Downstream Processing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1. Define: Unit Operation. Useful Physical Changes Occur in the Chemical Industry Is Known As a Unit Operation
INTREVIEW QUESTIONS 1. Define: Unit operation. Useful Physical changes occur in the chemical industry is known as a Unit Operation. Example: Distillation, Filtration, Drying, Extraction, Gas absorption, Crystallization, etc. 2. Define: Unit process. Useful Chemical changes with or without physical change occur in chemical industry are known as a Unit Process. Example: - Oxidation, Reduction, Alkylation, Sulfonation, Chlorination, etc. 3. Define: Boiling Point and Bubble Point. Boiling Point: -It is a temperature of a liquid at which the vapour pressure of the liquid is equal to atmospheric pressure. Bubble Point: -It is a temperature at which first bubble of vapour is formed. 4. When does liquid boil? When the vapour pressure of the liquid is equal to atmospheric pressure at that time liquid is boil. 5. Define: - Volatile Liquid. It is a tendency of a liquid to vaporize. 6. Acetone and water out of this which is more volatile and why? Acetone is more volatile than water because of boiling point of acetone (56.7 °C) is low compa re to boiling point of water (100° C) 7. What is the Relative Volatility? It is a ratio of concentration of more volatile component in vapour phase to liquid phase is called Relative Volatility 8. What is important of Relative Volatility? For separation of liquid mixture using distillation, Relative volatility should be more than 1. 9. Why is Reflux done in distillation column? and Define Reflux Ratio. For Increasing product purity. Reflux: -It is amount of distillate which is resend to distillation column is known as a reflux. Reflux Ratio: -Reflux ratio is the ratio of the portion of the overhead liquid product from a distillation column that is returned to the upper part of column to the portion of liquid collected as distillate. -
Biomanufacturing Technology Roadmap
©BioPhorum Operations Group Ltd SUPPLY PARTNERSHIP MANAGEMENT BIOMANUFACTURING TECHNOLOGY ROADMAP SUPPLY PARTNERSHIP MANAGEMENT BPOG Technology Roadmap 1 ©BioPhorum Operations Group Ltd SUPPLY PARTNERSHIP MANAGEMENT Acknowledgments The following member company participants are acknowledged for their efforts and contributions in the production of this roadmap document. (* indicates non-member contributor) AstraZeneca Merck & Co. Inc., Kenilworth, NJ, USA Merck KGaA, Darmstadt, Germany Mike Kinley Adam Randall Kendall Nichols Bayer Pfizer Asahi Kasei Bioprocess Edgar Sur Jennifer Johns Kimo Sanderson Biogen Roche Thermo Fisher Scientific Dave Kolwyck Freia Funke Steve Gorfien Rhea Mahabir GSK Shire Iris Welch Alan Glazer BioPhorum Operations Group Mike McSweeney Alfred Keusch Bob Brooks Bela Green Janssen Avantor* Chris Calabretta Dave Lescinski* BPOG Technology Roadmap 2 ©BioPhorum Operations Group Ltd SUPPLY PARTNERSHIP MANAGEMENT Contents 1 Summary ..............................................................................................................................................................................................................5 2 Introduction .........................................................................................................................................................................................................6 2.1 Vision ....................................................................................................................................................................................................................................6 -
Rapid Vaccine Development & Biomanufacturing Using a Scalable
Rapid Vaccine Development & Biomanufacturing Using a Scalable, Non-viral Delivery Platform for Cell Engineering. James Brady, Weili Wang, Rama Shivakumar, Pachai Natarajan, Krista Steger, and Madhusudan Peshwa. MaxCyte, Gaithersburg, MD, USA. Abstract Researchers have looked to recombinant technologies to develop innovative types of vaccines and new cell culture-based means of production that offer shorter lead times and greater production flexibility while High Level Cell Viability and Transfection maintaining vaccine safety. Transient transfection offers a means of rapidly producing an array of proteins, Efficiencies including antibodies, vaccines, viral vectors, and virus-like particles (VLPs). Although a variety of transient transfection methods are available, most do not meet the