Allelochemicals from Soybean Affecting Pseudoplusia Includens (Walker) Biology and Pheromone from Chilo Plejadellus Zinken Mediating C

Total Page:16

File Type:pdf, Size:1020Kb

Allelochemicals from Soybean Affecting Pseudoplusia Includens (Walker) Biology and Pheromone from Chilo Plejadellus Zinken Mediating C Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1985 Allelochemicals From Soybean Affecting Pseudoplusia Includens (Walker) Biology and Pheromone From Chilo Plejadellus Zinken Mediating C. Plejadellus Sexual Behavior (Looper). Porfirio Caballero Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Caballero, Porfirio, "Allelochemicals From Soybean Affecting Pseudoplusia Includens (Walker) Biology and Pheromone From Chilo Plejadellus Zinken Mediating C. Plejadellus Sexual Behavior (Looper)." (1985). LSU Historical Dissertations and Theses. 4118. https://digitalcommons.lsu.edu/gradschool_disstheses/4118 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advanced technology has been used to pho­ tograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed. The following explanation of techniques is provided to help clarify notations which may appear on this reproduction. 1. Manuscripts may not always be complete. When it is not possible to obtain missing pages, a note appears to indicate this. 2. When copyrighted materials are removed from the manuscript, a note ap­ pears to indicate this. 3. Oversize materials (maps, drawings, and charts) are photographed by sec­ tioning the original, beginning at the upper left hand comer and continu­ ing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or in black and white paper format. * 4. Most photographs reproduce acceptably on positive microfilm or micro­ fiche but lack clarity on xerographic copies made from the microfilm. For an additional charge, all photographs are available in black and white standard 35mm slide format.* *For more information about black and white slides or enlarged paper reproductions, please contact the Dissertations Customer Services Department. ’ University Mkrofilms M , International 8610628 Caballero, Porfirio ALLELOCHEMICALS FROM SOYBEAN AFFECTING PSEUDOPLUSIA INCLUDENS (WALKER) BIOLOGY AND PHEROMONE FROM CHILO PLEJADELLUS ZINKEN MEDIATING C. PLEJADELLUS SEXUAL BEHAVIOR The Louisiana State University and Agricultural and Mechanical Col. Ph.D. 1985 University Microfilms International300 N. Zeeb Road, Ann Arbor, Ml 48106 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identifieda checkhere with mark V . 1. Glossy photographs or pages______ 2. Colored illustrations, paper or _______print 3. Photographs with dark background_____ 4. Illustrations are poor c o_______ p y 5. Pages with black marks, not original ______copy 6. Print shows through as there is text on both sides_______ of page 7. Indistinct, broken or small print on several pages 8. Print exceeds margin requirements______ 9. Tightly bound copy with print lost_______ in spine 10. Computer printout pages with indistinct_______ print 11. P ag e(s)____________ lacking when material received, and not available from school or author. 12. P ag e(s)____________ seem to be missing in numbering only as text follows. 13. Two pages numbered . Text follows. 14. Curling and wrinkled pa g e s _______ 15. Dissertation contains pages with print at a slant, filmed as received___________ 16. O t h e r __________________________________________________________ University Microfilms International ALLELOCHEMICALS FROM SOYBEAN AFFECTING PSEUDOPLUS1A 1NCLUDENS (WALKER) BIOLOGY AND PHEROMONE FROM CHILD PLEJADELLUS ZINKEN MEDIATING C. PLEJADELLUS SEXUAL BEHAVIOR A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Porfirio Caballero B.S. , Universidad Autonoma de Nuevo Leon, 1978 M.S., Universidad Autonoma de Nuevo Leon, 1980 December, 1985 AKNOWLEDGEMENTS The author would like to express his most grateful appreciation to Dr. Charles M. Smith and Dr. Nikolaus H. Fischer for their friendship and encouragement during the course of this research; to his wife Ana and son Ulises for their patience and understanding; to Dr. F. K. Cartledge, Dr. E. Dunnigan, Dr. D. K. Carpenter and Dr. N. S. Bhacca for their advices and comments on this dissertation; to Mrs. Helga