A CMOS Automatic Gain Control Design Based on Piece-Wise Linear Circuits
Total Page:16
File Type:pdf, Size:1020Kb
A CMOS Automatic Gain Control design based on Piece-wise Linear circuits By David Moro Frías A Dissertation Submitted to the Program in Electronics Science, Electronics Department in partial fulfillment of the requirements for the degree of PhD. IN ELECTRONICS SCIENCE at the National Institute for Astrophysics, Optics and Electronics June 2013 Tonantzintla, Puebla Advisors: Dra. Ma. Teresa Sanz Pascual, INAOE Dr. Carlos A. de la Cruz Blas, UPNA Abstract In many electronic systems, a circuit capable of reducing the dynamic range of a signal is needed. An Automatic Gain Control (AGC) system is a complex circuit that maintains its output signal amplitude relatively constant, independently of the input variations. The time response of the AGC must also be constant, in order to maximize the system bandwidth and to reduce acquisition times. In this thesis a novel method to design and implement an AGC loop is presented, based on piece-wise linear (PWL) circuits. This PWL technique is used to design an exponential and logarithmic pre-distortion circuits which are implemented inside the AGC loop in order to have a linear-in-dB system and, as a consequence, to obtain a constant settling time AGC response. Also, two exponential variable gain amplifiers (VGA) and a peak detector were designed using the PWL pre- distortion circuits mentioned before. Thus, a complete AGC loop is implemented and tested at the laboratory to probe the validity of the proposed blocks. In Chapter 1 a brief introduction is presented, describing the principal AGC blocks, its basic operation, types of AGCs and finally AGC applications are mentioned. In Chapter 2 a PWL exponential pre-distortion circuit was pro- posed, based on current mirrors and a Winner-Take-All circuit. This approach is technology-independent, as it does not rely on the quadratic behavior of MOS transistors in strong inversion, and remains therefore valid for deep submicron CMOS processes, as opposed to former exponential approximations found in lit- erature. Moreover, the proposed exponential pre-distortion circuit is not limited to a certain range of validity. In other words, the range of validity can be extended by adding segments to the implementation, at a cost of area and power consumption. The proposed approach was validated with experimental results from a 6-segment i ii prototype, which showed a very wide linear-in-dB range of 41.97dB with 2.55dB maximum error. Besides the PWL exponential proposal, two WTA circuits were proposed in order to improve time response to abrupt changes of input signals. Both proposals, WTA I and WTA II, preserve the main characteristics of Lazzaro’s cell, such as compactness and area and power consumption optimization, whereas improving time response. The WTA II showed the fastest time response to abrupt input changes and was therefore used as a main block of the exponential pre-distortion circuit. In Chapter 3, the proposed PWL construction method was expanded to im- plement a logarithmic circuit based on current mirrors and a LTA. A 6-segment prototype was fabricated and tested, showing an input range of almost 28dB with 1.59dB maximum error. Additionally, the peak detector to be used within the AGC was designed with a WTA based full wave rectifier and an external capa- citor. One of the main blocks of an AGC is the variable gain amplifier. In order to take full advantage of the proposed PWL exponential block, two VGAs with wide gain control range were designed, the first one based on the Gilbert cell (VGA I) and the second based on a I-V converter (VGA II). Both VGAs were characterized considering their amplification core and the pre-distortion block as unity. VGA I was designed in 0 .35 µm technology, with a gain variation range and power consumption of 33dB and 5.1mW, respectively. On the other hand, VGA II was designed and implemented in 0 .13 µm technology, and experimental results showed a wider gain variation range (41.94dB) and a lower power consumption (3.1mW). Because of this, the VGA II was used in the final AGC design. PWL implementation shows a not limited exponential range validity, so the gain vari- ation range of the VGA depends practically on the amplifier design itself. So, a careful VGA core design must be taken into account for a wide gain range VGA circuit. Finally, employing all the proposed circuits, an AGC circuit was integrated and tested, as shown in Chapter 4. Experimental results shown almost constant time response around of a few microsecons and a compression factor equal to 3.55. iii The circuits designed in this thesis were fabricated in 0 .13 µm