requirements of scalability, consistency, and cell Figure 1. High Efficiency Transfection of Cell Types type flexibility for use in vaccine development and manufacturing. MaxCyte’s electroporation-based delivery Commonly Used for Protein and Vaccine Production. platform reproducibly transfects a broad range of biorelevant adherent and suspension cell types with high Various cells were transfected with 2 µg/1E6 cells of pGFP cell viabilities & transfection efficiencies using single-use processing assemblies for cGMP, “plug-and-play” DNA using the appropriate MaxCyte STX protocol. Cells production of recombinant proteins and vaccines. In this poster we present data for large-scale production were examined for GFP expression using fluorescence microscopy 24 hrs post electroporation (EP). of antibodies, recombinant antigens, VLPs, and lentiviral vectors using the MaxCyte STX® Scalable Transfection System. Data are presented for high-efficiency transfection of cells commonly used in protein production including CHO, HEK293, and insect cells--without the use of baculovirus--with a timeline of just a few days from plasmid to gram quantities of protein. -
Bioprocessing Asia 2018 Programme and Abstract Book
BPA BioProcessing Asia BioProcessing Asia 2018 Programme and Abstract Book Third International Conference LANGKAWI, MALAYSIA, 12–15 NOVEMBER 2018 Contents General Information 4 The BioProcessing Asia Conference Series 7 Scientific Advisory Committee 8 Sponsors 10 Programme 18 Poster list 24 Abstracts 26 Session 1 27 Session 2 30 Session 3 33 Session 4 37 Session 5 41 Session 6 45 Poster Session 7 49 Welcome to the Third International BioProcessing Asia Conference at the Langkawi International Convention Centre, Langkawi, Malaysia It is a great pleasure to welcome you to the third meeting in the BioProcessing Asia Conference Series. This Conference continues the trend set by the two previous BPA conferences in 2014 and 2016 in exploring themes and topics focused on the contribution of bioprocessing towards the development and manufacture of affordable biopharmaceutical products in Asia. Of particular importance at this conference is the contribution made by our Scientific Advisory Committee on the identification of specific current trends in the field. This input has led to the selection of six Oral Sessions that cover important aspects of bioprocessing ranging from disease treatments, innovations in technology, vaccine design and development, the changing environment of plasma products, disruptive manufacturing strategies and the evolving regulatory environment in Asia. These topics are further developed and explored in the Poster Session where, as in the past, more detailed discussions and the exploration of ideas without the usual constraints of time can be pursued. We are fortunate to have attracted several outstanding Keynote and Focus lecturers to the meeting including Dr Ashok Kumar, President of IPCA Ltd’s R&D Centre in Mumbai and Dr Subash Kapre, Director Emeritus at the Serum Institute of India and from Inventprise, USA, who, together with the distinguished Session Chairs will set the tone and lead the discussions on salient areas of bioprocessing. -
Scale and High-Quality Human T Cells Production Jianfa Ou1, Yingnan Si1, Yawen Tang1, Grace E
Ou et al. Journal of Biological Engineering (2019) 13:34 https://doi.org/10.1186/s13036-019-0167-2 RESEARCH Open Access Novel biomanufacturing platform for large- scale and high-quality human T cells production Jianfa Ou1, Yingnan Si1, Yawen Tang1, Grace E. Salzer1, Yun Lu1, Seulhee Kim1, Hongwei Qin2, Lufang Zhou3 and Xiaoguang Liu1* Abstract The adoptive transfer of human T cells or genetically-engineered T cells with cancer-targeting receptors has shown tremendous promise for eradicating tumors in clinical trials. The objective of this study was to develop a novel T cell biomanufacturing platform using stirred-tank bioreactor for large-scale and high-quality cellular production. First, various factors, such as bioreactor parameters, media, supplements, stimulation, seed age, and donors, were investigated. A serum-free fed-batch bioproduction process was developed to achieve 1000-fold expansion within 8 days after first stimulation and another 500-fold expansion with second stimulation. Second, this biomanufacturing process was successfully scaled up in bioreactor with dilution factor of 10, and the robustness and reproducibility of the process was confirmed by the inclusion of different