Supplementary Information Resuscitation of Soil Microbiota

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Information Resuscitation of Soil Microbiota 1 Supplementary Information 2 3 Resuscitation of soil microbiota after > 70-year of desiccation 4 Jun Zhao1, Dongfeng Chen1*, Wei Gao1,2, Zhiying Guo1,2, Zhongjun Jia1, Marcela 5 Hernández3* 6 1State Key Laboratory of Soil and Sustainable Agriculture. Institute of Soil Science, 7 Chinese Academy of Sciences. Nanjing, 210008, Jiangsu Province, China 8 2University of Chinese Academy of Sciences, Beijing 100049, China 9 3School of Environmental Sciences, Norwich Research Park, University of East 10 Anglia, Norwich, UK 11 * Correspondence: 12 Dongfeng Chen: [email protected] 13 Marcela Hernández: [email protected] 14 Running title: Soil microbes after long-term desiccation 15 1 16 17 18 Supplementary Figure 1. The geographical distribution of soils collected between 19 1934-1939. The soils were collected from different districts across mainland of China. 20 2 21 22 Supplementary Figure 2. Changes in bacterial abundance in 24 soils. The bacterial 23 abundance was estimated at desiccated condition (Dry) and after rewetting incubation 24 (Rewet) based on real-time quantitative PCR of 16S rRNA genes and high-throughput 25 sequencing, and shown as mean value of 2-3 biological replicates with standard 26 errors. 3 A. Dry 0 0.5 1 1.5 2 Counts S14 S16 S13 S15 S21 S19 S04 S05 S10 S11 S24 S02 S08 S20 S07 S18 S01 S12 S06 S09 S17 S03 S22 S23 Pseudonocardiaceae (OTU-2) Pseudonocardiaceae (OTU-24) Actino- Pseudonocardiaceae (OTU-25) bacteria Pseudonocardiaceae (OTU-14) Nocardiaceae (OTU-11) Anaerolineae (OTU-104) Chloroflexi SIA-15 (OTU-78) Stenotrophomonas (OTU-44) Proteobacteria Planococcaceae (OTU-1) Tumebacillus (OTU-13) Tumebacillus (OTU-19) Bacillaceae (OTU-9) Paenibacillus (OTU-15) Bacillales (OTU-3) Saccharopolyspora (OTU-59) Paenibacillaceae (OTU-22) Bacillales (OTU-4) Paenibacillaceae (OTU-72) Paenibacillus (OTU-54) Paenibacillaceae (OTU-83) Paenibacillus (OTU-64) Cohnella (OTU-102) Firmicutes Clostridium (OTU-60) Selenomodales (OTU-29) Hydrogenispora (OTU-49) Clostridium (OTU-48) Pelotomaculum (OTU-66) Hydrogenispora (OTU-142) Peptococcaceae (OTU-52) Clostridium (OTU-173) Hydrogenispora (OTU-304) Clostridium (OTU-88) Desulfosporosinus (OTU-196) Hydrogenispora (OTU-474) Clostridium (OTU-101) Ruminococcaceae (OTU-139) 27 28 Supplementary Figure 3. Heatmap of the most relevant OTUs derived from total 29 Bacteria. A. Dry soils; B. rewetted soils. The colored scale gives the percentage 30 abundance of OTUs. 31 4 B. Rewetted 0 1 2 3 Counts S22 S23 S08 S09 S01 S02 S03 S12 S18 S06 S07 S20 S19 S21 S10 S11 S24 S04 S05 S14 S17 S15 S13 S16 Micrmonosporaceae (OTU-55) Actino- Nocardiaceae (OTU-11) bacteria Halomonas (OTU-36) Aminobacter (OTU-90) Proteo- Acinetobacter (OTU-85) bacteria Stenotrophomonas (OTU-44) Ralstonia (OTU-87) Alicyclobacillus (OTU-6) Alicyclobacillus (OTU-20) Alicyclobacillus (OTU-8) Planococcaceae (OTU-1) Tumebacillus (OTU-13) Cohnella (OTU-30) Brevibacillus (OTU-23) Bacillaceae (OTU-9) Bacillus (OTU-230) Sporolactobacillaceae (OTU-5) Bacillales (OTU-4) Bacillales (OTU-3) Paenibacillus (OTU-15) Firmicutes Paenibacillaceae (OTU-22) Clostridiales (OTU-105) Bacillales (OTU-45) Bacillaceae (OTU-32) Ammoniphilus (OTU-41) Alicyclobacillus (OTU-124) Alicyclobacillus (OTU-527) Pullulanibacillus (OTU-31) Selenomodales (OTU-29) Hydrogenispora(OTU-69) Clostridium (OTU-60) Paenibacillus (OTU-54) Paenibacillaceae (OTU-72) 32 33 Supplementary Figure 3. continues 34 5 35 36 Supplementary Figure 4. Composition of the archaea in soils at desiccated condition 37 (Dry) and after rewet incubation (Rewet). The archaeal composition was plotted at 38 class level and the most abundant classes were shown. Taxa not seen more than 3 39 times in at least 20 % of the samples were removed using phyloseq package on R. The 40 relative abundances of minor classes were summed up and shown as “others” which 41 do not exceed 6.8% of total archaeal reads in any given soil. 6 .
Recommended publications
  • UV-C) Effectiveness in the Inactivation of Bacterial Spores Inoculated in Turbid Suspensions and in Cloudy Apple Juice
    beverages Article Short Wave Ultraviolet Light (UV-C) Effectiveness in the Inactivation of Bacterial Spores Inoculated in Turbid Suspensions and in Cloudy Apple Juice Jezer N. Sauceda-Gálvez 1 , María Martinez-Garcia 1, Ma Manuela Hernández-Herrero 1 , Ramón Gervilla 2 and Artur X. Roig-Sagués 1,* 1 Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Centre d’Innovació, Recerca i Transfèrencia en Tecnologia dels Aliments (CIRTTA), XaRTA, TECNIO-CERTA, MALTA-Consolider Team, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; [email protected] (J.N.S.-G.); [email protected] (M.M.-G.); [email protected] (M.M.H.-H.) 2 SPTA-Servei Planta Tecnologia Aliments, Universitat Autònoma de Barcelona, c/de l’Hospital S/N, 08193 Bellaterra (Barcelona), Spain; [email protected] * Correspondence: [email protected] Abstract: Liquid foods might present interferences in their optical properties that can reduce the effectiveness of short-wave ultraviolet radiation (UV-C) treatments used for sterilization purposes. The effect of turbidity as UV-C interference factor against the inactivation of bacterial spores was analysed by using phosphate-buffered saline solutions (PBS) of different turbidity values (2000, 2500, and 3000 NTU) which were adjusted with the addition of apple fibre. These suspensions were inoculated with spores of Bacillus subtilis and Alicyclobacillus acidoterrestris. While higher UV-C doses Citation: Sauceda-Gálvez, J.N.; increased the inactivation rates of spores, these were reduced when turbidity values increased; a dose Martinez-Garcia, M.; Hernández-Herrero, M.M.; Gervilla, of 28.7 J/mL allowed inactivation rates of B. subtilis spores of 3.96 Log in a 2000-NTU suspension R.; Roig-Sagués, A.X.