Fischer, the Fischer Fytochemical Farm, Dr. Alberto Pantoja, Mr. Miles Duthile, Mrs. Maurine Riley and Miss. Colwell Cook for making this an enjoyable time; to Dr. J. F. Robinson, Dr. N. P. Tugwel, Dr. M. 0. Way, Mr. George Trahan and Mr. Bobby Michott for their help in the realization of the C. plejadellus pheromone project; to Mr. Christian B. Boussert and Mr. Guerrini Vincent for their help in the construction of the glass equipment used in this research; to Mr. Don Patterson, Mr. Herbert Land and Mr. Marcus Nauman for their help on the use of the analytical instrumentation; and to Dr. Frank Fronczek for the determination of the crystal structure of afrormosin. Finally, He would like to express his appreciation to Louisiana State University, USDA and CONACYT for the financial support and to the Charles E. Coates Memorial fund of the LSU foundation (donated by Dr. George H. Coates) for financial provision in the production of this dissertation. ii TABLE OF CONTENTS. ACKNOWLEDGMENTS..................................... ii TABLE OF CONTENTS. ............................... iii LIST OF TABLES. ............................... iv LIST OF FIGURES..................................... vi ABSTRACT............................................... viii INTRODUCTION......................................... 1 CHAPTER 1. Allelochemicals from Soybean Affecting Pseudoplusi a Lncludens Biology............ 10 Introduction............................. 11 Materials and Methods.................... 16 Results.................................. 20 Discussion............................. 24 References............................... 28 CHAPTER 2.Pheromone from Chilo plejadellus Zinken Mediating C. plejadellus Sexual Behavior . 39 Introduction.............................. 40 Materials and Methods................... 44 Results.................................... 48 Discussion................................ 51 References................................ 54 BIBLIOGRAPHY......................................... '74 VITA................................................. 77 iii List of Tables. Chapter 1. Table 1. Feeding of sixth instar P. includens on cellulose nitrate discs treated with soybean PI227687 leaf extracts and extract fractions.. 34 Table 2. Development and survival of P. includens larvae on artificial diet supplemented with fractions of methanol and dichloromethane leaf extracts from soybean PI227687.......... 35 Chapter 2. Table 1. Stem borers classified in the Chilo genus.. 58 Table 2. Attraction of male C. plejadellus moths attracted to traps baited with (Z)-13-octadecenal. Crowley, La. 1985........ 59 Table 3. Attraction of male C. plejadellus moths attracted to traps baited with (Z)-13-octadecenal. LaKE Providence, La. 1985. .60 Table 4. Attraction of male C. plejadellus moths attracted to traps baited with (Z)-13-octadecenal. Mer Rouge, La. 1985. 61 Table 5. Total number of moths C. plejadellus attracted to traps baited with 3 mg of (Z)-13 octadecenal and a light trap. Crowley, LA. 1985.................. 62 Table 6. Attraction of male C. plejadellus to traps baited with 3 mg of (Z)-13-octadecenal iv on Crowley, Lake Providence, and Mer Rouge Louisiana. 1985. ......... .......... 63 Table 7. Attractionof male C. plajadel lus moths to traps baited with 3 mg of (Z)-13-octadecenal on Arkansas and Texas. 1985................... 64 Table 8. Attraction of male C. plejadsllus moths at various sites in North Louisiana. 1985. 65 v List of Figures. Chapter 1. Figure 1. Extraction procedure for extracting soybean PI227687 resistant to soybean looper Pseudoplusia includens ................ 36 Figure 2. X-Ray structure of Afrormosin (3) ......... 37 Figure 3. Examples of isoflavonoids and their prenylated derivatives.......................... 38 Chapter 2. Figure 1. Distribution of pheromone traps with (Z)-1 3-octadecenal. Louisiana. 1985.......... 66 Figure 2. Distribution of pheromone traps with (Z)-13-octadecenal. Arkansas. 1985........... 67 Figure 3. Distribution of traps for concentration ratio studies in Crowley, LA. 1985........... 68 Figure 4. Distribution of pheromone traps for monitoring C. plejadellus populations...........69 at Crowley, La. 1985 Figure 5. Gas chromatogram profile from C. plejadellus female abdominal tip extracts..................................... 70 Figure 6. Mass spectrum of (Z)-13-octadecenal isolated from C. plejadellus female abdominal tip extracts.......................... 71 vi Figure 7. Comparison of C. plejadellus catches
