Detection of <I>Alicyclobacillus</I> Species in Fruit Juice Using a Random Genomic DNA Microarray Chip

Total Page:16

File Type:pdf, Size:1020Kb

Detection of <I>Alicyclobacillus</I> Species in Fruit Juice Using a Random Genomic DNA Microarray Chip 933 Journal of Food Protection, Vol. 74, No. 6, 2011, Pages 933–938 doi:10.4315/0362-028X.JFP-10-418 Copyright G, International Association for Food Protection Detection of Alicyclobacillus Species in Fruit Juice Using a Random Genomic DNA Microarray Chip JUN HYEONG JANG, SUN-JOONG KIM, BO HYUN YOON, JEE-HOON RYU, MAN BOCK GU, AND HYO-IHL CHANG* College of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea MS 10-418: Received 27 September 2010/Accepted 9 February 2011 Downloaded from http://meridian.allenpress.com/jfp/article-pdf/74/6/933/1685326/0362-028x_jfp-10-418.pdf by guest on 28 September 2021 ABSTRACT This study describes a method using a DNA microarray chip to rapidly and simultaneously detect Alicyclobacillus species in orange juice based on the hybridization of genomic DNA with random probes. Three food spoilage bacteria were used in this study: Alicyclobacillus acidocaldarius, Alicyclobacillus acidoterrestris, and Alicyclobacillus cycloheptanicus. The three Alicyclobacillus species were adjusted to 2 | 103 CFU/ml and inoculated into pasteurized 100% pure orange juice. Cy5-dCTP labeling was used for reference signals, and Cy3-dCTP was labeled for target genomic DNA. The molar ratio of 1:1 of Cy3-dCTP and Cy5-dCTP was used. DNA microarray chips were fabricated using randomly fragmented DNA of Alicyclobacillus spp. and were hybridized with genomic DNA extracted from Bacillus spp. Genomic DNA extracted from Alicyclobacillus spp. showed a significantly higher hybridization rate compared with DNA of Bacillus spp., thereby distinguishing Alicyclobacillus spp. from Bacillus spp. The results showed that the microarray DNA chip containing randomly fragmented genomic DNA was specific and clearly identified specific food spoilage bacteria. This microarray system is a good tool for rapid and specific detection of thermophilic spoilage bacteria, mainly Alicyclobacillus spp., and is useful and applicable to the fruit juice industry. Alicyclobacillus spp. are acidophilic, thermophilic detection methods require extensive amounts of genetic sporeformers commonly found in acidic fruit juices. They information for spoilage microbes and cannot detect many cause a sour taste and a bad smell and are known to be the spoilage bacteria simultaneously (5, 7, 8, 13). Therefore, main cause of lowered quality in fruit juice (3). Since food there is a critical need for an advanced diagnostic system contains a variety of nutrients, microbial growth can lead to that can rapidly and simultaneously detect various types of adverse changes in taste, smell, and color that negatively food spoilage bacteria. impact food quality. Since information on the genome sequence for specific Spoilage bacteria that form heat-resistant spores can microorganisms that cause food decomposition and poor germinate and grow in industrially sterilized fruit juice, food quality is not always available, genomic DNA from posing a serious threat to the beverage industry. pure cultures and random genomic DNA libraries can be The representative spoilage bacteria Alicyclobacillus built. The DNA chip is made as a product of that library. spp. was first identified in 1971 (6) and was later found to With random priming, hybridization detection of a specific be the cause of decreasing quality in various foods including microorganism can be confirmed (9). As such, DNA fruit juice, ice tea, and canned tomatoes. Classical detection microarray technology can be useful for detecting and methods for spoilage bacteria in various foods are based on analyzing specific microorganisms in foods. the results from enrichment, microscopic observations, and In this study, we developed a DNA chip to detect and biochemical assays. These procedures have several limita- identify Alicyclobacillus spp. A DNA chip containing tions, such as long culture