    [Show full text]
  • Identification of Contaminating Bacteria When Attempting to Isolate Mycobacterium Avium Subsp
    Arch Med Vet 47, 97-100 (2015) COMMUNICATION Identification of contaminating bacteria when attempting to isolate Mycobacterium avium subsp. paratuberculosis (MAP) from bovine faecal and tissue samples using the BACTEC MGIT 960 system# Identificación de bacterias contaminantes al aislar Mycobacterium avium subsp. paratuberculosis (MAP) desde muestras de material fecal y tejido de bovinos, utilizando el sistema de cultivo BACTEC-MGIT 960 P Steuera, b, J de Waardc, MT Collinsd, EP Troncosoa, OA Martíneza, C Tejedaa, MA Salgadoa* aBiochemistry and Microbiology Department, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile. bGraduate School, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile. cLaboratorio de Tuberculosis, Instituto de Biomedicina, Caracas, Venezuela. dDeptartment of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, USA. RESUMEN El diagnóstico de la infección por Mycobacterium avium subsp. paratuberculosis (MAP) al utilizar un sistema de cultivo líquido resulta en una mayor sensibilidad, rapidez y automatización. Sin embargo, tiene como desventajas una mayor tasa de contaminación en relación con los sistemas convencionales y también es menos específico. El presente estudio identificó algunas bacterias contaminantes del sistema de cultivo BACTEC-MGIT 960 al procesar muestras clínicas de ganado bovino del sur de Chile. No se detectaron micobacterias en las muestras falsas positivas a MAP mediante la técnica Reacción en Cadena de la Polimerasa-Análisis con Enzimas de Restricción (PRA)-hsp65. Por otra parte, el Análisis de los Espaciadores Intergénicos Ribosomales (RISA) seguido de un análisis de secuenciación, reveló la presencia de Paenibacillus sp., Enterobacterias y Pseudomonas aeruginosa como contaminantes comunes. Los protocolos de eliminación de contaminantes deberían considerar esta información para mejorar los resultados diagnósticos de los sistemas de cultivo líquido.
    [Show full text]
  • Product Sheet Info
    Product Information Sheet for NR-2490 Paenibacillus macerans, Strain NRS 888 Citation: Acknowledgment for publications should read “The following reagent was obtained through the NIH Biodefense and Catalog No. NR-2490 Emerging Infections Research Resources Repository, NIAID, ® (Derived from ATCC 8244™) NIH: Paenibacillus macerans, Strain NRS 888, NR-2490.” For research use only. Not for human use. Biosafety Level: 2 Appropriate safety procedures should always be used with this material. Laboratory safety is discussed in the following Contributor: ® publication: U.S. Department of Health and Human Services, ATCC Public Health Service, Centers for Disease Control and Prevention, and National Institutes of Health. Biosafety in Product Description: Microbiological and Biomedical Laboratories. 5th ed. Bacteria Classification: Paenibacillaceae, Paenibacillus Washington, DC: U.S. Government Printing Office, 2007; see Species: Paenibacillus macerans (formerly Bacillus www.cdc.gov/od/ohs/biosfty/bmbl5/bmbl5toc.htm. macerans)1 Type Strain: NRS 888 (NCTC 6355; NCIB 9368) Disclaimers: Comments: Paenibacillus macerans, strain NRS 888 was ® 2 You are authorized to use this product for research use only. deposited at ATCC in 1961 by Dr. N. R. Smith. It is not intended for human use. Paenibacillus macerans are Gram-positive, dinitrogen-fixing, Use of this product is subject to the terms and conditions of spore-forming rods belonging to a class of bacilli of the the BEI Resources Material Transfer Agreement (MTA). The phylum Firmicutes. These bacteria have been isolated from MTA is available on our Web site at www.beiresources.org. a variety of sources including soil, water, plants, food, diseased insect larvae, and clinical specimens. While BEI Resources uses reasonable efforts to include accurate and up-to-date information on this product sheet, Material Provided: ® neither ATCC nor the U.S.
