Structural Basis for Antiarrhythmic Drug Interactions with the Human Cardiac Sodium Channel

Total Page:16

File Type:pdf, Size:1020Kb

Structural Basis for Antiarrhythmic Drug Interactions with the Human Cardiac Sodium Channel Structural basis for antiarrhythmic drug interactions with the human cardiac sodium channel Phuong T. Nguyena,b, Kevin R. DeMarcoa,b, Igor Vorobyova,c, Colleen E. Clancya,c,1, and Vladimir Yarov-Yarovoya,1 aDepartment of Physiology and Membrane Biology, University of California, Davis, CA 95616; bBiophysics Graduate Group, University of California, Davis, CA 95616; and cDepartment of Pharmacology, University of California, Davis, CA 95616 Edited by Richard W. Aldrich, The University of Texas at Austin, Austin, TX, and approved January 9, 2019 (received for review October 10, 2018) – The human voltage-gated sodium channel, hNaV1.5, is responsible opening (7 9). This inactivation process plays critical roles in NaV for the rapid upstroke of the cardiac action potential and is target channel function and drug binding (10, 11). for antiarrhythmic therapy. Despite the clinical relevance of hNaV1.5- Forty years ago, Hille (12) proposed two distinct access path- targeting drugs, structure-based molecular mechanisms of promising ways for local anesthetics to the central binding site: the hydro- or problematic drugs have not been investigated at atomic scale to phobic pathway through the membrane and the hydrophilic inform drug design. Here, we used Rosetta structural modeling and pathway through the intracellular gate. Many antiarrhythmic and docking as well as molecular dynamics simulations to study the in- local anesthetic drugs are weak bases that exist in equilibrium teractions of antiarrhythmic and local anesthetic drugs with hNaV1.5. between both neutral and charged forms at physiological pH. These calculations revealed several key drug binding sites formed Neutral drugs may access the pore lumen binding site through within the pore lumen that can simultaneously accommodate up to both hydrophobic and hydrophilic pathways (13), but charged two drug molecules. Molecular dynamics simulations identified a drugs are much more likely to access the pore binding site through hydrophilic access pathway through the intracellular gate and a hy- the hydrophilic pathway, due to a large energetic penalty for drophobic access pathway through a fenestration between DIII and traversing a lipid membrane (14). Extensive electrophysiological DIV. Our results advance the understanding of molecular mecha- and site-directed mutagenesis experiments have identified a key nisms of antiarrhythmic and local anesthetic drug interactions with receptor site for antiarrhythmic and local anesthetic drugs within hNaV1.5 and will be useful for rational design of novel therapeutics. the eukaryotic NaV channel pore lumen (15–18). Mutations of two conserved aromatic residues in the DIV segment S6 (DIVS6) of BIOPHYSICS AND sodium channel | local anesthetics | antiarrhythmic drugs | docking | NaV channels, F1760 and Y1767 (hNaV1.5 numbering), signifi- COMPUTATIONAL BIOLOGY molecular dynamics cantly reduce antiarrhythmic and local anesthetic drug binding (15, 16). Other key residues for drug binding within the pore lu- men have been identified in DIS6 and DIIIS6 segments (17, 18). oltage-gated sodium channels (NaV) are transmembrane Vproteins that give rise to action potential generation and In addition, mutations within the NaV channel SF region can af- propagation in excitable cells. There are nine human Na (hNa ) fect drug binding, either through enhancement of slow in- V V – channel subtypes expressed in neuronal, cardiac, and muscle cells (1). activation or formation of alternative access pathway (19 21). Structural studies have advanced our mechanistic understanding The cardiac NaV channel (NaV1.5) plays a central role in congenital − and acquired cardiac arrhythmias and has been an important target of NaV channel drug interaction mechanisms. The first crystal structure of the bacterial Na channel Na Ab revealed open for antiarrhythmic drug development (2–4). Long-standing failures V V in drug treatment of heart rhythm disturbances and many other syndromes stem from a persistent failure to predict the effective or Significance harmful action of drugs. For example, the Cardiac Arrhythmia Suppression Trial (5) and Survival with Oral D-Sotalol (6) clinical Voltage-gated sodium channels play a central role in cellular ex- trials showed that common antiarrhythmic drugs, such as encainide citability and are key targets for drug development. Recent and flecainide, increased mortality and risk of sudden cardiac death breakthroughs in high-resolution cryo-electron microscopy pro- tein structure determination, Rosetta computational protein in patients. Thirty years later, there is still no effective preclinical structure modeling, and