Recommended publications
  • An Assessment of Biological Control of the Banana Pseudostem Weevil Odoiporus Longicollis (Olivier) by Entomopathogenic Fungi Beauveria Bassiana T
    Biocatalysis and Agricultural Biotechnology 20 (2019) 101262 Contents lists available at ScienceDirect Biocatalysis and Agricultural Biotechnology journal homepage: www.elsevier.com/locate/bab An assessment of biological control of the banana pseudostem weevil Odoiporus longicollis (Olivier) by entomopathogenic fungi Beauveria bassiana T Alagersamy Alagesana, Balakrishnan Padmanabanb, Gunasekaran Tharania, Sundaram Jawahara, Subramanian Manivannana,c,* a PG and Research Department of Biotechnology, Bharath College of Science and Management, Thanjavur, 613 005, Tamil Nadu, India b Division of Crop Protection, National Research Centre for Banana (ICAR), Tiruchirappalli, 620 102, Tamil Nadu, India c Department of Zoology, Kongunadu Arts and Science College, Coimbatore, 641 029, Tamil Nadu, India ARTICLE INFO ABSTRACT Keywords: Banana (Musa sp.) is the most imperative staple food crop for all types of people worldwide, which is commonly Banana production grown in Southeast Asia. Banana plantain can be severely affected by the devastating pest Odoiporus longicollis Odoiporus longicollis that results in severe economic losses in India. Management of weevil pests using chemical methods is harmful to Beauveria bassiana the environment, and cultural methods are also partially successful. Therefore, an alternative approach of plant Bioefficacy defense mediated by endophytic fungi to control banana stem borer larvae is necessary, which could affect the Extracellular enzyme extracellular enzyme chitinase and protease. Among four isolates, Beauveria bassiana isolate KH3 is the most Phylogeny virulent entomopathogenic fungus compared with other isolates, and species identification was achieved using molecular phylogenetic characteristics. The B. bassiana isolate KH3 (1 × 108 conidia/mL-1) is more bioeffective against O. longicollis larvae, causing > 90% significant mortality in 12 and 18 days.
    [Show full text]
  • Downloaded from BOLD Or Requested from Other Authors
    www.nature.com/scientificreports OPEN Towards a global DNA barcode reference library for quarantine identifcations of lepidopteran Received: 28 November 2018 Accepted: 5 April 2019 stemborers, with an emphasis on Published: xx xx xxxx sugarcane pests Timothy R. C. Lee 1, Stacey J. Anderson2, Lucy T. T. Tran-Nguyen3, Nader Sallam4, Bruno P. Le Ru5,6, Desmond Conlong7,8, Kevin Powell 9, Andrew Ward10 & Andrew Mitchell1 Lepidopteran stemborers are among the most damaging agricultural pests worldwide, able to reduce crop yields by up to 40%. Sugarcane is the world’s most prolifc crop, and several stemborer species from the families Noctuidae, Tortricidae, Crambidae and Pyralidae attack sugarcane. Australia is currently free of the most damaging stemborers, but biosecurity eforts are hampered by the difculty in morphologically distinguishing stemborer species. Here we assess the utility of DNA barcoding in identifying stemborer pest species. We review the current state of the COI barcode sequence library for sugarcane stemborers, assembling a dataset of 1297 sequences from 64 species. Sequences were from specimens collected and identifed in this study, downloaded from BOLD or requested from other authors. We performed species delimitation analyses to assess species diversity and the efectiveness of barcoding in this group. Seven species exhibited <0.03 K2P interspecifc diversity, indicating that diagnostic barcoding will work well in most of the studied taxa. We identifed 24 instances of identifcation errors in the online database, which has hampered unambiguous stemborer identifcation using barcodes. Instances of very high within-species diversity indicate that nuclear markers (e.g. 18S, 28S) and additional morphological data (genitalia dissection of all lineages) are needed to confrm species boundaries.
