Operating Systems Basics • IOS Architecture Overview • Memory Organization • IOS Processes • IOS Kernel • Packet Buffer Management • Device Drivers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Survey on Architectures of Mobile Operating Systems: Challenges and Issues
International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Volume 2, Issue 3, March 2015, PP 73-76 ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online) www.arcjournals.org A Survey on Architectures of Mobile Operating Systems: Challenges and Issues Prof. Y. K. Sundara Krishna1 HOD, Dept. of Computer Science, Krishna University Mr. G K Mohan Devarakonda2 Research Scholar, Krishna University Abstract: In the early years of mobile evolution, Discontinued Platforms Current mobile devices are enabled only with voice services Platforms that allow the users to communicate with each other. Symbian OS Android But now a days, the mobile technology undergone Palm OS IOS various changes to a great extent so that the devices Maemo OS Windows Phone allows the users not only to communicate but also to Meego OS Firefox OS attain a variety of services such as video calls, faster Black Berry OS browsing services,2d and 3d games, Camera, 2.1 Symbian OS: This Operating system was Banking Services, GPS services, File sharing developed by NOKIA. services, Tracking Services, M-Commerce and so many. The changes in mobile technology may be due Architecture: to Operating System or Hardware or Network or Memory. This paper presents a survey on evolutions SYMBIAN OS GUI Library in mobile developments especially on mobile operating system Architectures, challenges and Issues in various mobile operating Systems. Application Engines JAVA VM 1. INTRODUCTION Servers (Operating System Services) A Mobile operating system is a System Software that is specifically designed to run on handheld devices Symbian OS Base (File Server, Kernel) such as Mobile Phones, PDA’s. -
Windows NT Architecture Previous Screen Gilbert Held Payoff Windows NT Is a Sophisticated Operating System for Workstations and Network Servers
50-30-19 Windows NT Architecture Previous screen Gilbert Held Payoff Windows NT is a sophisticated operating system for workstations and network servers. This article helps network managers to understand the communications capability of workstations and servers running on Windows NT, and data base administrators to determine the suitability of this platform for a structured query language (SQL) data base server. Introduction Windows NT is a 32-bit, preemptive multitasking operating system that includes comprehensive networking capabilities and several levels of security. Microsoft markets two version of Windows NT: one for workstations—appropriately named Windows NT Workstation—and a second for servers—Windows NT Server. This article, which describes the workings of the NT architecture, collectively references both versions as Windows NT when information is applicable to both versions of the operating system. Similarly, it references a specific version of the operating system when the information presented is specific to either Windows NT Workstation or Windows NT Server. Architecture Windows NT consists of nine basic modules. The relationship of those modules to one another, as well as to the hardware platform on which the operating system runs, is illustrated in Exhibit 1. Windows NT Core Modules Hardware Abstraction Layer The hardware abstraction layer (HAL) is located directly above the hardware on which Windows NT operates. HAL actually represents a software module developed by hardware manufacturers that is bundled into Windows NT to allow it to operate on a specific hardware platform, such as Intel X86, DEC Alpha, or IBM PowerPC. HAL hides the specifics of the hardware platform from the rest of the operating system and represents the lowest level of Windows NT. -
Mobile Systems
CS 318 Principles of Operating Systems Fall 2017 Lecture 21: Mobile Systems Ryan Huang 11/30/17 CS 318 – Lecture 21 – Mobile Systems 2 Apply the security update immedidately! CS 318 – Lecture 21 – Mobile Systems Administrivia • Lab 4 deadline one week away • Groups of 2 students receive 2-day extra late hour • Groups of 3 students with 1 318 section student receive 1-day extra late-hour • Please, please don’t cheat • Homework 5 is released 11/30/17 CS 318 – Lecture 21 – Mobile Systems 4 Mobile Devices Become Ubiquitous Worldwide Devices Shipments by Device Type (Millions of Units) 3000 2500 2000 1500 1806.96 1879 1910 1959 1000 500 Google Nexus 6P 209.79 226 196 195 296.13 277 246 232 0 2013 2014 2015 2016 Traditional PCs Ultramobiles (Premium) Ultramobiles (Basic and Utility) Mobile Phones 5 History of Mobile OS (1) • Early “smart” devices are PDAs (touchscreen, Internet) • Symbian, first modern mobile OS - released in 2000 - run in Ericsson R380, the first ‘smartphone’ (mobile phone + PDA) - only support proprietary programs 11/30/17 CS 318 – Lecture 21 – Mobile Systems 6 History of Mobile OS (2) • Many smartphone and mobile OSes followed up - Kyocera 6035 running Palm OS (2001) • 8 MB non-expandable memory - Windows CE (2002) - Blackberry (2002) • was a prominent vendor • known for secure communications - Moto Q (2005) - Nokia N70 (2005) • 2-megapixel camera, bluetooth • 32 MB memory • Symbian OS • Java games 11/30/17 CS 318 – Lecture 21 – Mobile Systems 7 One More Thing… • Introduction of iPhone (2007) - revolutionize the smartphone industry - 4GB flash memory, 128 MB DRAM, multi-touch interface - runs iOS, initially only proprietary apps - App Store opened in 2008, allow third party apps 11/30/17 CS 318 – Lecture 21 – Mobile Systems 8 Android – An Unexpected Rival of iPhone • Android Inc. -