multimicrosecond molecular dynamics methodology to differentiate useful or potentially harmful drugs at simulations are empowering advances in structural biology to the molecular level. Mechanistic understanding of drug interactions study the atomistic details of channel−drug interactions. We used with NaV channels at the atomic scale is needed to develop and Rosetta structural computational modeling and molecular dy- screen novel drugs to reveal the mechanisms of drug failure or ef- namics simulations to study the interactions of antiarrhythmic ficacy for treatment of cardiovascular and other disorders and to and local anesthetic drugs with cardiac sodium channel. Our re- minimize side effects. sults provide crucial atomic-scale mechanistic insights into the NaV channels respond dynamically to changes in cell membrane channel–drug interactions, necessary for the rational design of voltage and adopt distinct conformational states: open (conducting), novel modulators of the human cardiac sodium channel to be closed (nonconducting), and inactivated (nonconducting). NaV used for the treatment of cardiac arrhythmias. channels contain four homologous domains (DI to DIV), with each domain consisting of a voltage-sensing domain (VSD) containing Author contributions: P.T.N., K.R.D., I.V., C.E.C., and V.Y.-Y. designed research; P.T.N., transmembrane segments S1 to S4 and a pore domain (PD) con- K.R.D., and I.V. performed research; P.T.N., K.R.D., I.V., C.E.C., and V.Y.-Y. analyzed data; and P.T.N., K.R.D., I.V., C.E.C., and V.Y.-Y. wrote the paper. taining transmembrane segments S5 and S6 connected by a loop The authors declare no conflict of interest. region with P1 and P2 helices forming selectivity filter (SF). Each VSD senses changes in membrane potential that lead to movement This article is a PNAS Direct Submission. This open access article is distributed under Creative Commons Attribution-NonCommercial- of its S4 segment which can, in turn, trigger channel activation (pore NoDerivatives License 4.0 (CC BY-NC-ND). opening) or channel deactivation (pore closing) at the intracellular 1To whom correspondence may be addressed. Email: [email protected] or yarovoy@ gate. The intracellular linker between DIII and DIV contains a ucdavis.edu. − − hydrophobic isoleucine phenylalanine methionine (IFM) motif, This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. which contributes to a fast inactivation gating mechanism, resulting 1073/pnas.1817446116/-/DCSupplemental. + in rapid termination of Na conduction subsequent to the channel Published online February 6, 2019. www.pnas.org/cgi/doi/10.1073/pnas.1817446116 PNAS | February 19, 2019 | vol. 116 | no. 8 | 2945–2954 Downloaded by guest on October 5, 2021 fenestrations within the PD (22), which supported the hypothesis that structural template for modeling of hNaV channels. The sequence drugs can access the binding site within the pore lumen through the identity between hNaV1.5 and eeNaV1.4 is ∼84% in the pore- hydrophobic pathway. Crystal structures of NaVMs and voltage-gated forming transmembrane region (SI Appendix,Fig.S1), which is calcium (CaV) Ab channels have been determined with drugs bound within an atomic-level accuracy homology modeling range (48), near the fenestration regions or in the pore lumen, suggesting the allowing us to generate an accurate model of hNaV1.5 in a par- possibility of similar drug binding receptor sites in eukaryotic NaV tially open and presumably inactivated state. channels (23, 24). The first high-resolution structures of eukaryotic The hNaV1.4 structure was published in September 2018 (9), NaV channels have recently been resolved using cryo-electron mi- when this study was already completed. The sequence identity be- croscopy (cryoEM). The American cockroach NaVPaS channel tween hNaV1.5 and hNaV1.4 is ∼87%, which is similar to the se- structures have been solved in a closed state (25, 26), and electric eel quence identity between hNaV1.5 and eeNaV1.4 (∼84%) and NaV1.4 (eeNaV1.4) channel structure has been solved in a partially suggests that eeNaV1.4 and hNaV1.4 structures are within the same open and presumably inactivated state (27). These structures have range of accuracy for modeling of hNaV channels. The overall root- unlocked new opportunities to study drug interactions with eukary- mean-square deviation (RMSD) between hNaV1.4 and eeNaV1.4 otic NaV channels at the atomic scale. structures is less than 1 Å (9) and RMSD over the PD segments The Rosetta computational modeling software (28, 29) has been S5 and S6 and P1 and P2 helices is less than 0.7 Å, which suggests used to study conformational changes in NaV, voltage-gated potassium very similar conformations of the PD structure—the main focus of (KV), CaV, and TRPV1 channels (30–33) and peptide toxin interac- this study. – tions with NaV,KV, and TRPV1 channels (34 36).
