Pharmaceutical Review

Total Page:16

File Type:pdf, Size:1020Kb

Pharmaceutical Review View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CONICET Digital Pharmaceutical Review For reprint orders, please contact [email protected] Pharm. Bioprocess. (2013) 1(5), 423–440 Emerging technologies for the integration and intensification of downstream bioprocesses Downstream processing is currently the major bottleneck for bioproduct generation. Roy N D’Souza1, In contrast to the advances in fermentation processes, the tools used for downstream Ana M Azevedo2, processes have struggled to keep pace in the last 20 years. Purification bottlenecks M Raquel Aires-Barros2, are quite serious, as these processes can account for up to 80% of the total production Nika Lendero Krajnc3, cost. Coupled with the emergence of new classes of bioproducts, for example, virus-like Petra Kramberger3, particles or plasmidic DNA, this has created a great need for superior alternatives. Maria Laura Carbajal4, In this review, improved downstream technologies, including aqueous two-phase Mariano Grasselli4, systems, expanded bed adsorption chromatography, convective flow systems, and Roland Meyer5 & Marcelo fibre-based adsorbent systems, have been discussed. These adaptive methods are Fernández-Lahore*1 more suited to the burgeoning downstream processing needs of the future, enabling 1School of Engineering & Science, the cost-efficient production of new classes biomaterials with a high degree of purity, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany and thereby hold the promise to become indispensable tools in the pharmaceutical 2Institute for Biotechnology & and food industries. Bioengineering, Centre for Biological & Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049–001 Lisbon, The downstream processing (DSP) of limits and are unable to meet current prod- Portugal biopharmaceuticals is generally more cost- uct demand, not only in terms of space 3BIA Separations d.o.o., Mirce 21, 5270 intensive than corresponding upstream (fer- requirements, but also in terms of cost, Ajdovščina, Slovenia mentation) processes in the biotech industry resource consumption and process time. 4Laboratorio de Materiales and can account for up to 80% of production Consequently, technologies that offer pro- Biotecnológicos, Universidad Nacional de Quilmes – IMBICE (CONICET), costs. Moreover, with significant advances cess integration, that is, a reduction in the Roque Saenz Peña 352, (B1876BXD) in fermentation technologies, which have number of unit operations in the initial iso- Bernal, Argentina resulted in titers of over 20 g/l [1], related lation and purification steps while maintain- 5InfoConsult Gesellschaft für developments in downstream bioprocessing ing high product recovery and purity, would Informationstechnik mbH, Stolzenauer have failed to keep up in terms of scale and not only increase process economy but also Street 3, 28207 Bremen, Germany *Author for correspondence: product recovery. An additional challenge reduce process time. However, chromato- E-mail: m.fernandez-lahore@ that modern downstream practices need graphic separations, which require extensive jacobs-university.de to address is the targeting of new classes of feedstock pre-treatment, have been among bioparticles, such as monoclonal antibodies the most essential operations in the down- (mAbs), pDNA, virus-like particles (VLPs) stream processing of biopharmaceutical or nanoplexes, as well as whole cells products. Additionally, several chromato- (e.g., stem cells). These different bioproducts graphic steps are needed to fulfil the high and expression systems require a toolbox demands regarding product purity, consis- of robust and scalable techniques to satisfy tency, and safety [2,3]. Chromatography is a desired purity and yield in a sustainable and relatively slow process and requires expen- cost-effective manner. sive separation media and large volumes of Linear scale-up of traditional DSP meth- aqueous mobile phases. Therefore, faster ods of harvest clarification, concentration, production cycles, reduced consumable and primary recovery have reached their needs, and/or a reduction of chromato- future science group 10.4155/PBP.13.55 © 2013 Future Science Ltd ISSN 2048-9145 423 Review D’Souza, Azevedo, Aires-Barros et al. Key Terms graphic steps within established The successful scale-up of convective flow systems, Monoclonal antibodies: Class of downstream processes would result an example of which are the so-called monoliths [8], biological therapeutics based in a significant decrease of overall have also allowed unprecedented reductions in pro- on antibodies of the exact same production cost [4,5]. The concept of cess times as well as increased recovery rates for the structure and properties that have process intensification refers to any purification of extremely large biomolecules, such risen to prominence in the last decade for targeted treatment of process adaptation or optimization as pDNA and VLPs [9–11]. These unique chromato- various diseases. that results in a less resource-inten- graphic media have overcome the limitations of con- pDNA: Circular DNA used for sive biomanufacturing scheme, ventional porous bead adsorbents, which were initially gene therapy and vaccine including, but not limited to, lower designed for much smaller molecules. Convective formulations; A novel class water consumption, energy demand forces, such as flow rate, the ability to control mass of emerging therapeutic bioproducts. and environmental burden. transport in these systems, and larger external pore This review will primarily focus sizes can consequently accommodate increasingly Virus-like particle: Novel class of very large