donors’ T cells of various qualities. Finally, T cell quality was monitored using 12 surface markers and 3 intracellular cytokines as the critical quality assessment criteria in early, middle and late stages of cell production. In this study, a new biomanufacturing platform was created to produce reliable, reproducible, high-quality, and large-quantity (i.e. > 5 billion) human T cells in stirred-tank bioreactor. This platform is compatible with the production systems of monoclonal antibodies, vaccines, and other therapeutic cells, which provides not only the proof-of-concept but also the ready-to-use new approach of T cell expansion for clinical immune therapy. -
MATERIAL BALANCE NOTES Revision 3 Irven Rinard Department
MATERIAL BALANCE NOTES Revision 3 Irven Rinard Department of Chemical Engineering City College of CUNY and Project ECSEL October 1999 © 1999 Irven Rinard CONTENTS INTRODUCTION 1 A. Types of Material Balance Problems B. Historical Perspective I. CONSERVATION OF MASS 5 A. Control Volumes B. Holdup or Inventory C. Material Balance Basis D. Material Balances II. PROCESSES 13 A. The Concept of a Process B. Basic Processing Functions C. Unit Operations D. Modes of Process Operations III. PROCESS MATERIAL BALANCES 21 A. The Stream Summary B. Equipment Characterization IV. STEADY-STATE PROCESS MODELING 29 A. Linear Input-Output Models B. Rigorous Models V. STEADY-STATE MATERIAL BALANCE CALCULATIONS 33 A. Sequential Modular B. Simultaneous C. Design Specifications D. Optimization E. Ad Hoc Methods VI. RECYCLE STREAMS AND TEAR SETS 37 A. The Node Incidence Matrix B. Enumeration of Tear Sets VII. SOLUTION OF LINEAR MATERIAL BALANCE MODELS 45 A. Use of Linear Equation Solvers B. Reduction to the Tear Set Variables C. Design Specifications i VIII. SEQUENTIAL MODULAR SOLUTION OF NONLINEAR 53 MATERIAL BALANCE MODELS A. Convergence by Direct Iteration B. Convergence Acceleration C. The Method of Wegstein IX. MIXING AND BLENDING PROBLEMS 61 A. Mixing B. Blending X. PLANT DATA ANALYSIS AND RECONCILIATION 67 A. Plant Data B. Data Reconciliation XI. THE ELEMENTS OF DYNAMIC PROCESS MODELING 75 A. Conservation of Mass for Dynamic Systems B. Surge and Mixing Tanks C. Gas Holders XII. PROCESS SIMULATORS 87 A. Steady State B. Dynamic BILIOGRAPHY 89 APPENDICES A. Reaction Stoichiometry 91 B. Evaluation of Equipment Model Parameters 93 C. Complex Equipment Models 96 D. -
So, What Is Biomanufacturing?
Bioscience Industry Fellowship Project 2014 Presentations S Table of Contents Example of Course Development for STEM Slides 3-14 Community College Instructors Heather King; Igor Kreydin What does “Boot Camp” mean? Slides 15-61 Julie Ellis; Ezekiel Barnes Recruitment Plan for Biosciences Slides 62-66 Scott Gevart; Daymond Lindell Bioscience Awareness: Using what we know to Slides 67-93 build for tomorrow’s sustainability Savitha Pinnepalli; Jude Okoyeh BIOSCIENCES INDUSTRY FELLOWSHIP PROGRAM JUNE 2-27, 2014 Example of Course Development for STEM Community College Instructors (Based on BIFP Experience) Heather King Igor Kreydin Developmental Math Instructor STEAM Instructor Forsyth Technical Community College, NC Roxbury Community College, MA [email protected] [email protected] Modern Industry 2012 Educational Profile for Biotechnology Employees in NC High School 4% High School plus Certificate 10% 17% Associates in Science or 13% Associates in Applied Science Bachelor of Arts or Science 43% 13% Master of Arts or Science Doctorate NCGE-North Carolina in the Global Economy Project, http://www.ncglobaleconomy.com/NC_GlobalEconomy/biotechnology/overview.shtml In every math class you will hear … Why do I need to know this? When will I ever use this? In every science class you will hear … Did I learn how to do this in my math class? Don’t Let Your Students Get Stuck Here. Make Math Relevant! Basic Mathematical Concepts Equations Proportions Ratios of Lines Percents Exponents Basic Biotechnology Solving Equations Statistics Applications Graphs Fractions Scientific Formulas Conversions Notation Expressions, Linear Equations & Inequalities Dilutions of Solutions Forsyth Technical Community College Suppose you have a stock TGS electrophoresis buffer solution that is used in a protein profiler investigation of fish. -
Careers in Biomanufacturing