    [Show full text]
  • Crambidae Biosecurity Occurrence Background Subfamilies Short Description Diagnosis
    Diaphania nitidalis Chilo infuscatellus Crambidae Webworms, Grass Moths, Shoot Borers Biosecurity BIOSECURITY ALERT This Family is of Biosecurity Concern Occurrence This family occurs in Australia. Background The Crambidae is a large, diverse and ubiquitous family of moths that currently comprises 11,500 species globally, with at least half that number again undescribed. The Crambidae and the Pyralidae constitute the superfamily Pyraloidea. Crambid larvae are concealed feeders with a great diversity in feeding habits, shelter building and hosts, such as: leaf rollers, shoot borers, grass borers, leaf webbers, moss feeders, root feeders that shelter in soil tunnels, and solely aquatic life habits. Many species are economically important pests in crops and stored food products. Subfamilies Until recently, the Crambidae was treated as a subfamily under the Pyralidae (snout moths or grass moths). Now they form the superfamily Pyraloidea with the Pyralidae. The Crambidae currently consists of the following 14 subfamilies: Acentropinae Crambinae Cybalomiinae Glaphyriinae Heliothelinae Lathrotelinae Linostinae Midilinae Musotiminae Odontiinae Pyraustinae Schoenobiinae Scopariinae Spilomelinae Short Description Crambid caterpillars are generally cylindrical, with a semiprognathous head and only primary setae (Fig 1). They are often plainly coloured (Fig. 16, Fig. 19), but can be patterned with longitudinal stripes and pinacula that may give them a spotted appearance (Fig. 10, Fig. 11, Fig. 14, Fig. 22). Prolegs may be reduced in borers (Fig. 16). More detailed descriptions are provided below. This factsheet presents, firstly, diagnostic features for the Pyraloidea (Pyralidae and Crambidae) and then the Crambidae. Information and diagnostic features are then provided for crambids listed as priority biosecurity threats for northern Australia.
    [Show full text]
  • Early Shoot Borer on Sugarcane Chilo Infuscatellus Vernacular Name: Illam Kuruthu Puzhu
    PEST MANAGEMENT DECISION GUIDE: GREEN AND YELLOW LIST Early Shoot Borer on Sugarcane Chilo infuscatellus Vernacular name: Illam kuruthu Puzhu. Prevention Monitoring Direct Control Direct Control Restrictions l Planting to be done l Monitor for: l Spray Granulosis Virus (750 numbers l Repeated use of same insecticide should be avoided. in early season (Dec l Presence of egg masses under the of diseased larvae) 200ml per acre. l Avoid spraying insecticides up to five to seven days – Jan) surface of the leaves. l Release Trichogramma chilonis 2cc per after parasitoid release. l Avoid moisture l Presence of dead hearts which can acre /release for three times at fifteen stress in the early days interval starting from 30 days after be easily pulled out. l Spray chlorantraniliprole 18.5% l WHO Class U stages of crop, e.g. planting. SC @ 375 ml per ha. Diamide (Unlikely to by making small l Presence of bore holes at the collar l Release 125 gravid females of pesticide. Stomach and contact present acute bundles of plant region. Bore hole at the collar region Sturmiopsis inferens/ha on 30 and 45 poison. hazard in normal (TNAU Agritech Portal) trash and put them in l Light trap catches @ one per five days after planting. use). furrows. hectare. l Spray neem seed kernel extract 5%. l Intercropping with l Monitoring through pheromone (25 kg of NSK/ha dissolved in 500 litres l Spray fipronil 5% SC @ 2 litres l WHO Class II dhaincha or pulses to traps @ 5 per acre. Erect the trap of water). per ha.