molecule used for on multifaceted approaches address- larger biomolecules [12]. vaccination purposes, bearing ing process integration and intensi- Finally, innovative fibrous adsorbent media that structural similarity to actual fication based on the utilization of offer faster process times and are easily integrated viruses, without the infectious non-traditional chromatographic or within current infrastructures can also lead to high- payload, which are difficult to process due to their large size. extractive methods, which include performance disposable systems that meet strict Aqueous two-phase separation: advances in bioprocess material health, safety, and quality requirements. For example, Process of selective product development, hardware design and cellulose and other natural polymers have been tra- isolation from complex mixtures advantageous modes of operation. ditionally used in the recovery and purification of by employing two immiscible While adsorptive methods, such proteins; they have been industrially processed into aqueous phases. as chromatography, are widely used specific shapes, such as spherical adsorptive micro- Expanded bed adsorption in industry as a key purification particles [13] and thin ultra/microfiltration membranes, chromatography: Chromatographic method technology, liquid–liquid extraction among others [14]. A novel composite fibre technology employing a fluidized bed technologies, such as aqueous two- known as gPore has been introduced, and offers new for product capture and phase separation (ATPS) systems, are kinds of adsorptive supports based on natural fibrous concentration from complex elegant emerging examples of pro- materials, which are packed in various open-structure feedstock in a single step. cess integration. In this technique, arrangements. More recently, they have been delivered Monolith: Macroporous single- block chromatographic material direct extraction of bioproducts as non-woven structures as well, which have exhibited enabling mass transfer solely from crude feedstocks can be accom- reproducible packing properties as well as compatibility by convection, which facilitate plished by the use of two incompat- with non-clarified feedstock. high flow rates leading to faster ible polymers or of a polymer and a Another important trend that has generated an process times. salt in an aqueous environment. It is increasing amount of interest lately is the transition a powerful technique that combines from traditional batch-based downstream process- moderate to high selectivity, high recovery and high ing regimens to continuous processes [15,16]. In this biocompatibility. respect, methods to transform the technologies dis- A complementary solid–liquid extraction technique, cussed in this review into continuous processes exist which also allows for the direct sequestration of a tar- in the form of simulated moving bed-type systems geted bioproduct directly from a crude feed, thereby and their variants [17–20]. Alternatively, promising integrating conventional clarification, concentration, methods, such as continuous countercurrent tan- and initial purification into a single unit operation, gential chromatography have shown exceptional is expanded bed adsorption (EBA) chromatography results [21,22]. Despite the considerable inertia of the (Figure 1) [6,7]. Converse to traditional packed-bed biopharmaceutical industry to move away from their chromatography, EBA employs a fluidized adsorbent established methods, the move towards continuous bed, where fluidization is driven by the flow rate of the processing could potentially revolutionize the way mobile phase, which is entering the system from the bioproducts, especially pharmaceuticals, are pro- bottom of the column. Larger biological particles,
Recommended publications
  • 1 Downstream Processing of Biotechnology Products
    1 1 Downstream Processing of Biotechnology Products 1.1 Introduction Biological products are important for many applications including biotransforma- tions, diagnostics, research and development, and in the food, pharmaceutical, and cosmetics industries. For certain applications, biological products can be used as crude extracts with little or no purifi cation. However, biopharmaceuticals typi- cally require exceptional purity, making downstream processing a critical compo- nent of the overall process. From the regulatory viewpoint, the production process itself defi nes the biopharmaceutical product rendering proper defi nition of effec- tive and effi cient downstream processing steps crucial early in process develop- ment. Currently, proteins are the most important biopharmaceuticals. The history of their development as industrial products goes back more than half a century. Blood plasma fractionation was the fi rst full - scale biopharmaceutical industry with a current annual production in the 100 - ton scale [1, 2] . Precipitation with organic solvents has been and continues to be the principal purifi cation tool in plasma fractionation, although, recently, chromatographic separation processes have also been integrated into this industry. Anti - venom antibodies and other anti - toxins extracted from animal sources are additional examples of early biopharmaceuti- cals, also purifi ed by a combination of precipitation, fi ltration and chromatogra- phy. In contrast, current biopharmaceuticals are almost exclusively produced by recombinant DNA technology. Chromatography and membrane fi ltration serve as the main tools for purifi cation for these products. Figure 1.1 shows the 2006 market share of various biopharmaceuticals. Approxi- mately one - third are antibodies or antibody fragments [3] , nearly 20% are erythro- poietins, and 14% are insulins.