CMOS techno- logy from STMicroelectronics. Simulation and experimental results were presen- ted in order to validate the fulfillment of the objectives proposed in Chapter 1. iv Resumen En muchos sistemas electr´onicos es necesario un circuito que sea capaz de reducir el rango din´amico de la se˜nal a procesar. Un lazo de control autom´atico de ganancia (AGC) es un circuito que mantiene la amplitud de su se˜nal de salida relativamente constante, independientemente de las variaciones de la se˜nal de entrada. El tiempo de respuesta de un AGC debe ser constante, con el objetivo de maximizar el ancho de banda del sistema donde se encuentra el AGC. En esta tesis se presenta un m´etodo novedoso para dise˜nar e implementar un lazo AGC basado en circuitos Piecewise-Linear (PWL). La t´ecnica PWL es utilizada para dise˜nar un circuito de predistorsi´on exponencial y logar´ıtmico, los cuales son implementados dentro del lazo AGC para poder obtener un sistema lineal en dB y, como consecuencia, obtener un AGC con tiempo de establecimiento constante. Adem´as, se dise˜naron dos amplificadores de ganancia variable exponenciales (VGA) y un detector de picos utilizando los circuitos de predistorsi´on PWL mencionados anteriormente. As´ı, se implement´oun lazo AGC completo, el cual fue medido en el laboratorio para comprobar la validez de los bloques propuestos. En el cap´ıtlo 1 se presenta una breve introducci´on, describiendo los bloques principales del AGC, su operaci´on b´asica, tipos de AGC y, finalmente, las distintas aplicaciones de estos lazos. En el cap´ıtulo 2 se propone un circuito de predistorsi´on exponencial PWL, basado en espejos de corriente y en un circuito Winner-Take-All (WTA). Esta propuesta es independiente de la tecnolog´ıa de dise˜no debido a que no depende del comportamiento cuadr´atico de los transistores MOS en inversi´on fuerte y, por lo tanto, esta propuesta se mantiene v´alida para procesos CMOS submicrom´etricos, contrario a las aproximaciones exponenciales encontradas en la literuatura. M´as a´un, el circuito de predistorsi´on exponencial propuesto no v vi est´alimitado a un rango de validez dado, es decir, el rango de validez puede ser extendido aumentando el n´umero de segmentos a la implementaci´on, con un costo de ´area y consumo de potencia. Esta propuesta fue validada con resultados experimentales con un prototipo de seis segmentos, el cual mostr´oun amplio rango lineal en dB de casi 42dB con un error m´aximo de 2.55dB. Adem´as del circuito exponencial PWL, se proponen dos circuitos WTA que buscan mejorar el tiempo de respuesta a cambios abruptos en las se˜nales de en- trada. Ambas propuestas, WTA I y WTA II, conservan las caracter´ısticas prin- cipales de las celdas de Lazzaro, tal como su dise˜no compacto y bajo consumo de ´area y potencia, mientras que mejoran el tiempo de respuesta. El WTA II mostr´o el tiempo de respuesta m´as r´apido a cambios abruptos en las entradas y fue, por lo tanto, utilizado como bloque principal en el circuito exponencial PWL propuesto. En el cap´ıtulo 3, el m´etodo de dise˜no basado en la t´ecnica PWL fue expandido para implementar un circuito logar´ıtmico basado en espejos de corriente y un circuito Loser-Tale-All (LTA). Se fabric´oy midi´oun prototipo de seis segmentos, mostrando un rango de entrada de casi 28dB con un error m´aximo menor de 1.6dB. Adem´as, se dise˜n´oel detector de picos utilizando un WTA de dos entradas, como rectificador de onda completa, y un capacitor externo al chip. Uno de los bloques principales del lazo AGC es el VGA. Con el objetivo de obtener la m´axima ventaja del circuito exponencial propuesto, se dise˜naron dos VGAs con amplio rango de control de ganancia, el primero basado en la celda de Gilbert (VGA I) y el segundo basado en un convertidor corriente-voltaje (VGA II). Ambos VGAs fueron caracterizados considerando el amplificador de ganancia variable y el bloque de predistorsi´on exponencial como una unidad. El VGA I fue dise˜nado en tecnolog´ıa de 0 .35 µm , obteniendo un rango de variaci´on de ganancia de 33dB con un consumo de potencia igual a 5.1mW. Por otro lado, el VGA II fue dise˜nado e implementado en tecnolog´ıa de 0 .13 µm , obteniendo como resultados experimentales un mayor rango de variaci´on de ganancia (casi 42dB) y un menor consumo de pontencia (3.1mW), comparado con el VGA I, por lo que el VGA II fue utilizado en el dise˜no final del AGC. Debido a que la implementaci´on exponencial PWL propuesta no tiene un rango de validez espec´ıfico, la variaci´on de ganancia del VGA depende pr´acticamente del propio dise˜no del amplificador. As´ı, se debe vii prestar especial atenci´on al dise˜no del VGA para poder obtener un amplificador de amplio rango de variaci´on de ganancia.