    [Show full text]
  • Management of Insect Pests by Microorganisms
    Proc Indian Natn Sci Acad 80 No. 2 June 2014 Spl. Sec. pp. 455-471 Printed in India. Review Article Management of Insect Pests by Microorganisms B RAMANUJAM*, R RANGESHWARAN, G SIVAKMAR, M MOHAN and M S YANDIGERI National Bureau of Agriculturally Important Insects, P.B. No. 2491, HA Farm Post, Bellary Road, Bangalore 560024, Karnataka, India (Received on 09 April 2013; Revised on 20 August 2013; Accepted on 23 September 2013) Insects, like other organisms, are susceptible to a variety of diseases caused by bacteria, viruses, fungi and protozoans, and these pathogens are exploited for biological control of insect pests through introductory or inundative applications. Microbial pathogens of insects are intensively investigated to develop environmental friendly pest management strategies in agriculture and forestry. In this paper, the scope for utilization of insect pathogens in pest management in the world and India is reviewed. The most successfully utilized insect pathogen is the bacterium, Bacillus thuringiensis (Bt) which is used extensively for management of certain lepidopteran pests. In India, mostly imported products of Bt kurstaki have been used, which are expensive and there is an urgent need to develop aggressive indigenous Bt strains against various pests. Baculoviruses comprising nuclear polyhedrosis virus (NPV) and granulosis virus (GV) have been successfully used as insect pathogens because of their high virulence and specificity. NPV and GV formulations are used for lepidopteran pests like Helicoverpa armigera (HaNPV) and Spodoptera litura (SlNPV) in India, besides Anticarsia gemmatalis NPV in Brazil, Lymanttria disper NPV, Orgyia pseudotsugata NPV in USA and GV of Pieris rapae in China. Lack of easy mass multiplication methods for the commercial production of baculoviruses calls for R&D to develop production in insect tissue cultures.
    [Show full text]
  • Worldwide Integrated Assessment of the Impacts of Systemic Pesticides
    WORLDWIDE INTEGRATED ASSESSMENT OF THE IMPACTS OF SYSTEMIC PESTICIDES ON BIODIVERSITY AND ECOSYSTEMS http://www.tfsp.info/assets/WIA_2015.pdf Report in brief The Task Force on Systemic Pesticides is an independent group of scientists from all over the globe, who came together to work on the Worldwide Integrated Assessment of the Impact of Systemic Pesticides on Biodiversity and Ecosystems. The mandate of the Task Force on Systemic Pesticides (TFSP) has been “to carry out a comprehensive, objective, scientific review and assessment of the impact of systemic pesticides on biodiversity, and on the basis of the results of this review to make any recommendations that might be needed with regard to risk management procedures, governmental approval of new pesticides, and any other relevant issues that should be brought to the attention of decision makers, policy developers and society in general” (see appendix 2). The Task Force has adopted a science-based approach and aims to promote better informed, evidence-based, decision-making. The method followed is Integrated Assessment (IA) which aims to provide policy-relevant but not policy-prescriptive information on key aspects of the issue at hand. To this end a highly multidisciplinary team of 30 scientists from all over the globe jointly made a synthesis of 1,121 published peer-reviewed studies spanning the last five years, including industry-sponsored ones. All publications of the TFSP have been subject to the standard scientific peer review procedures of the journal (http://www.springer.com/environment/journal/11356). Key findings of the Task Force have been presented in a special issue of the peer reviewed Springer journal “Environmental Science and Pollution Research” entitled “Worldwide Integrated Assessment of the Impacts of Systemic Pesticides on Biodiversity and Ecosystems” and consists of eight scientific papers, reproduced here with permission of Springer.
    [Show full text]
  • Miscr157.Pdf (2.553Mb Application/Pdf)
    Authors Contents Page A. G. Peterson Introduction . 3 professor emeritus Department of Entomology, Fisheries, and Wildlife Riceworm ....................................... 3 University of Minnesota Evaluation of Injury by Riceworms . 4 D. M. Noetzel Varietal Susceptibility to Riceworms . 5 associate professor and extension entomologist Department of Entomology, Fisheries, and Wildlife Control of Riceworms . 5 University of Minnesota Rice Stalk Borer ................................. II J. E. Sargent Evaluation of Injury by Stalk Borers ................. II associate professor a.nd extension entomologist Control of the Rice Stalk Borer ..................... I2 Ohio State University Rice Water Weevil ............................... 13 P. E. Hanson graduate student and research assistant Other Insects Occurring on Wild Rice .................. I4 Department of Entomology Wild Rice Midge ................................. I4 University of Oregon Wild Rice Leafminers ............................. I4 C. B. Johnson former entomology graduate student Wild Rice Stem Maggot ........................... I4 University of Minnesota Additional Insects .................................. I5 A. T. Soemawinata junior lecturer, economic entomology Acknowledgments .................................. I5 Bogor Agricultural University, Indonesia Literature Cited .................................... I5 The University of Minnesota, including the Agricultural Experiment Station, is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, creed, color, se.x, national origin, or handicap. 30 cents Insects of Wild ICe lll Minnesota A. G. Peterson, D. M. Noetzel, J. E. Sargent, P. E. Hanson, C. B. Johnson, a!'id A. T. Soemawinata* INTRODUCTION the wild rice plant. Adult moths (figure l) begin to emerge at about the same time that the first wild rice panicles appear. Little information is available concerning the insect pests of According to light trap catches, the first emergence of adults is wild rice.