    [Show full text]
  • Desulfuribacillus Alkaliarsenatis Gen. Nov. Sp. Nov., a Deep-Lineage
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Extremophiles (2012) 16:597–605 DOI 10.1007/s00792-012-0459-7 ORIGINAL PAPER Desulfuribacillus alkaliarsenatis gen. nov. sp. nov., a deep-lineage, obligately anaerobic, dissimilatory sulfur and arsenate-reducing, haloalkaliphilic representative of the order Bacillales from soda lakes D. Y. Sorokin • T. P. Tourova • M. V. Sukhacheva • G. Muyzer Received: 10 February 2012 / Accepted: 3 May 2012 / Published online: 24 May 2012 Ó The Author(s) 2012. This article is published with open access at Springerlink.com Abstract An anaerobic enrichment culture inoculated possible within a pH range from 9 to 10.5 (optimum at pH with a sample of sediments from soda lakes of the Kulunda 10) and a salt concentration at pH 10 from 0.2 to 2 M total Steppe with elemental sulfur as electron acceptor and for- Na? (optimum at 0.6 M). According to the phylogenetic mate as electron donor at pH 10 and moderate salinity analysis, strain AHT28 represents a deep independent inoculated with sediments from soda lakes in Kulunda lineage within the order Bacillales with a maximum of Steppe (Altai, Russia) resulted in the domination of a 90 % 16S rRNA gene similarity to its closest cultured Gram-positive, spore-forming bacterium strain AHT28. representatives. On the basis of its distinct phenotype and The isolate is an obligate anaerobe capable of respiratory phylogeny, the novel haloalkaliphilic anaerobe is suggested growth using elemental sulfur, thiosulfate (incomplete as a new genus and species, Desulfuribacillus alkaliar- T T reduction) and arsenate as electron acceptor with H2, for- senatis (type strain AHT28 = DSM24608 = UNIQEM mate, pyruvate and lactate as electron donor.
    [Show full text]
  • Biochemical Characterization and 16S Rdna Sequencing of Lipolytic Thermophiles from Selayang Hot Spring, Malaysia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com ScienceDirect IERI Procedia 5 ( 2013 ) 258 – 264 2013 International Conference on Agricultural and Natural Resources Engineering Biochemical Characterization and 16S rDNA Sequencing of Lipolytic Thermophiles from Selayang Hot Spring, Malaysia a a a a M.J., Norashirene , H., Umi Sarah , M.H, Siti Khairiyah and S., Nurdiana aFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia. Abstract Thermophiles are well known as organisms that can withstand extreme temperature. Thermoenzymes from thermophiles have numerous potential for biotechnological applications due to their integral stability to tolerate extreme pH and elevated temperature. Because of the industrial importance of lipases, there is ongoing interest in the isolation of new bacterial strain producing lipases. Six isolates of lipases producing thermophiles namely K7S1T53D5, K7S1T53D6, K7S1T53D11, K7S1T53D12, K7S2T51D14 and K7S2T51D19 were isolated from the Selayang Hot Spring, Malaysia. The sampling site is neutral in pH with a highest recorded temperature of 53°C. For the screening and isolation of lipolytic thermopiles, selective medium containing Tween 80 was used. Thermostability and the ability to degrade the substrate even at higher temperature was proved and determined by incubation of the positive isolates at temperature 53°C. Colonies with circular borders, convex in elevation with an entire margin and opaque were obtained. 16S rDNA gene amplification and sequence analysis were done for bacterial identification. The isolate of K7S1T53D6 was derived of genus Bacillus that is the spore forming type, rod shaped, aerobic, with the ability to degrade lipid.
    [Show full text]
  • Alicyclobacillus Spp.: New Insights on Ecology and Preserving Food Quality Through New Approaches
    Microorganisms 2015, 3, 625-640; doi:10.3390/microorganisms3040625 OPEN ACCESS microorganisms ISSN 2076-2607 www.mdpi.com/journal/microorganisms Review Alicyclobacillus spp.: New Insights on Ecology and Preserving Food Quality through New Approaches Emanuela Ciuffreda, Antonio Bevilacqua, Milena Sinigaglia and Maria Rosaria Corbo * Department of the Science of Agriculture, Food and Environment, University of Foggia, Via Napoli 15, 71122 Foggia, Italy; E-Mails: [email protected] (E.C.); [email protected] (A.B.); [email protected] (M.S.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-08-8158-9232. Academic Editor: Giuseppe Comi Received: 27 July 2015 / Accepted: 29 September 2015 / Published: 10 October 2015 Abstract: Alicyclobacillus spp. includes spore-forming and thermo-acidophilic microorganisms, usually recovered from soil, acidic drinks, orchards and equipment from juice producers. The description of the genus is generally based on the presence of ω-fatty acids in the membrane, although some newly described species do not possess them. The genus includes different species and sub-species, but A. acidoterrestris is generally regarded as the most important spoiler for acidic drinks and juices. The main goal of this review is a focus on the ecology of the genus, mainly on the species A. acidoterrestris, with a special emphasis on the different phenotypic properties and genetic traits, along with the correlation among them and with the primary source of isolation. Finally, the last section of the review reports on some alternative approaches to heat treatments (natural compounds and other chemical treatments) to control and/or reduce the contamination of food by Alicyclobacillus.