Chapter 3: Processes
Chapter 3: Processes Operating System Concepts – 9th Edition Silberschatz, Galvin and Gagne ©2013 Chapter 3: Processes Process Concept Process Scheduling Operations on Processes Interprocess Communication Examples of IPC Systems Communication in Client-Server Systems Operating System Concepts – 9th Edition 3.2 Silberschatz, Galvin and Gagne ©2013 Objectives To introduce the notion of a process -- a program in execution, which forms the basis of all computation To describe the various features of processes, including scheduling, creation and termination, and communication To explore interprocess communication using shared memory and message passing To describe communication in client-server systems Operating System Concepts – 9th Edition 3.3 Silberschatz, Galvin and Gagne ©2013 Process Concept An operating system executes a variety of programs: Batch system – jobs Time-shared systems – user programs or tasks Textbook uses the terms job and process almost interchangeably Process – a program in execution; process execution must progress in sequential fashion Multiple parts The program code, also called text section Current activity including program counter, processor registers Stack containing temporary data Function parameters, return addresses, local variables Data section containing global variables Heap containing memory dynamically allocated during run time Operating System Concepts – 9th Edition 3.4 Silberschatz, Galvin and Gagne ©2013 Process Concept (Cont.) Program is passive entity stored on disk (executable -
Windows XP History and Versions
Lecture 23: Windows XP History and Versions n Mid-80ies Microsoft and IBM cooperated to develop OS/2 n Windows XP is produced by Microsoft Co. n 1988 - Microsoft started to develop its own new technology (NT) OS n XP is multi-user, multi-process, preemptive multitasking OS, 30M lines of source code capable of running OS/2, Windows and Unix apps. Hired Dave Cutler - architect of DEC VAX/VMS to head the design n It is developed to support multiple platforms and targeted towards enterprise workstations and server market as well as n NT v. 3.1 first released commercially July 1993 desktops n NT v 4.0 adopted Windows 95 user interface, graphics code moved into kernel to improve performance n In today’s lecture n 2000 – improved networking and laptop support, support for plug-and- u XP’s predecessors, the history of XP design, XP versions play devices, support for more processors (up to 8) and memory, u design principles becomes true multi-user through terminal server u components n XP (released Oct 2001) – update for 2000 replacement for 95/98 F hardware abstraction layer u simplifies user interface, improved reliability, performance F executive improvements, partial 64-bit support F environmental subsystems n versions F file system u desktop: XP personal – 95/98 replacement, professional – advanced features like POSIX support, some network features 1 u server: .NET – support for web/print service, clusters, large memory2 and multiple processors Design goals Components n XP is microkernel-based, modular n security – NT was C-2 certified (US -
A Hardware Abstraction Layer in Java
A Hardware Abstraction Layer in Java MARTIN SCHOEBERL Vienna University of Technology, Austria STEPHAN KORSHOLM Aalborg University, Denmark TOMAS KALIBERA Purdue University, USA and ANDERS P. RAVN Aalborg University, Denmark Embedded systems use specialized hardware devices to interact with their environment, and since they have to be dependable, it is attractive to use a modern, type-safe programming language like Java to develop programs for them. Standard Java, as a platform independent language, delegates access to devices, direct memory access, and interrupt handling to some underlying operating system or kernel, but in the embedded systems domain resources are scarce and a Java virtual machine (JVM) without an underlying middleware is an attractive architecture. The contribution of this paper is a proposal for Java packages with hardware objects and interrupt handlers that interface to such a JVM. We provide implementations of the proposal directly in hardware, as extensions of standard interpreters, and finally with an operating system middleware. The latter solution is mainly seen as a migration path allowing Java programs to coexist with legacy system components. An important aspect of the proposal is that it is compatible with the Real-Time Specification for Java (RTSJ). Categories and Subject Descriptors: D.4.7 [Operating Systems]: Organization and Design—Real-time sys- tems and embedded systems; D.3.3 [Programming Languages]: Language Classifications—Object-oriented languages; D.3.3 [Programming Languages]: Language Constructs and Features—Input/output General Terms: Languages, Design, Implementation Additional Key Words and Phrases: Device driver, embedded system, Java, Java virtual machine 1. INTRODUCTION When developing software for an embedded system, for instance an instrument, it is nec- essary to control specialized hardware devices, for instance a heating element or an inter- ferometer mirror. -