    [Show full text]
  • BIOLOGY of SUGARCANE EARLY SHOOT BORER, Chilo Infuscatellus SNELLEN (CRAMBIDAE: LEPIDOPTERA) in SOUTH GUJARAT CONDITION
    AGRES – An International e-Journal , (2014)Vol. 3, Issue 4: 418-422 ISSN 2277-9663 ___________________________________________________________________________ BIOLOGY OF SUGARCANE EARLY SHOOT BORER, Chilo infuscatellus SNELLEN (CRAMBIDAE: LEPIDOPTERA) IN SOUTH GUJARAT CONDITION *KALARIYA, G. B. AND RADADIA, G. G. NAVSARI AGRICULTURAL UNIVERSITY NAVSARI-396 450 (GUJARAT, INDIA) *E-MAIL: [email protected] _____________________________________________________________________ ABSTRACT Investigation carried out during 2009 on biology of sugarcane early shoot borer, Chilo infuscatellus Snellen revealed that the female laid eggs in a several masses on the ventral/dorsal surface of leaves close to the midrib. The egg laying capacity was 222 to 488 and incubation period ranged from 4 to 6 days with an average of 4.76 + 0.66 days. The larva passed through five instars and total larval period ranged from 19 to 24 days with an average of 21.36 + 1.32 days. Pupation was inside stem in silken cocoon and the pupal duration varied from 6 to 8 days with an average of 7.16 + 0.62 days. Total life cycle occupied 28.50 to 36.50 days with an average of 32.60 + 4.07 days. The sex ratio of male to female was found 1: 2.1. KEY WORDS: Biology, Chilo infuscatellus, Sugarcane INTRODUCTION severely taking a toll of over 70 per Sugarcane is an important cent shoots (Prasad Rao et al., 1991). commercial cash crop grown in India, In view to develop of an effective supporting the second large agro-based management strategy, it was felt industry. Gujarat occupies an area of necessary to study the biology of 208 thousand hectares with an average sugarcane early shoot borer to know productivity of 81.0 t/ha (Anonymous, the weak link and behavior of insect.
    [Show full text]
  • Bioefficacy of Spinetoram 6% + Methoxyfenozide 30% SC Against Early Shoot Borer, Chilo Infuscatellus Snellen and Internode Bore
    Int.J.Curr.Microbiol.App.Sci (2019) 8(12): 3049-3055 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 12 (2019) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2019.812.355 Bioefficacy of Spinetoram 6% + Methoxyfenozide 30% SC against Early shoot borer, Chilo infuscatellus Snellen and internode borer, Chilo sacchariphagus indicus (Kapur) in sugarcane M. Shobharani*, Arunkumar Hosamani, Sidramappa and N. M. Sunilkumar Agricultural Research Station, Bidar, University of Agricultural Sciences, Raichur, Karnataka, India *Corresponding author ABSTRACT A field experiment was conducted to test the efficacy of different doses K e yw or ds Spinetoram 6% + Methoxyfenozide 30% SC against early shoot borer (ESB), Chilo infuscatellus and Internode borer, Chilo sacchariphagus Chilo infuscatellus , Chilo indicus in sugarcane at Agricultural Research Station, Bidar, during 2017- sacchariphagus 18 and 2018-19 Summer. The different doses of Spinetoram 6% w/v + indicus, Methoxyfenozide 30% SC ranged from 140, 150 and 160 ml/ha, Sugarcane Methoxyfenozide 24% SC @ 187.5 ml/ac, Spinetoram 12% SC @ 75 Article Info ml/ac, Fipronil 5% SC @ 800 ml/ac and Chlorantraniliprole 0.4 % GR @ 7500 g/ac were tested for their efficacy against early shoot borer and Accepted: 20 November 2019 internode borer incidence. Among all the treatments Spinetoram 6% + Available Online: Methoxyfenozide 30% SC @ 160 ml/ac and 150 ml/ac were found to be 10 December 2019 very effective in managing the early shoot borer incidence and inter node borer incidence and recorded highest cane yield. Introduction variety, fertilizer management, irrigation management and prevalence of pests and Sugarcane (Saccharum officinarum L.) is one diseases.