    [Show full text]
  • Comparative Sequence Analyses on the 16S Rrna
    INTERNATIONAL JOURNAL OF SYSTEMATICBACTERIOLOGY, Apr. 1992, p. 263-269 Vol. 42, No. 2 0020-7713/92/020263-07$02.00/0 Copyright 0 1992, International Union of Microbiological Societies Comparative Sequence Analyses on the 16s rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoten-estris, and Bacillus cycloheptanicus and Proposal for Creation of a New Genus, Alicyclobacillus gen. nov. JEFFREY D. WISOTZJSEY,' PETER JURTSHUK, JR.,' GEORGE E. FOX,2* GABRIELE DEIN€VIRD,~AND KARL PORALLA3 Department of Biology' and Department of Biochemical and Biophysical Sciences, University of Houston, Houston, Taas 77204-5934, and Botanisches Institut, Mikrobiologie, Universitat Tubingen, D- 7400 Tiibingen, Germany3 Comparative 16s rRNA (rDNA) sequence analyses performed on the thermophilic Bacillus species Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus revealed that these organisms are sufficiently different from the traditional Bacillus species to warrant reclassification in a new genus, Alicyclobacillus gen. nov. An analysis of 16s rRNA sequences established that these three thermoacidophiles cluster in a group that differs markedly from both the obligately thermophilic organism Bacillus stearother- mophilus and the facultatively thermophilic organism Bacillus coagulans, as well as many other common mesophilic and thermophilic Bacillus species. The thermoacidophilic Bacillus species B. acidocaldarius, B. acidoterrestris, and B. cycloheptanicus also are unique in that they possess w-alicylic fatty acid as the major natural membranous lipid component, which is a rare phenotype that has not been found in any other Bacillus species characterized to date. This phenotype, along with the 16s rRNA sequence data, suggests that these thermoacidophiles are biochemically and genetically unique and supports the proposal that they should be reclassified in the new genus Alicyclobacillus.
    [Show full text]
  • Fontibacillus Phaseoli Sp. Nov. Isolated from Phaseolus Vulgaris Nodules
    Antonie van Leeuwenhoek (2014) 105:23–28 DOI 10.1007/s10482-013-0049-4 ORIGINAL PAPER Fontibacillus phaseoli sp. nov. isolated from Phaseolus vulgaris nodules Jose´ David Flores-Fe´lix • Rebeca Mulas • Martha-Helena Ramı´rez-Bahena • Marı´a Jose´ Cuesta • Rau´l Rivas • Javier Bran˜as • Daniel Mulas • Fernando Gonza´lez-Andre´s • Alvaro Peix • Encarna Vela´zquez Received: 26 July 2013 / Accepted: 3 October 2013 / Published online: 12 October 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract A bacterial strain, designated BAPVE7BT, Growth was observed to be supported by many carbo- was isolated from root nodules of Phaseolus vulgaris in hydrates and organic acids as carbon source. MK-7 was Spain. Phylogenetic analysis based on its 16S rRNA gene identified as the predominant menaquinone and the major sequence placed the isolate into the genus Fontibacillus fatty acid (43.7 %) as anteiso-C15:0, as occurs in the other with Fontibacillus panacisegetis KCTC 13564T its species of the genus Fontibacillus.StrainBAPVE7BT closest relative with 97.1 % identity. The isolate was displayed a complex lipid profile consisting of diphos- observed to be a Gram-positive, motile and sporulating phatidylglycerol, phosphatidylglycerol, four glycolipids, rod. The catalase test was negative and oxidase was four phospholipids, two lipids, two aminolipids and weak. The strain was found to reduce nitrate to nitrite and an aminophospholipid. Mesodiaminopimelic acid was to produce b-galactosidase but the production of gela- detected in the peptidoglycan. The G?Ccontentwas tinase, caseinase, urease, arginine dehydrolase, ornithine determined to be 45.6 mol% (Tm). Phylogenetic, che- or lysine decarboxylase was negative.