    [Show full text]
  • UC Riverside UC Riverside Electronic Theses and Dissertations
    UC Riverside UC Riverside Electronic Theses and Dissertations Title Effect of Electrostatic Interactions on Performance of Electrically Conductive Ultrafiltration Membranes for Protein Fractionation Permalink https://escholarship.org/uc/item/79q015j9 Author Yeung, Raymond Kai-yen Publication Date 2017 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Effect of Electrostatic Interactions on Performance of Electrically Conductive Ultrafiltration Membranes for Protein Fractionation A Thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Bioengineering by Raymond Kai-yen Yeung September 2017 Thesis Committee: Dr. Victor G. J. Rodgers, Chairperson Dr. David Jassby Dr. Boris Hyle Park Copyright by Raymond Kai-yen Yeung 2017 The Thesis of Raymond Kai-yen Yeung is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGEMENTS My sincerest gratitude goes to my advisor, Dr. Victor G. J. Rodgers, whose instruction and guidance have facilitated my development as a researcher and scholar. His advice, knowledge of the research area, and commitment to his students have been crucial in fostering my growth and challenging me to reach new heights. I deeply value the research opportunity and am grateful for his continuous support. I would like to thank the members of my thesis committee, Dr. David Jassby and Dr. Hyle Park, for their support and advice they have provided in my research and graduate studies. I would also like to thank Xiaobo (Ben) Zhu for patiently assisting me in the laboratory, Dr. Alexander Dudchenko for providing valuable feedback in our discussions, and Dr.
    [Show full text]
  • Aqueous Two-Phase System (ATPS): an Overview and Advances in Its
    Iqbal et al. Biological Procedures Online (2016) 18:18 DOI 10.1186/s12575-016-0048-8 REVIEW Open Access Aqueous two-phase system (ATPS): an overview and advances in its applications Mujahid Iqbal1, Yanfei Tao1*, Shuyu Xie1, Yufei Zhu1, Dongmei Chen1, Xu Wang1, Lingli Huang1, Dapeng Peng1, Adeel Sattar1, Muhammad Abu Bakr Shabbir2, Hafiz Iftikhar Hussain2, Saeed Ahmed2 and Zonghui Yuan1,2* Abstract Aqueous two-phase system (ATPS) is a liquid-liquid fractionation technique and has gained an interest because of great potential for the extraction, separation, purification and enrichment of proteins, membranes, viruses, enzymes, nucleic acids and other biomolecules both in industry and academia. Although, the partition behavior involved in the method is complex and difficult to predict. Current research shows that it has also been successfully used in the detection of veterinary drug residues in food, separation of precious metals, sewage treatment and a variety of other purposes. The ATPS is able to give high recovery yield and is easily to scale up. It is also very economic and environment friendly method. The aim of this review is to overview the basics of ATPS, optimization and its applications. Keywords: Aqueous two-phase system (ATPS), Biomolecule separation, Solvent extraction, Veterinary drug residues History and background hydrophobic groups [5] Interested readers about In 1896, Martinus Willem Beijerinck accidently found aqueous two-phase affinity partitioning (ATPAP) are the ATPS while mixing an aqueous solution of starch referred to an excellent review by Ruiz-Ruiz et al. [6]. and gelatin. However, its real application was discovered Water as the main component of both phases in ATPS by Per-Åke Albertsson.