time, dependency on enrichment randomly fragmented genomic DNA of Alicyclobacillus and selective culture, and difficulties in simultaneous spp. was fabricated and assessed for its ability to distinguish detection of spoilage bacteria. Alicyclobacillus spp. from other strains and other bacteria To overcome these problems, molecular-based methods such as Bacillus spp. such as real-time PCR and immunoassay have been developed. These methods offer specificity and high MATERIALS AND METHODS affinity, depending on target genes of specific spoilage Bacterial strains and isolation of genomic DNA. Alicyclo- bacteria. Although these molecular-based methods or bacillus acidocaldarius (ATCC 43030, 27009), Alicyclobacillus immunoassays can shorten the detection time, they also acidoterrestris (ATCC 49025, 49027), and Alicyclobacillus have several drawbacks. For example, real-time PCR cycloheptanicus (ATCC 49029, 49028) were obtained from the American Type Culture Collection (ATCC; Manassas, VA) and grown in ATCC medium 573, 1655, and 1656, respectively, * Author for correspondence. Tel: 82-2-3290-3421; according to the manufacturer’s instructions. Bacillus subtilis E-mail: [email protected]. ATCC 6633 and Bacillus cereus F3812 strains were also used. 934 JANG ET AL. J. Food Prot., Vol. 74, No. 6 FIGURE 1. Schematic of nonsequenced random genomic DNA probes for three different Alicyclobacillus species. All probes were spotted in duplicate. Downloaded from http://meridian.allenpress.com/jfp/article-pdf/74/6/933/1685326/0362-028x_jfp-10-418.pdf by guest on 28 September 2021 Pasteurized 100% pure orange juice was purchased from a genes were prepared by RT-PCR from AGS cancer cell RNA with local grocer. One liter of orange juice was filtered through a 0.45- primers 59-cattctggcccaccaactttgg-39 and 59-tggagatgcaggctc- mm-pore-size membrane filter under vacuum, after which 5 ml each cactttg-39 (Fig. 1). of A. acidocaldarius (ATCC 43030), A. acidoterrestris (ATCC 49025), and A. cycloheptanicus (ATCC 49029) (7, 10, 11) culture Genomic DNA labeling and hybridization. Genomic DNA broth (2 | 103 CFU/ml) were inoculated into 45-ml aliquots of the (50 ng) from all strains, including the reference strains, was labeled pasteurized orange juice and incubated at 47uC for 5 days. The with Cy5-dCTP (Amersham Bioscience, Uppsala, Sweden) for the cells were then recovered by centrifugation at 5,400 | g for reference signals and with Cy3-dCTP by random priming for 10 min. genomic DNA (High Prime DNA labeling kit, Roche, Mannheim, Genomic DNA from Alicyclobacillus spp. was extracted from Germany) (9). Mixtures of genomic DNA (50 ng) from the three 50 ml of culture (Flexible Kit, NucleoGen, Seoul, Korea). DNA reference strains (1:1) used for microarray fabrication were labeled concentration was determined using NanoDrop ND-1000 (Nano- with Cy3-dCTP (Amersham Bioscience) and used as reference Drop Technologies, Inc., Wilmington, DE) by calculating the ratio DNA for signal ratio calculations (Cy3-test/Cy5-reference). of absorbance (260 nm/280 nm) and agarose gel electrophoresis. Bacteriophage MJ1 (10 ng) was included in each labeling reaction The DNA was stored at 220uC until further use. as a positive control. The microarrays were prehybridized in buffer (1.7| SSC [1| SSC is 0.15 M NaCl plus 0.015 M sodium DNA microarray chip fabrication. Genomic DNA from citrate], 0.1% sodium dodecyl sulfate [SDS], 10 mg/ml bovine three different food spoilage bacteria (A. acidocaldarius ATCC serum) for 30 min at 65uC and then hybridized with approximately 43030, A. acidoterrestris ATCC 49025, and A. cycloheptanicus 50 ng of genomic DNA with Cy3-labeled (test)/Cy5-labeled ATCC 49029) was isolated and digested with several pairs of (reference) DNA mixture (1:1) in hybridization buffer (6| SSC, restriction enzymes, i.e., EcoRI/BamHI, HindIII/XhoI, HindIII/ 0.2% SDS, 5| Denhardt’s solution, 0.1 mg/ml denatured salmon SacII, and EcoRI/XhoI. The digested fragments were separated by sperm DNA) at 65uC overnight. Then the microarrays were washed agarose gel electrophoresis, after which bands