Operating Systems Principles Design and Implementation Policies And
Betriebssysteme ws2000/2001 Operating Systems Principles Design and Implementation Policies and Mechanisms S 2004 CS325 1 Textbook: L.Bic and A.C Shaw: "Operating Systems Principles" Other references: • A.S. Tanenbaum, „Modern Operating Systems“, Prentice-Hall • Other references – see web site: cs.nmt.edu/~cs325 S 2004 CS325 2 Prof. H. D. Clausen 1 Betriebssysteme ws2000/2001 Simple hardware configuration control CPU data addres s controller controller main memory device_1 device_2 user IO subsystem S 2004 CS325 3 Typical hardware configuration main CPU memory IOC IOC/PPU controller controller controller controller device device device S 2004 CS325 4 Prof. H. D. Clausen 2 Betriebssysteme ws2000/2001 Processor performance This chart plots relative performance as measured by the SPECint benchmarks with base of one being a VAX 11/780. S 2004 CS325 5 Memory cost Prices of DRAMs (from 16K bits to 64M bits) over time in 1977 dollars. S 2004 CS325 6 Prof. H. D. Clausen 3 Betriebssysteme ws2000/2001 API application program application support API SVC SysCall systems programs kernel programs SW CISC driver programs RISC HW S 2004 CS325 7 Principle of abstraction • Higher-level function: – Read( file, logical_block, main_memory ) • Lower-level functions – Calculate position of logical_block on the disk; – Move Read/Write head to corresponding track; – Check for „seek“ errors; – Read physical block; – Check for „read“ errors; – Copy block to main_memory; S 2004 CS325 8 Prof. H. D. Clausen 4 Betriebssysteme ws2000/2001 Principle of abstraction extended -
Modeling of Hardware and Software for Specifying Hardware Abstraction
Modeling of Hardware and Software for specifying Hardware Abstraction Layers Yves Bernard, Cédric Gava, Cédrik Besseyre, Bertrand Crouzet, Laurent Marliere, Pierre Moreau, Samuel Rochet To cite this version: Yves Bernard, Cédric Gava, Cédrik Besseyre, Bertrand Crouzet, Laurent Marliere, et al.. Modeling of Hardware and Software for specifying Hardware Abstraction Layers. Embedded Real Time Software and Systems (ERTS2014), Feb 2014, Toulouse, France. hal-02272457 HAL Id: hal-02272457 https://hal.archives-ouvertes.fr/hal-02272457 Submitted on 27 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Modeling of Hardware and Software for specifying Hardware Abstraction Layers Yves BERNARD1, Cédric GAVA2, Cédrik BESSEYRE1, Bertrand CROUZET1, Laurent MARLIERE1, Pierre MOREAU1, Samuel ROCHET2 (1) Airbus Operations SAS (2) Subcontractor for Airbus Operations SAS Abstract In this paper we describe a practical approach for modeling low level interfaces between software and hardware parts based on SysML operations. This method is intended to be applied for the development of drivers involved on what is classically called the “hardware abstraction layer” or the “basic software” which provide high level services for resources management on the top of a bare hardware platform. -
Flexible Hardware Abstraction for Wireless Sensor Networks
Flexible Hardware Abstraction for Wireless Sensor Networks Vlado Handziski∗, Joseph Polastrey, Jan-Hinrich Hauer∗, Cory Sharpy, Adam Wolisz∗ and David Cullery ∗Technische Universitat¨ Berlin; Telecommunication Networks Group Sekr. FT 5, Einsteinufer 25, 10587 Berlin, GERMANY yUniversity of California, Berkeley; Computer Science Department Berkeley, CA 94720 US Abstract— We present a flexible Hardware Abstraction Our analysis of several embedded and general- Architecture (HAA) that balances conflicting requirements purpose operating systems (eCos [1], WindowsCE [2], of Wireless Sensor Networks (WSNs) applications and the NetBSD [3] and Linux[4]) that have mature hardware ab- desire for increased portability and streamlined develop- straction architectures has shown us that existing designs ment of applications. Our three-layer design gradually are poorly suited to the flexible abstraction required by adapts the capabilities of the underlying hardware plat- forms to the selected platform-independent hardware inter- WSNs. Their interfaces are rigid and expose the capa- face between the operating system core and the application bilities of the hardware at a single level of abstraction, code. At the same time, it allows the applications to utilize preventing an application from taking full advantage of a platform’s full capabilities – exported at the second layer, the hardware’s capabilities when needed. when the performance requirements outweigh the need for Thus, we need a better Hardware Abstraction Archi- cross-platform compatibility. We demonstrate the practical tecture (HAA) that can strike a balance between the value of our approach by presenting how it can be applied two conflicting goals that are present in the WSNs to the most important hardware modules that are found context. -