    [Show full text]
  • What Can Cell Culture Flocculation Offer for Antibody Purification Processes
    Editorial 2 Editorial What can cell culture flocculation offer for antibody purification processes “The eventual goal of the application of flocculation in monoclonal antibody processing is to develop a separation unit operation alternative to chromatography, with equivalent separation efficiency, Pharm. Bioprocess. high process capacity, good facility fit and sound process economics.” Keywords: antibody • flocculation • harvest • impurity removal • purification Recent advances in cell culture processes solid content with wide particle distribution Yun (Kenneth) Kang have significantly increased monoclonal anti- and a high percentage of small particles fur- Author for correspondence: body (mAb) titers to levels as high as 30 g/l. ther complicate the harvest unit operation, BioProcess Sciences, Eli Lilly Not unexpectedly, these improvements have requiring significantly higher depth filter & Company, 450 East 29th Street, New York, NY 10016, USA resulted in a new set of starting conditions surface area which may exceed the existing [email protected] for downstream processing, including: ele- filtration train capacity. Harvest operations vated cell density levels (up to 108 cells/ml), have become extremely challenging, if not Dale L Ludwig BioProcess Sciences, Eli Lilly increased solid content (packed cell volume, impossible because of these issues. & Company, 450 East 29th Street, up to 40%) and increased soluble impurity Flocculation has been widely used for New York, NY 10016, USA levels such as host cell proteins (HCP) and many years in the chemical and food indus- Paul Balderes high molecular weight species (HMW; up tries, as well as in wastewater treatment. In BioProcess Sciences, Eli Lilly to 40%) [1–4] . New advances in mAb down- recent years, flocculation-based pretreatment & Company, 450 East 29th Street, stream processing are critically needed, in of cell cultures to circumvent both harvest New York, NY 10016, USA order to meet the significant challenges posed and purification issues experienced in mAb by increased cell culture productivity.
    [Show full text]
  • Downstream Processing
    Chapter 11 Downstream Processing ©2016 Montgomery County Community College Objectives This chapter provides an overview of downstream processing. After completing this chapter, students will be able to: . Describe the general elements of the downstream purification process for a typical monoclonal antibody-based therapeutic, starting with the bioreactor harvest pool and finishing with pre-formulation, pure drug product. Explain the overall goals of the purification process from the standpoint of purity, yield, and efficiency as well as the general strategies employed to achieve these goals. Define the specific methods and in-process tools and materials used in typical steps of the downstream process and the purposes and physical/chemical mechanisms occurring at each step, including: – clarification of the bioreactor harvest by depth filtration and/or centrifugation – capture chromatography for product concentration and initial purification – ultrafiltration and diafiltration of the product at various stages in the downstream process – intermediate purification chromatography steps – final polishing chromatography steps . Describe general economic factors contributing to the cost of goods produced and common considerations/strategies for optimizing and improving those process economics. Classify specific departmental contributions to the ongoing operation and maintenance of the downstream unit operations within a facility. 424 Chapter 11 - Downstream Processing Terms Capture/recovery: the rapid separation of the product of interest from
    [Show full text]
  • Development of Aqueous Two-Phase Separations by Combining High-Throughput Screening and Process Modelling
    Development of aqueous two-phase separations by combining high-throughput screening and process modelling A thesis submitted to University College London for the degree of DOCTOR OF ENGINEERING by Nehal Patel Friday 21st July 2017 The Advanced Centre for Biochemical Engineering Department of Biochemical Engineering University College London Gower Street, London, WC1E 6BT, UK 1 I, Nehal Patel, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract Separation based on aqueous two-phase extraction (ATPE) is a promising downstream separation technology for the production of biological products. The advantages of using aqueous two-phase systems include but are not limited to easy scalability, ease of continuous operation and a favourable environment for biological compounds. One of the main challenges associated with aqueous two-phase systems is process development. This is in part due to the many factors which influence the separation of biological materials in such systems such as polymer and salt type, pH and charge. The large number of factors to consider makes the development of aqueous two-phase systems challenging due to the need to find a robust and efficient separation in a large experimental space. This work addresses this issue by considering the use of dynamic process models and high-throughput experimentation for the development of aqueous two-phase extraction processes for biological products. The use of a dynamic equilibrium stage process model to simulate aqueous two-phase extraction is considered in Chapter 3. The process model is capable of simulating various modes of operation; and both multi-cycle batch and continuous counter-current modes of operation are considered.