ranging from 100 bp once with primary wash buffer 1 (2| SSC, 0.1% SDS) at room to 1.5 kb were excised from the gel. QIAquick gel extraction kits temperature to remove the cover glass, followed by 10 min with (QIAGEN, Valencia, CA) were used to elute and purify DNA from buffer 2 (2| SSC, 0.2% SDS prewarmed to 65uC), and finally 1% agarose gels. The genomic DNA fragments were inserted into a twice with wash buffer 3 (0.05| SSC) for 5 min; after this, the pPCR-Script Amp vector (Stratagene, La Jolla, CA) and then chips were dried by centrifugation at 2,200 | g at 4uC for 3 min. transformed into DH5a E. coli (RBC Bioscience, Taipei, Taiwan). All experiments were replicated at least three times. Clones were with amplified with a T3 to T7 promoter primer set. Amplified genomic DNA fragments were purified with a PCR Scanning and image analysis. After hybridization, all purification kit (QIAGEN) (4, 9). After purification, these genomic microarrays were scanned with a GenePix 4000B laser scanner DNA probes were sent to GenoCheck Co. (Gyeonggi, Korea), (Axon Instruments, Foster City, CA). The intensity values of where they were denatured and printed on amine-coated glass fluorescent signals from each spot were measured with GenePix slides in duplicate. In the DNA microarray chip assay, bacterio- Pro 6.0 software (Axon) and normalized by a correction factor phage integrase (MJ 1) gene (14) and peroxisome proliferator- calculated from an internal standard (c ~ Cy5-IS/Cy3-IS). activated receptor c gene (1) were used as positive and negative The intensity values of local background material were controls, respectively. The positive control gene was amplified subtracted from the normalized nonintensive values. To determine from WFC1 DNA with primers 59-cgggatccatgaaacgtgcagcattg-39 positive binding of target genomic DNA, the threshold values were and 59-cgggaattcaccgaatgcatgttcgta-39, and the negative control set up based on average intensity of the negative control and blank J. Food Prot., Vol. 74, No. 6 DETECTION OF ALICYCLOBACILLUS SPP. USING DNA CHIP 935 Downloaded from http://meridian.allenpress.com/jfp/article-pdf/74/6/933/1685326/0362-028x_jfp-10-418.pdf by guest on 28 September 2021 FIGURE 2.
Recommended publications
  • UV-C) Effectiveness in the Inactivation of Bacterial Spores Inoculated in Turbid Suspensions and in Cloudy Apple Juice
    beverages Article Short Wave Ultraviolet Light (UV-C) Effectiveness in the Inactivation of Bacterial Spores Inoculated in Turbid Suspensions and in Cloudy Apple Juice Jezer N. Sauceda-Gálvez 1 , María Martinez-Garcia 1, Ma Manuela Hernández-Herrero 1 , Ramón Gervilla 2 and Artur X. Roig-Sagués 1,* 1 Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Centre d’Innovació, Recerca i Transfèrencia en Tecnologia dels Aliments (CIRTTA), XaRTA, TECNIO-CERTA, MALTA-Consolider Team, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; [email protected] (J.N.S.-G.); [email protected] (M.M.-G.); [email protected] (M.M.H.-H.) 2 SPTA-Servei Planta Tecnologia Aliments, Universitat Autònoma de Barcelona, c/de l’Hospital S/N, 08193 Bellaterra (Barcelona), Spain; [email protected] * Correspondence: [email protected] Abstract: Liquid foods might present interferences in their optical properties that can reduce the effectiveness of short-wave ultraviolet radiation (UV-C) treatments used for sterilization purposes. The effect of turbidity as UV-C interference factor against the inactivation of bacterial spores was analysed by using phosphate-buffered saline solutions (PBS) of different turbidity values (2000, 2500, and 3000 NTU) which were adjusted with the addition of apple fibre. These suspensions were inoculated with spores of Bacillus subtilis and Alicyclobacillus acidoterrestris. While higher UV-C doses Citation: Sauceda-Gálvez, J.N.; increased the inactivation rates of spores, these were reduced when turbidity values increased; a dose Martinez-Garcia, M.; Hernández-Herrero, M.M.; Gervilla, of 28.7 J/mL allowed inactivation rates of B. subtilis spores of 3.96 Log in a 2000-NTU suspension R.; Roig-Sagués, A.X.