mapping your future: EXPLORING CAREERS IN BIOMANUFACTURING An Educational Module for Middle School and High School Teachers and Students Prepared by the North Carolina Association for Biomedical Research under contract with the North Carolina Biotechnology Center July 2006 mapping your future: EXPLORING CAREERS IN BIOMANUFACTURING This educational module was prepared by: The North Carolina Association for Biomedical Research (NCABR) P.O. Box 19469 Raleigh, NC 27619-9469 919-785-1304 http://www.ncabr.org Contact NCABR to obtain additional copies. © 2006 North Carolina Association for Biomedical Research. All rights reserved. mapping your future: EXPLORING CAREERS IN BIOMANUFACTURING ACKNOWLEDGEMENTS INTRODUCTION UNIT I: BIOTECHNOLOGY AND ITS APPLICATIONS A. What is Biotechnology? . 4 B. Biotechnology Timeline. 5 Student Activity: Biotech Timeline . 7 C. Practical Applications of Biotechnology . 12 Student Activity: Create a Logo. 18 Student Activity: Make a Yeast Incubator . 20 Student Activity: DNA Extraction From Yeast . 24 UNIT II: FROM LAB TO MARKET: DRUG DISCOVERY AND MANUFACTURING A. How a New Drug Gets to Market — An Overview . 28 B. Clinical Trials — A Closer Look . 29 C. The Pharmaceutical and Biopharmaceutical Industries — Regulated for Safety and Quality. 31 Student Activity: New Drug Development . 33 D. Producing a Pharmaceutical or Biopharmaceutical — The Manufacturing Process. 38 E. What Quality Means and Why It Matters . 39 F. Standard Operating Procedure (SOP) and Regulations . 41 Student Activity: Say What You Do and Do What You Say. 42 UNIT III: BIOMANUFACTURING CAREER OPPORTUNITIES A. Biotechnology Generates Opportunities . 48 B. Seizing the Opportunity . 49 C. On the Job — Typical Biomanufacturing Job Positions . 50 Student Activity: A Day in the Life of Six Biomanufacturing Employees . -
Unit Operations for Bioprocess Engineers
Unit Operations for Bioprocess Engineers Chenming (Mike) Zhang Department of Biological Systems Engineering Virginia Polytechnic Institute and State University Blacksburg, VA 24061 Abstract Unit Operations in Biological Systems Engineering was introduced into the curriculum at Virginia Tech in 2000. It is a lecture and laboratory combined course. The lectures and experiments covered in the course had a narrow focus before the author took over in 2002. To broaden the education for students selecting the Bioprocess Engineering option within the curriculum, the author has revised the content of the course to give the students an opportunity to understand that different unit operations can be applied in various industries, namely food, biochemical, and biotechnology. The experiments have been decreased from 14 to 8 so the students could have a better grasp of the theories and applications. Students’ responses showed that it is important to design the experiments in a way to stimulate their desire to learn and perform. The author found that it is possible to give the students a better view of the various unit operations in bioprocess engineering. Page 9.1342.1 Page 1 Introduction As defined by Shuler and Kargi (2002), “Bioprocess engineers are engineers working to apply the principles of various disciplines, such as chemical, mechanical, electrical, and industrial, to processes based on using living cells or subcomponents of such cells.” In other words, bioprocess engineers are engineers who process biological materials to produce useful goods for society. Without question, bioprocess engineering is a broad-based engineering discipline. As educators, it is our job to broaden the view of the students, so they can take advantage of numerous, diverse job opportunities presented to them when they finish their BS degree. -
A Breakthrough High-Performance Viral Vaccines Biomanufacturing Platform to Countermeasure Epidemic Threats
A breakthrough high-performance viral vaccines biomanufacturing platform to countermeasure epidemic threats Webinar Dr. Tania Pereira Chilima, deputy CTO Brussels, May 2020 ©2020 Univercells Technologies. All Rights reserved The next evolution of biomanufacturing Univercells Technologies designs and delivers state-of-the-art high- performance, scalable bioproduction technologies for viral products Univercells Technologies genesis 2013 2020 Mission Make biologics affordable Design and deliver the next evolution and available to all! of biomanufacturing History > Created in 2013 in Belgium > Univercells subsidiary created in 2020 > Capitalizing on unmatched bioprocessing > Revolutionizing bioprocess by commercializing and engineering expertise next generation viral manufacturing technologies Focus > Offering technologies, services and > Intensification of high-performance