    [Show full text]
  • 4 Down Stream Processing
    4 DOWN STREAM PROCESSING 4.1 INTRODUCTION Industrial fermentations comprise both upstream (USP) and downstream processing (DSP) stages (Fig. 4.1). USP involves all factors and processes leading to and including the fermentation and consists of three main areas: the producer organism, the medium and the fermentation process. DSP encompasses all processes following the fermentation. In most cases this means recovery of a product from a dilute aqueous solution. The complexity of DSP is determined by the required purity of the product which is in turn determined by its application. The products of biotechnology include whole cells, organic acids, amino acids, solvents, antibiotics, industrial enzymes, therapeutic proteins, vaccines, gums etc. The primary objective in industrial fermentation processes is to recover the product efficiently, reproducibly and safely to its required specification, while achieving maximum product yield at minimum recovery costs. Fermentation factors affecting DSP include the properties of the microorganisms (particularly morphology, flocculation characteristics, size & cell wall rigidity). These factors impact filterability, sedimentation and homogenization efficiency. The presence of fermentation by- products, media impurities & additives like antifoam may interfere with DSP steps. Therefore, a holistic approach is required when developing a new industrial purification strategy. The whole process, both upstream & downstream factors need to be considered, e.g., a cheap carbon and energy source containing many impurities may provide initial cost savings but may necessitate increased DSP costs. Hence overall cost savings may be achieved with a more expensive but purer substrate. As the products vary greatly in size and nature, different separation techniques are required for their recovery & purification. The lability or sensitivity of many of the bioproducts, particularly proteins, to the environmental conditions, places further demands on the characteristics of the separation processes used for their production.
    [Show full text]
  • 1. Introduction to Expanded Bed Adsorption
    1. Introduction to Expanded Bed Adsorption This handbook introduces the principles of Expanded Bed Adsorption and serves as a practical guide to the use of STREAMLINE adsorbents and columns available from Pharmacia Biotech. Critical operating parameters will be discussed as well as principles for method design and optimization that will ensure maximum exploitation of this unique unit operation. The handbook is illustrated with examples of the different types of biological molecules which have been purified using Expanded Bed Adsorption. The majority of biotechnology processes for producing pharmaceutical or diagnostic products involve the purification of proteins and peptides from a variety of sources. Those include bacteria, yeast and mammalian cell culture fluids, or extracts from naturally occurring tissue. Typically, such purification schemes contain multiple unit operations, including a number of chromatographic steps to ensure the safe removal of critical impurities and contaminants. The type of product produced and its intended use will dictate the extent of purification needed. Each step in the recovery process will affect the overall process economy by increasing operational cost and process time, and also by causing loss in product yield. Careful selection and combination of suitable unit operations during the design phase may reduce the number of steps needed. To design-in the fewest possible processing steps thus offers the most efficient way of reaching high process economy in the overall production process. The initial purification of the target molecule has traditionally been addressed by adsorption chromatography using a conventional packed bed of adsorbent. This necessitates clarification of the crude feed before application to the chromatography column.
    [Show full text]
  • Overview of Upstream and Downstream Processing of Biopharmaceuticals
    Overview of Upstream and Downstream Processing of Biopharmaceuticals Ian Marison Professor of Bioprocess Engineering and Head of School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland E-mail: [email protected] 1 Outline of presentation • Introduction- what is a bioprocess? • Basis of process design • Upstream processing – Batch, fed -batch, continuous, perfusion • Downstream processing – Philosophy – Chromatography – Examples • Conclusions 2 What is a bioprocess? • Application of natural or genetically manipulated (recombinant) whole cells/ tissues/ organs, or parts thereof, for the production of industrially or medically important products • Examples – Agroalimentaire: food/ beverages – Organic acids and alcohols – Flavours and fragrances – DNA for gene therapy and transient infection – Antibiotics – Proteins (mAbs, tPA, hirudin, Interleukins, Interferons, enzymes etc) – Hormones (insulin, hGH,EPO,FSH etc) 3 Aims of bioprocesses • To apply and optimize natural or artificial biological systems by manipulation of cells and their environment to produce the desired product, of the required quality. • Molecular biology (genetic engineering) is a tool to achieve this • Systems used include: – Viruses – Procaryotes (bacteria, blue- green algae, cyanobateria) – Eucaryotes (yeasts, molds, animal cells, plant cells, whole plants, whole animals, transgenics) 4 Importance of process development ‘ Advances in genetic engineering have, over the past two decades, generated a wealth of novel molecules that have redefined the role
    [Show full text]
  • The Effect of Operating Parameters and Matrix Properties on the Productivity of an Expanded Bed Adsorption Column
    THE EFFECT OF OPERATING PARAMETERS AND MATRIX PROPERTIES ON THE PRODUCTIVITY OF AN EXPANDED BED ADSORPTION COLUMN A thesis submitted for the degree of ENGINEERING DOCTORATE by Philippa Jola Gardner September 2005 The Advanced Centre for Biochemical Engineering Department of Biochemical Engineering University College London Torrington Place London WC1E 7JE UMI Number: U592018 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U592018 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 A b s t r a c t Expanded bed adsorption (EBA) combines clarification, concentration and purification into a single processing step reducing processing time and increasing productivity. Much work has been conducted on model proteins but little attention has been paid to the emerging issues of tailoring the operational variables of matrix size, operating flowrate and ligand type so as to maximise process outputs. The aims of this study were to investigate the effects of matrix properties and operating parameters on breakthrough behaviour and productivity. Second generation matrices designed to operate at high flowrates were also examined. Operating at low velocities, beds formed from smaller particles had a shallower breakthrough than beds formed from large particles but the latter were more productive.