    [Show full text]
  • Alicyclobacillus Spp.: New Insights on Ecology and Preserving Food Quality Through New Approaches
    Microorganisms 2015, 3, 625-640; doi:10.3390/microorganisms3040625 OPEN ACCESS microorganisms ISSN 2076-2607 www.mdpi.com/journal/microorganisms Review Alicyclobacillus spp.: New Insights on Ecology and Preserving Food Quality through New Approaches Emanuela Ciuffreda, Antonio Bevilacqua, Milena Sinigaglia and Maria Rosaria Corbo * Department of the Science of Agriculture, Food and Environment, University of Foggia, Via Napoli 15, 71122 Foggia, Italy; E-Mails: [email protected] (E.C.); [email protected] (A.B.); [email protected] (M.S.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-08-8158-9232. Academic Editor: Giuseppe Comi Received: 27 July 2015 / Accepted: 29 September 2015 / Published: 10 October 2015 Abstract: Alicyclobacillus spp. includes spore-forming and thermo-acidophilic microorganisms, usually recovered from soil, acidic drinks, orchards and equipment from juice producers. The description of the genus is generally based on the presence of ω-fatty acids in the membrane, although some newly described species do not possess them. The genus includes different species and sub-species, but A. acidoterrestris is generally regarded as the most important spoiler for acidic drinks and juices. The main goal of this review is a focus on the ecology of the genus, mainly on the species A. acidoterrestris, with a special emphasis on the different phenotypic properties and genetic traits, along with the correlation among them and with the primary source of isolation. Finally, the last section of the review reports on some alternative approaches to heat treatments (natural compounds and other chemical treatments) to control and/or reduce the contamination of food by Alicyclobacillus.
    [Show full text]
  • Comparative Sequence Analyses on the 16S Rrna
    INTERNATIONAL JOURNAL OF SYSTEMATICBACTERIOLOGY, Apr. 1992, p. 263-269 Vol. 42, No. 2 0020-7713/92/020263-07$02.00/0 Copyright 0 1992, International Union of Microbiological Societies Comparative Sequence Analyses on the 16s rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoten-estris, and Bacillus cycloheptanicus and Proposal for Creation of a New Genus, Alicyclobacillus gen. nov. JEFFREY D. WISOTZJSEY,' PETER JURTSHUK, JR.,' GEORGE E. FOX,2* GABRIELE DEIN€VIRD,~AND KARL PORALLA3 Department of Biology' and Department of Biochemical and Biophysical Sciences, University of Houston, Houston, Taas 77204-5934, and Botanisches Institut, Mikrobiologie, Universitat Tubingen, D- 7400 Tiibingen, Germany3 Comparative 16s rRNA (rDNA) sequence analyses performed on the thermophilic Bacillus species Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus revealed that these organisms are sufficiently different from the traditional Bacillus species to warrant reclassification in a new genus, Alicyclobacillus gen. nov. An analysis of 16s rRNA sequences established that these three thermoacidophiles cluster in a group that differs markedly from both the obligately thermophilic organism Bacillus stearother- mophilus and the facultatively thermophilic organism Bacillus coagulans, as well as many other common mesophilic and thermophilic Bacillus species. The thermoacidophilic Bacillus species B. acidocaldarius, B. acidoterrestris, and B. cycloheptanicus also are unique in that they possess w-alicylic fatty acid as the major natural membranous lipid component, which is a rare phenotype that has not been found in any other Bacillus species characterized to date. This phenotype, along with the 16s rRNA sequence data, suggests that these thermoacidophiles are biochemically and genetically unique and supports the proposal that they should be reclassified in the new genus Alicyclobacillus.
