org petition. However, I have come to realize that these various things could be better as one page rather than fragments across my website. On this page I hope to explain why the Windows 10 system is evil and also include why Windows as a whole is Considered Harmful . Sources to unreferenced items in this article can be found in the various resource links on the bottom of the page. Information can also be found in the photographs shown and with a simple web search. The primary reason against the Windows 10 system is an obvious one. The system is designed to be a system that data-mines the user. This is proven time and time again. Using a tool such as wireshark, one can clearly see that it makes encrypted connections to a variety of Microsoft servers. This uses a very weak RSA encryption that can be broken in under a minute. When a user successfully decrypted the encrypted data, he simply converted the decrypted ``.bin'' extension to ``.png'' and opened them. The image files were screen- shots of him installing the RSA decryptor tool. This was in a VM and was a fresh install. In addition to this, another user in Australia also monitored the odd connection but did not decrypt it. He noticed this when he opened a photograph in the Windows Photo App.