    [Show full text]
  • Trends in Upstream and Downstream Process Development for Antibody Manufacturing
    Bioengineering 2014, 1, 188-212; doi:10.3390/bioengineering1040188 OPEN ACCESS bioengineering ISSN 2306-5354 www.mdpi.com/journal/bioengineering Review Trends in Upstream and Downstream Process Development for Antibody Manufacturing Petra Gronemeyer, Reinhard Ditz and Jochen Strube * Institute for Separation and Process Technology, Clausthal University of Technology, Leibnizstraße 15, D-38678 Clausthal-Zellerfeld, Germany; E-Mails: [email protected] (P.G.); [email protected] (R.D.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-5323-722200; Fax: +49-5323-723570. External Editor: Christoph Herwig Received: 1 August 2014; in revised form: 12 September 2014 / Accepted: 29 September 2014 / Published: 1 October 2014 Abstract: A steady increase of product titers and the corresponding change in impurity composition represent a challenge for development and optimization of antibody production processes. Additionally, increasing demands on product quality result in higher complexity of processes and analytics, thereby increasing the costs for product work-up. Concentration and composition of impurities are critical for efficient process development. These impurities can show significant variations, which primarily depend on culture conditions. They have a major impact on the work-up strategy and costs. The resulting “bottleneck” in downstream processing requires new optimization, technology and development approaches. These include the optimization and adaptation of existing unit operations respective to the new separation task, the assessment of alternative separation technologies and the search for new methods in process development. This review presents an overview of existing methods for process optimization and integration and indicates new approaches for future developments.
    [Show full text]
  • Sample Preparation Product Catalog
    Sample Preparation Product Catalog Chromatography Sample Dialysis Equilibrium Dialysis Electrodialysis Sample Filtration www.harvardapparatus.com Easy-to-Use Quick Start Guides Complete with assembly diagrams, step-by-step instructions, and related product ordering information. Hard copypreparation included with product every shipment. QuikPrep sample Apparatus website. AvailableHarvard for electronic download from the www.harvardapparatus.com/manualsUltra-Micro DispoDialyzer (1 to 5 µl Sample Volume) 96-Well ™ ™ SpinColumnsQuick Start Guide DispoEquilibrium(25 to 150 Dialyzer μl) (25 to 75 μl Sample Volume) ™ Macro Quick Start TheGuide Ultra-Micro DispoDialyzer is a disposable (single-use SpinColumnsl SampleQuick Volume) Start Guide only) dialyzer for the processing of extremely small samples ™μ from 1 µl to 5 µl. Dialysis is carried out inside a micro centrifuge tube. (75 to 150 Sample recovery is easy with almost 100% sample recovery. Membranes are preinstalled with molecular weight cut offs Description Instructions For Silica Columns: from 1,000 to 50,000 Daltons. The Ultra-Micro DispoDialyzer 96-Well SpinColumns bringcomes speed with and two simplicity1. 1.5 Place ml 25capped to µl to 75µlmicro of centrifuge buffer intoa) Pipette collection one chamber 200 μl of of organic the solvent into open wells. tubes—one for theDispoEquilibrium dialysis and one Dialyzer for collection using the special pipette tips Quick StartDescription Guide high-throughput micro-sample preparation. Both Micro b) Centrifuge for 2 minutes at provided. The DispoEquilibrium DialyzerSpinColumns allows for and equilibriumInstructions Macro SpinColumns dialysis are suitable for 2000 x g to equilibrate. Note: Hold DispoEquilibrium Dialyzer at slightly less than of samples from 25 µl to 75automation µl with a built-inand available1.
    [Show full text]