    [Show full text]
  • Bacterial Succession Within an Ephemeral Hypereutrophic Mojave Desert Playa Lake
    Microb Ecol (2009) 57:307–320 DOI 10.1007/s00248-008-9426-3 MICROBIOLOGY OF AQUATIC SYSTEMS Bacterial Succession within an Ephemeral Hypereutrophic Mojave Desert Playa Lake Jason B. Navarro & Duane P. Moser & Andrea Flores & Christian Ross & Michael R. Rosen & Hailiang Dong & Gengxin Zhang & Brian P. Hedlund Received: 4 February 2008 /Accepted: 3 July 2008 /Published online: 30 August 2008 # Springer Science + Business Media, LLC 2008 Abstract Ephemerally wet playas are conspicuous features RNA gene sequencing of bacterial isolates and uncultivated of arid landscapes worldwide; however, they have not been clones. Isolates from the early-phase flooded playa were well studied as habitats for microorganisms. We tracked the primarily Actinobacteria, Firmicutes, and Bacteroidetes, yet geochemistry and microbial community in Silver Lake clone libraries were dominated by Betaproteobacteria and yet playa, California, over one flooding/desiccation cycle uncultivated Actinobacteria. Isolates from the late-flooded following the unusually wet winter of 2004–2005. Over phase ecosystem were predominantly Proteobacteria, partic- the course of the study, total dissolved solids increased by ularly alkalitolerant isolates of Rhodobaca, Porphyrobacter, ∽10-fold and pH increased by nearly one unit. As the lake Hydrogenophaga, Alishwenella, and relatives of Thauera; contracted and temperatures increased over the summer, a however, clone libraries were composed almost entirely of moderately dense planktonic population of ∽1×106 cells ml−1 Synechococcus (Cyanobacteria). A sample taken after the of culturable heterotrophs was replaced by a dense popula- playa surface was completely desiccated contained diverse tion of more than 1×109 cells ml−1, which appears to be the culturable Actinobacteria typically isolated from soils.
    [Show full text]
  • Paenibacillaceae Cover
    The Family Paenibacillaceae Strain Catalog and Reference • BGSC • Daniel R. Zeigler, Director The Family Paenibacillaceae Bacillus Genetic Stock Center Catalog of Strains Part 5 Daniel R. Zeigler, Ph.D. BGSC Director © 2013 Daniel R. Zeigler Bacillus Genetic Stock Center 484 West Twelfth Avenue Biological Sciences 556 Columbus OH 43210 USA www.bgsc.org The Bacillus Genetic Stock Center is supported in part by a grant from the National Sciences Foundation, Award Number: DBI-1349029 The author disclaims any conflict of interest. Description or mention of instrumentation, software, or other products in this book does not imply endorsement by the author or by the Ohio State University. Cover: Paenibacillus dendritiformus colony pattern formation. Color added for effect. Image courtesy of Eshel Ben Jacob. TABLE OF CONTENTS Table of Contents .......................................................................................................................................................... 1 Welcome to the Bacillus Genetic Stock Center ............................................................................................................. 2 What is the Bacillus Genetic Stock Center? ............................................................................................................... 2 What kinds of cultures are available from the BGSC? ............................................................................................... 2 What you can do to help the BGSC ...........................................................................................................................