operations & turnkey solutions to alleviate the chaining of unit steps into an integrated process industry’s current shortfall in supply of cell > Key assets: NevoLine™ platform & scale-X™ and gene therapies, vaccines and bioreactor biotherapeutics Source: Univercells Technologies ©2020 Univercells Technologies. All Rights reserved 2 Univercells technologies capitalizes on a strong team of experts and a global footprint for equipment dissemination and client support Capabilities Engineers and and expertise 60+ process specialists Employees R&D > Assembly, manufacturing > Validation (FAT) Engineering services > Supply and Logistics for installation, training and maintenance -
Making Downstream Processing Continuous and Robust a Virtual Roundtable S
BIOPROCESS TECHNICAL Making Downstream Processing Continuous and Robust A Virtual Roundtable S. Anne Montgomery, Cheryl Scott, and Peter Satzer, with Margit Holzer, Miriam Monge, Ralph Daumke, and Alexander Faude urrent biomanufacturing is driven to pursue continuous processing for cost reduction and increased productivity, Cespecially for monoclonal antibody (MAb) production and manufacturing. Although many technologies are now available and have been implemented in biodevelopment, implementation for large-scale production is still in its infancy. In a lively roundtable discussion at the BPI West conference in Santa Clara, CA (11 March 2019), participants touched on a number of important issues still to be resolved and technologies that are still in need of implementation at large scale. Below, moderator Peter Satzer (senior scientist RENTSCHLER BIOPHARMA (WWW.RENTSCHLER-BIOPHARMA.COM) with the Austrian Center of Industrial Biotechnology, Vienna) summarizes key points raised in that session. Based on Requirements for integration without the need for hold his highlights, BPI asked a number of Continuous Downstream tanks between unit operations requires industry representatives to comment on further exploration. those points further, and their Applications Chromatography Operations: Some responses follow. by Peter Satzer unit operations such as flow-through chromatography and single-pass, Minimizing Buffer and Hold Tanks: One tangential-flow filtration (SPTFF) can be critical parameter is integration of unit integrated easily into a continuous Product Focus: Biologics operations on manufacturing shop downstream process scheme at any floors using minimum numbers of point because they offer constant inflow Process Focus: Downstream buffer tanks and hold tanks. The benefit and outflow of material. Such operations processing of continuous manufacturing can be can be called truly or fully continuous. -
Ac 2011-1640: Unit Operations Lab Bazaar
AC 2011-1640: UNIT OPERATIONS LAB BAZAAR Michael E Prudich, Ohio University Mike Prudich is a professor in the Department of Chemical and Biomolecular Engineering at Ohio Uni- versity were he has been for 27 years. Prior to joining the faculty at Ohio University, he was a senior research engineering at Gulf Research and Development Company in Pittsburgh, PA primarily working in the area of synthetic fuels. Daina Briedis, Michigan State University DAINA BRIEDIS is a faculty member in the Department of Chemical Engineering and Materials Science at Michigan State University. Dr. Briedis has been involved in several areas of education research includ- ing student retention, curriculum redesign, and the use of technology in the classroom. She is a co-PI on two NSF grants in the areas of integration of computation in engineering curricula and in developing comprehensive strategies to retain early engineering students. She is active nationally and internationally in engineering accreditation and is a Fellow of ABET. Robert Y. Ofoli, Michigan State University ROBERT Y. OFOLI is an associate professor in the Department of Chemical Engineering and Materi- als Science at Michigan State University. He has had a long interest in teaching innovations, and has used a variety of active learning protocols in his courses. His research interests include biosensors for biomedical applications, optical and electrochemical characterization of active nanostructured interfaces, nanocatalytic conversion of biorenewables to commodity chemicals and fuels, and nanoscale production of hydrogen on demand. Robert B. Barat, New Jersey Institute of Technology Robert Barat is a Professor of Chemical Engineering at NJIT, where he has been a faculty member for over 20 years.