    [Show full text]
  • The Biology of the Saccharum Spp. (Sugarcane)
    The Biology of the Saccharum spp. (Sugarcane) Version 3: May 2011 This document provides an overview of baseline biological information relevant to risk assessment of genetically modified (GM) forms of the species that may be released into the Australian environment. FOR INFORMATION ON THE AUSTRALIAN GOVERNMENT OFFICE OF THE GENE TECHNOLOGY REGULATOR VISIT <HTTP:/WWW.OGTR.GOV.AU> TABLE OF CONTENTS PREAMBLE .................................................................................................................................................. 1 SECTION 1 TAXONOMY.......................................................................................................................... 1 SECTION 2 ORIGIN AND CULTIVATION............................................................................................ 3 2.1 CENTRE OF DIVERSITY AND DOMESTICATION ........................................................... 3 2.1.1 Commercial hybrid cultivars ............................................................................. 3 2.2 COMMERCIAL USES ............................................................................................................ 4 2.2.1 Sugar production ............................................................................................... 5 2.2.2 Byproducts of sugar production......................................................................... 5 2.3 CULTIVATION IN AUSTRALIA .......................................................................................... 7 2.3.1 Commercial propagation..................................................................................
    [Show full text]
  • To Manage Sugarcane Stem Borer, Chilo Infuscatellus (Snellen) Under Field Conditions
    Int. J. Biosci. 2020 International Journal of Biosciences | IJB | ISSN: 2220-6655 (Print), 2222-5234 (Online) http://www.innspub.net Vol. 17, No. 4, p. 120-125, 2020 RESEARCH PAPER OPEN ACCESS Potential of Cotesia flavipes (Cameron) to manage sugarcane stem borer, Chilo infuscatellus (Snellen) under field conditions Bina Khanzada1, Arfan Ahmed Gilal1*, Bhai Khan Solangi1, Imtiaz Ahmed Nizamani2 1Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam, Pakistan 2Department of Plant Protection, Faculty of Crop Protection, Sindh Agriculture University, Tandojam, Pakistan Key words: Biological control, Management, Parasitoid, Stem borer, Sugarcane. http://dx.doi.org/10.12692/ijb/17.4.120-125 Article published on October 10, 2020 Abstract Chilo infuscatellus Snellen. is one of the severe pests of sugarcane that causes significant losses to its every year. However, Cotesia flavipes parasitoid has shown a prominent impact on its population regulation in many countries of the world. Therefore, a two-year (2013 and 2014) study was undertaken to evaluate the efficiency of the augmentative release of C. flavipes in the population and infestation reduction of C. infuscatellus in sugarcane in Sindh, Pakistan. Thatta-10 variety was sown over 0.5 acres of land that comprised of a parasitoid release treatment along with control arranged in a randomized complete block design, replicated four times. Release of C. flavipes was done on fortnightly basis one month after planting of sugarcane and continued till harvesting, whereas, data were recorded monthly. The results indicated a significant impact of the release of the parasitoid in lowering both population and infestation of C. infuscatellus over two years of study, where significantly higher infestation and population of larvae and pupae were recorded in control than parasitoid release treatment.
    [Show full text]
  • Wo 2011/022435 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 24 February 2011 (24.02.2011) WO 2011/022435 A2 (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, AOlN 63/00 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, PCT/US2010/045808 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 17 August 2010 (17.08.2010) NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (25) Filing Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 61/234,6 13 17 August 2009 (17.08.2009) US GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 61/300,402 1 February 2010 (01 .02.2010) US ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, 61/303,288 10 February 2010 (10.02.2010) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (72) Inventor; and LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, (71) Applicant : DE CRECY, Eudes [FR/US]; 6716 Sw 100 SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Lane, Gainesville, FL 32608 (US).
    [Show full text]