    [Show full text]
  • DPA Release and Germination of Alicyclobacillus Acidoterrestris
    ition & F tr oo u d N f S o c l i e a n n c r e u s o J Journal of Nutrition & Food Sciences Porebska I et al., J Nutr Food Sci 2015, 5:6 ISSN: 2155-9600 DOI: 10.4172/2155-9600.1000438 Research Article Open Access DPA Release and Germination of Alicyclobacillus acidoterrestris Spores under High Hydrostatic Pressure Porebska I1*, Sokolowska B1,2, Skapska S1, Wozniak L1, Fonberg-Broczek M2 and Rzoska SJ2 1Waclaw Dabrowski Institute of Agriculture and Food Biotechnology, Department of Fruit and Vegetable Product Technology, 36 Rakowiecka str., 02-532 Warsaw, Poland. 2Institute of High Pressure Physic of Polish Academy of Sciences, Laboratory of Biomaterials, 29/37 Sokolowska str., 01-142 Warsaw, Poland. *Corresponding author: Porebska I, Waclaw Dąbrowski Institute of Agriculture and Food Biotechnology, Department of Fruit and Vegetable Product Technology, 36 Rakowiecka str., 02-532 Warsaw, Poland, E-mail: [email protected] Rec date: Nov 03, 2015; Acc date: Nov 25, 2015; Pub date: Nov 30, 2015 Copyright: © 2015 Porebska I, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract High thermoresistance combined with the ability to grow under acidic conditions, which are unique among spore formers, make Alicyclobacillus acidoterrestris one of the most serious problems for the fruit processing industry. Dipicolinic acid (DPA) is an important factor in spore resistance to many environmental stresses, and in spore stability. The aim of the study was to determine the relationship between DPA release and the germination of A.
    [Show full text]
  • Comparative Evaluation of Approaches to Modelling Kinetics of Microbial Thermal Death As in the Case of Alicyclobacillus Acidoterrestris
    Kondratenko V.V. et al. Foods and Raw Materials, 2019, vol. 7, no. 2, pp. 348–363 E-ISSN 2310-9599 Foods and Raw Materials, 2019, vol. 7, no. 2 ISSN 2308-4057 Research Article DOI: http://doi.org/10.21603/2308-4057-2019-2-348-363 Open Access Available online at http:jfrm.ru Comparative evaluation of approaches to modelling kinetics of microbial thermal death as in the case of Alicyclobacillus acidoterrestris Vladimir V. Kondratenko* , Mikhail T. Levshenko , Andrey N. Petrov , Tamara A. Pozdnyakova , Marina V. Trishkaneva Russian Research Institute of Canning Technology, Vidnoye, Russia * e-mail: [email protected] Received June 05, 2019; Accepted in revised form July 26, 2019; Published October 21, 2019 Abstract: Microbial death kinetics modelling is an integral stage of developing the food thermal sterilisation regimes. At present, a large number of models have been developed. Their properties are usually being accepted as adequate even beyond boundaries of experimental microbiological data zone. The wide range of primary models existence implies the lack of universality of each ones. This paper presents a comparative assessment of linear and nonlinear models of microbial death kinetics during the heat treatment of the Alicyclobacillus acidoterrestris spore form. The research allowed finding that single-phase primary models (as adjustable functions) are statistically acceptable for approximation of the experimental data: linear – the Bigelow’ the Bigelow as modified by Arrhenius and the Whiting-Buchanan models; and nonlinear – the Weibull, the Fermi, the Kamau, the Membre and the Augustin models. The analysis of them established a high degree of variability for extrapolative characteristics and, as a result, a marked empirical character of adjustable functions, i.e.
    [Show full text]
  • Growth Behavior of Alicyclobacillus Acidoterrestris As a Function of Strain and Culture Conditions
    GROWTH BEHAVIOR OF ALICYCLOBACILLUS ACIDOTERRESTRIS AS A FUNCTION OF STRAIN AND CULTURE CONDITIONS By JENNIFER M. MERLE A Thesis submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Master of Science Graduate Program in Food Science Written under the direction of Professor Thomas J. Montville And approved by ___________________ ___________________ ____________________ New Brunswick, New Jersey [January 2012] ABSTRACT OF THE THESIS By JENNIFER M. MERLE Dissertation Director: Dr. Thomas J. Montville Alicyclobacillus acidoterrestris is an acidophilic, spore-forming spoilage organism of concern for the fruit juice industry. The occurrence of bacterial spore-formers in low pH foods was thought to be insignificant. However, in recent years, spoilage of acidic juice by Alicyclobacillus was recognized and the seriousness of this situation began to be appreciated. A. acidoterrestris has been associated with commercially pasteurized fruit juices as well as other low pH, shelf-stable products such as bottled tea and isotonic drinks. It has been isolated from garden and forest soils and may be introduced into the manufacturing process through unwashed or poorly washed fruit. If spores are not destroyed by processing, they can germinate, grow, and spoil product. The purpose of this study was to develop an understanding of A. acidoterrestris growth as a function of strain, pH and temperature so that growth of A. acidoterrestris spores might be inhibited by environmental control and product formulation. Four strains of A. acidoterrestris were used to investigate the growth kinetics in response to pH (3.0, 4.0, 5.0) and temperatures (26, 30, 37.5, 45ºC) by measuring the optical density (OD) every hour for 48 hours using a microtitre plate reader to develop the growth curves.