    [Show full text]
  • Complete Genome Sequence of Cohnella Sp. HS21 Isolated from Korean Fir (Abies Koreana) Rhizospheric Soil 구상나무 근권 토
    Korean Journal of Microbiology (2019) Vol. 55, No. 2, pp. 171-173 pISSN 0440-2413 DOI https://doi.org/10.7845/kjm.2019.9028 eISSN 2383-9902 Copyright ⓒ 2019, The Microbiological Society of Korea Complete genome sequence of Cohnella sp. HS21 isolated from Korean fir (Abies koreana) rhizospheric soil 1,2 1 1 1 1 2 1 Lingmin Jiang , Se Won Kang , Song-Gun Kim , Jae Cheol Jeong , Cha Young Kim , Dae-Hyuk Kim , Suk Weon Kim * , 1 and Jiyoung Lee * 1 Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea 2 Department of Bioactive Materials, Chonbuk National University, Jeonju 54896, Republic of Korea 구상나무 근권 토양으로부터 분리된 Cohnella sp. HS21의 전체 게놈 서열 지앙 링민1,2 ・ 강세원1 ・ 김성건1 ・ 정재철1 ・ 김차영1 ・ 김대혁2 ・ 김석원1* ・ 이지영1* 1 2 한국생명공학연구원 생물자원센터, 전북대학교 생리활성소재과학과 (Received March 19, 2019; Revised May 7, 2019; Accepted May 7, 2019) The genus Cohnella, which belongs to the family Paenibacillaceae, environmental niches, including mammals (Khianngam et al., inhabits a wide range of environmental niches. Here, we report 2012), the starch production industry (Kämpfer et al., 2006), the complete genome sequence of Cohnella sp. HS21, which fresh water (Shiratori et al., 2010), plant root nodules (Flores- was isolated from the rhizospheric soil of Korean fir (Abies Félix et al., 2014), and soils (Huang et al., 2014; Lee et al., koreana) on the top of Halla Mountain in the Republic of 2015). We have recently isolated the bacterium strain HS21 Korea. Strain HS21 features a 7,059,027 bp circular chromo- some with 44.8% GC-content.
    [Show full text]
  • 5868 Pitombo
    GCB Bioenergy (2016) 8, 867–879, doi: 10.1111/gcbb.12284 Exploring soil microbial 16S rRNA sequence data to increase carbon yield and nitrogen efficiency of a bioenergy crop 1,2,3 3 1 LEONARDO M. PITOMBO ,JANAINAB.DOCARMO , MATTIAS DE HOLLANDER , RAFFAELLA ROSSETTO4 , MARYEIMY V. LOP E Z 5 , HEITOR CANTARELLA2 and EIKO E. KURAMAE1 1Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO/KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands, 2Soils and Environmental Resources Center, Agronomic Institute of Campinas (IAC), Av. Bar~ao de Itapura 1481, 13020-902 Campinas, SP, Brazil, 3Department of Environmental Sciences, Federal University of S~ao Carlos (UFSCar), Rod. Jo~ao Leme dos Santos Km 110, 18052-780 Sorocaba, SP, Brazil, 4Polo Piracicaba, Ag^encia Paulista de Tecnologia (APTA), Rodovia SP 127 km 30, 13400-970 Piracicaba, SP, Brazil, 5Department of Soil Science, University of S~ao Paulo (ESALQ/USP), Avenida Padua Dias 11, CEP 13418-260 Piracicaba, SP, Brazil Abstract Crop residues returned to the soil are important for the preservation of soil quality, health, and biodiversity, and they increase agriculture sustainability by recycling nutrients. Sugarcane is a bioenergy crop that produces huge amounts of straw (also known as trash) every year. In addition to straw, the ethanol industry also gener- ates large volumes of vinasse, a liquid residue of ethanol production, which is recycled in sugarcane fields as fertilizer. However, both straw and vinasse have an impact on N2O fluxes from the soil. Nitrous oxide is a greenhouse gas that is a primary concern in biofuel sustainability. Because bacteria and archaea are the main drivers of N redox processes in soil, in this study we propose the identification of taxa related with N2O fluxes by combining functional responses (N2O release) and the abundance of these microorganisms in soil.
    [Show full text]