Unix / Linux Processes Management
UUNNIIXX // LLIINNUUXX -- PPRROOCCEESSSSEESS MMAANNAAGGEEMMEENNTT http://www.tutorialspoint.com/unix/unix-processes.htm Copyright © tutorialspoint.com Advertisements In this chapter, we will discuss in detail about process management in Unix. When you execute a program on your Unix system, the system creates a special environment for that program. This environment contains everything needed for the system to run the program as if no other program were running on the system. Whenever you issue a command in Unix, it creates, or starts, a new process. When you tried out the ls command to list the directory contents, you started a process. A process, in simple terms, is an instance of a running program. The operating system tracks processes through a five-digit ID number known as the pid or the process ID. Each process in the system has a unique pid. Pids eventually repeat because all the possible numbers are used up and the next pid rolls or starts over. At any point of time, no two processes with the same pid exist in the system because it is the pid that Unix uses to track each process. Starting a Process When you start a process (run a command), there are two ways you can run it − Foreground Processes Background Processes Foreground Processes By default, every process that you start runs in the foreground. It gets its input from the keyboard and sends its output to the screen. You can see this happen with the ls command. If you wish to list all the files in your current directory, you can use the following command − $ls ch*.doc This would display all the files, the names of which start with ch and end with .doc − ch01-1.doc ch010.doc ch02.doc ch03-2.doc ch04-1.doc ch040.doc ch05.doc ch06-2.doc ch01-2.doc ch02-1.doc The process runs in the foreground, the output is directed to my screen, and if the ls command wants any input (which it does not), it waits for it from the keyboard. -
An Introduction to Copland the Mac™ OS Foundation for the Next Generation of Personal Computers
An Introduction to Copland The Mac™ OS Foundation for the Next Generation of Personal Computers TM Copland is the development name for the next major release of the Mac™ OS from Apple® Computer, Inc. This document introduces Copland’s new architecture, its capabilities, and the benefits it will deliver to individuals and organizations. Product Primer Contents Welcome ..........................................................................................................................3 Introducing Copland: Foundation for the Future ........................................................4 Copland: The Next Step Toward Apple’s Vision for the Mac OS ......................................................4 Creating Copland: Apple’s Four-Point Plan for the Mac OS ..............................................................4 The Copland Advantage ......................................................................................................................5 Summary ................................................................................................................................................5 Setting New Standards for Ease of Use: The Copland User Interface ......................6 Automating Routine Tasks: From “Show Me” to “Do It for Me” ....................................................................6 Managing Information Overload......................................................................................................................7 Personalizing the Work Environment ..............................................................................................................7 -
Secrets of Powershell Remoting
Secrets of PowerShell Remoting The DevOps Collective, Inc. This book is for sale at http://leanpub.com/secretsofpowershellremoting This version was published on 2018-10-28 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do. © 2016 - 2018 The DevOps Collective, Inc. Also By The DevOps Collective, Inc. Creating HTML Reports in Windows PowerShell A Unix Person’s Guide to PowerShell The Big Book of PowerShell Error Handling DevOps: The Ops Perspective Ditch Excel: Making Historical and Trend Reports in PowerShell The Big Book of PowerShell Gotchas The Monad Manifesto, Annotated Why PowerShell? Windows PowerShell Networking Guide The PowerShell + DevOps Global Summit Manual for Summiteers Why PowerShell? (Spanish) Secrets of PowerShell Remoting (Spanish) DevOps: The Ops Perspective (Spanish) The Monad Manifesto: Annotated (Spanish) Creating HTML Reports in PowerShell (Spanish) The Big Book of PowerShell Gotchas (Spanish) The Big Book of PowerShell Error Handling (Spanish) DevOps: WTF? PowerShell.org: History of a Community Contents Secrets of PowerShell Remoting ..................................... 1 Remoting Basics ................................................ 3 What is Remoting? ............................................ 3 Examining Remoting Architecture .................................. 3 Enabling