    [Show full text]
  • Extremophiles-Basic Concepts
    CONTENTS CONTENTS EXTREMOPHILES Extremophiles - Volume 1 No. of Pages: 396 ISBN: 978-1-905839-93-3 (eBook) ISBN: 978-1-84826-993-4 (Print Volume) Extremophiles - Volume 2 No. of Pages: 392 ISBN: 978-1-905839-94-0 (eBook) ISBN: 978-1-84826-994-1 (Print Volume) Extremophiles - Volume 3 No. of Pages: 364 ISBN: 978-1-905839-95-7 (eBook) ISBN: 978-1-84826-995-8 (Print Volume) For more information of e-book and Print Volume(s) order, please click here Or contact : [email protected] ©Encyclopedia of Life Support Systems (EOLSS) EXTREMOPHILES CONTENTS VOLUME I Extremophiles: Basic Concepts 1 Charles Gerday, Laboratory of Biochemistry, University of Liège, Belgium 1. Introduction 2. Effects of Extreme Conditions on Cellular Components 2.1. Membrane Structure 2.2. Nucleic Acids 2.2.1. Introduction 2.2.2. Desoxyribonucleic Acids 2.2.3. Ribonucleic Acids 2.3. Proteins 2.3.1. Introduction 2.3.2. Thermophilic Proteins 2.3.2.1. Enthalpically Driven Stabilization Factors: 2.3.2.2. Entropically Driven Stabilization Factors: 2.3.3. Psychrophilic Proteins 2.3.4. Halophilic Proteins 2.3.5. Piezophilic Proteins 2.3.5.1. Interaction with Other Proteins and Ligands: 2.3.5.2. Substrate Binding and Catalytic Efficiency: 2.3.6. Alkaliphilic Proteins 2.3.7. Acidophilic Proteins 3. Conclusions Extremophiles: Overview of the Biotopes 43 Michael Gross, University of London, London, UK 1. Introduction 2. Extreme Temperatures 2.1. Terrestrial Hot Springs 2.2. Hot Springs on the Ocean Floor and Black Smokers 2.3. Life at Low Temperatures 3. High Pressure 3.1.
    [Show full text]
  • Alicyclobacillaceae Fam. Nov
    Family Firmicutes/“Bacilli”/Bacillales/ Alicyclobacillaceae fam. nov. .......................................................................................................................................................................................... Milton S. da Costa, Universidade de Coimbra, Departamento de Bioquímica, Coimbra 3001-401, Portugal Fred A. Rainey, Louisiana State University, Department of Biological Sciences, 202 Life Sciences Building, Baton Rouge, LA 70001, USA A.li.cy.clo.ba.cil.la’ce.ae. N.L. masc. n. Alicyclobacillus Asahara, Suzuki, Kasai and Yokota 2003, 1542 emend. type genus of the family; -aceae ending to denote a fam- Karavaiko, Bogdanova, Tourova, Kondrat’eva, Tsaplina, ily; N.L. fem. pl. n. Alicyclobacillaceae the Alicyclobacillus Egorova, Krasil’nikova and Zakharchuk 2005, 946. family. .................................................................................. References Cells are straight rods of variable length, generally non- motile. Terminal or subterminal ovoid endospores are Goto, K., K. Mochida, M. Asahara, M. Suzuki, H. Kasai and formed. The majority of the species stain Gram-positive. A. Yokota. 2003. Alicyclobacillus pomorum sp. nov., a novel Strains are non-pigmented. Aerobic with a strictly respiratory thermo-acidophilic, endospore-forming bacterium that type of metabolism, but a few strains reduce nitrate to nitrite does not possess omega-alicyclic fatty acids, and emended 3+ and some reduce Fe . Mesophilic, slightly thermophilic, description of the genus Alicyclobacillus. Int. J. Syst. Evol. and thermophilic, and acidophilic. Menaquinone-7 is the Microbiol. 53: 1537–1544. predominant respiratory quinone. Many species possess ω-cyclohexane or ω-cycloheptane, but some do not. Branched Karavaiko, G.I., T.I. Bogdanova, T.P.Tourova, T.F. Kondrat’eva, chain iso- and anteiso-fatty acids and straight chain fatty acids I.A. Tsaplina, M.A. Egorova, E.N. Krasil’nikova and are present in all species.
    [Show full text]
  • The Possibility of Thermal Inactivation of Alicyclobacillus Acidoterrestris Spores in Fruit and Vegetable Juices
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lodz University of Technology Repository Biotechnology and Food Science Review article The possibility of thermal inactivation of Alicyclobacillus acidoterrestris spores in fruit and vegetable juices Edyta Chmal-Fudali, Agnieszka Papiewska* Institute of Chemical Technology of Food, Technical University of Lodz, 90-924 Lodz, Poland *[email protected] Abstract: For a long period of time the thermal processing has been considered as the only way to reduce the initial spore number of Alicyclobacillus acidoterrestris and prevent the spoilage of beverage especially the acidic one. The effect of temperature on the inactivation of bacterial spores is well documented. However is still not yet fully explored the interactions between the components of the tested environment. Alicyclobacillus acidoterrestris spores being resistant to the pasteurization treatment conditions normally applied to acidic fruit products can germinate and grow causing spoilage. Visual detection of spoilage is very difficult because Alicyclobacillus acidoterrestris does not produce gas during growth and incipient swelling of containers does not occur. Knowledge of the survival curves of Alicyclobacillus acidoterrestris spores suspended in natural and model environments is necessary to design pasteurization processes for high acidic fruit products. Therefore, this microorganism was suggested as the target to be used in the design of adequate pasteurization processes. Keywords: Alicyclobacillus acidoterrestris, thermal inactivation. Introduction In recent years, the number of spoilage incidents caused by alicyclobacilli has increased as different types of food have been contaminated. At present, alicyclobacilli are more widespread than originally observed and are becoming an industry-wide problem.
    [Show full text]
  • Alicyclobacillus Best Practice Guideline
    Alicyclobacillus Best Practice Guideline A guideline for the reduction and control of thermophylic, sporeforming bacteria (Alicyclobacillus species, ACB) in the production, packing and distribution of fruit juices, juice concentrates purees and nectars Disclaimer Whilst every effort is made to ensure that the information contained in this Guideline is accurate, the AIJN cannot accept responsibility for errors. 1 ACB Best Practice Guideline - July 2008| AIJN Contents 1 Objectives 2 Definitions 3 Introduction 4 Summary of recommended control points 5 Water 6 Fruit processing 7 Filling factory / bottler 8 Microbiology 9 Recommendations for further research 10 Appendices 2 ACB Best Practice Guideline - July 2008| AIJN 1. Objectives 1.1 To identify good manufacturing practices for the reduction and control of ACB. 1.2 To identify control measures. 1.3 To highlight control points. 1.4 To identify and suggest various testing options. 1.5 To indicate gaps in our current knowledge and recommend further research. 2. Definitions 2.1 ACB - Alicyclobacillus sp. 2.2 Product - Refers to all “relevant“ liquids e.g. juices, juice concentrates, purees, drinks, nectars, sugar syrups, infusions. 2.3 EVM - Extraneous vegetable matter, e.g. Leaves. 2.4 Primary packaging - Packaging that is in contact with finished products. 3. Introduction 3.1 Alicyclobacillus (ACB) is an acid tolerant thermophylic micro-organism which as a spore is very heat resistant and will survive the usual heat processes used in the fruit juice industry. 3.2 The presence of this organism in consumer packaged products has been widely reported to cause flavour spoilage problems described as “Smoky bacon”, “Hammy” or even “Antiseptic”.
    [Show full text]
  • Identification of Microorganisms in Food Ecosystems and Characterization of Physical and Molecular Events Involved in Biofilm Development
    IDENTIFICATION OF MICROORGANISMS IN FOOD ECOSYSTEMS AND CHARACTERIZATION OF PHYSICAL AND MOLECULAR EVENTS INVOLVED IN BIOFILM DEVELOPMENT DISSERTATION Presented in Partial Fulfillment of the Requirement for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Hongliang Luo, M.S. * * * * * The Ohio State University 2005 Dissertation Committee: Dr. Hua Wang, Co-Adviser Approved by Dr. Ahmed Yousef, Co-Adviser Dr. David Min Dr. Mike Mangino Co-Advisers Dr. Joshua Bomser Graduate Program in Food Science and Nutrition ABSTRACT Most foods can be considered as ecosystems containing various microorganisms including pathogenic, spoilage, commensal microbes and fermentation starter cultures. Microbial biofilm ecosystems also form on the surfaces of processing equipment. The interactions among microbes and between microbes and various surfaces play an important role in the persistence and the prevalence of these microbes in the food environment. Diversity of food matrices adds complexity to and directly shapes the composition of the microbiota in these ecosystems. Proper identification and quantification of microbes, evaluation of potential risks in the food ecosystems, and characterization of the physical and molecular events involved in ecosystems, including biofilm development, are among the primary tasks for food microbiologists. The objectives of this study are to develop a rapid detection system for foodborne microorganisms using molecular approaches, to characterize component(s) involved in biofilm development, and to examine the contribution of commensal organisms in ecosystem development and horizontal gene transfer. A real-time PCR system was developed to rapidly detect Alicyclobacillus spp. and Listeria monocytogenes in food. Detection of less than 10 bacterial cells per reaction was achieved within 4-7 hours.
    [Show full text]
  • Alicyclobacillus Acidiphilus Sp. Nov., a Novel Thermo-Acidophilic, Ω
    International Journal of Systematic and Evolutionary Microbiology (2002), 52, 1681–1685 DOI: 10.1099/ijs.0.02169-0 Alicyclobacillus acidiphilus sp. nov., a novel NOTE thermo-acidophilic, ω-alicyclic fatty acid- containing bacterium isolated from acidic beverages 1 R&D Laboratory, KIRIN Hiroshige Matsubara,1 Keiichi Goto,2 Terumi Matsumura,1 Beverage Corporation, 2 1 1 Kurami, Samukawa, Koza, Kaoru Mochida, Masaharu Iwaki, Motohiro Niwa Kanagawa 253-0101, Japan and Kazuhide Yamasato3 2 Food Functions R&D Section, Food Research Laboratories, Mitsui Norin Author for correspondence: Hiroshige Matsubara. Tel: j81 467 75 6166. Fax: j81 467 75 8158. Co., Ltd, Miyabara, Fujieda, e-mail: HiroshigeIMatubara!beverage.co.jp Shizuoka 426-0133, Japan 3 Department of A novel thermo-acidophilic bacterium was isolated from an acidic beverage Fermentation Science, Faculty of Applied that had the odour of guaiacol. The cells are aerobic, Gram-positive, spore- Bioscience, Tokyo forming rods. The organism, strain TA-67T, grows at temperatures from 20 to University of Agriculture, 55 SC (optimum, 50 SC) and at pH values from 25to55 (optimum, pH 30). It Sakuragaoka, Setagaya, Tokyo 156-8502, Japan possesses ω-cyclohexane fatty acid as a major cellular fatty acid. The GMC content of the DNA is 541 mol%. Phylogenetic analysis of the 16S rRNA gene sequences indicated that strain TA-67T constituted a distinct lineage in the Alicyclobacillus cluster, with Alicyclobacillus acidoterrestris as the closest neighbour (966% homology). Phenotypically, it is similar to, but can be distinguished from, ω-cyclohexane fatty acid-possessing alicyclobacilli (A. acidoterrestris, Alicyclobacillus acidocaldarius, Alicyclobacillus hesperidum and ‘Alicyclobacillus mali’) by the morphology of spores and sporangia, by the growth response to different temperatures, and by the profiles for acid production from carbon sources.
    [Show full text]