Recommended publications
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • Properties and Units in Clinical Pharmacology and Toxicology
    Pure Appl. Chem., Vol. 72, No. 3, pp. 479–552, 2000. © 2000 IUPAC INTERNATIONAL FEDERATION OF CLINICAL CHEMISTRY AND LABORATORY MEDICINE SCIENTIFIC DIVISION COMMITTEE ON NOMENCLATURE, PROPERTIES, AND UNITS (C-NPU)# and INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY CHEMISTRY AND HUMAN HEALTH DIVISION CLINICAL CHEMISTRY SECTION COMMISSION ON NOMENCLATURE, PROPERTIES, AND UNITS (C-NPU)§ PROPERTIES AND UNITS IN THE CLINICAL LABORATORY SCIENCES PART XII. PROPERTIES AND UNITS IN CLINICAL PHARMACOLOGY AND TOXICOLOGY (Technical Report) (IFCC–IUPAC 1999) Prepared for publication by HENRIK OLESEN1, DAVID COWAN2, RAFAEL DE LA TORRE3 , IVAN BRUUNSHUUS1, MORTEN ROHDE1, and DESMOND KENNY4 1Office of Laboratory Informatics, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark; 2Drug Control Centre, London University, King’s College, London, UK; 3IMIM, Dr. Aiguader 80, Barcelona, Spain; 4Dept. of Clinical Biochemistry, Our Lady’s Hospital for Sick Children, Crumlin, Dublin 12, Ireland #§The combined Memberships of the Committee and the Commission (C-NPU) during the preparation of this report (1994–1996) were as follows: Chairman: H. Olesen (Denmark, 1989–1995); D. Kenny (Ireland, 1996); Members: X. Fuentes-Arderiu (Spain, 1991–1997); J. G. Hill (Canada, 1987–1997); D. Kenny (Ireland, 1994–1997); H. Olesen (Denmark, 1985–1995); P. L. Storring (UK, 1989–1995); P. Soares de Araujo (Brazil, 1994–1997); R. Dybkær (Denmark, 1996–1997); C. McDonald (USA, 1996–1997). Please forward comments to: H. Olesen, Office of Laboratory Informatics 76-6-1, Copenhagen University Hospital (Rigshospitalet), 9 Blegdamsvej, DK-2100 Copenhagen, Denmark. E-mail: [email protected] Republication or reproduction of this report or its storage and/or dissemination by electronic means is permitted without the need for formal IUPAC permission on condition that an acknowledgment, with full reference to the source, along with use of the copyright symbol ©, the name IUPAC, and the year of publication, are prominently visible.
    [Show full text]
  • Title 16. Crimes and Offenses Chapter 13. Controlled Substances Article 1
    TITLE 16. CRIMES AND OFFENSES CHAPTER 13. CONTROLLED SUBSTANCES ARTICLE 1. GENERAL PROVISIONS § 16-13-1. Drug related objects (a) As used in this Code section, the term: (1) "Controlled substance" shall have the same meaning as defined in Article 2 of this chapter, relating to controlled substances. For the purposes of this Code section, the term "controlled substance" shall include marijuana as defined by paragraph (16) of Code Section 16-13-21. (2) "Dangerous drug" shall have the same meaning as defined in Article 3 of this chapter, relating to dangerous drugs. (3) "Drug related object" means any machine, instrument, tool, equipment, contrivance, or device which an average person would reasonably conclude is intended to be used for one or more of the following purposes: (A) To introduce into the human body any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (B) To enhance the effect on the human body of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (C) To conceal any quantity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; or (D) To test the strength, effectiveness, or purity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state. (4) "Knowingly" means having general knowledge that a machine, instrument, tool, item of equipment, contrivance, or device is a drug related object or having reasonable grounds to believe that any such object is or may, to an average person, appear to be a drug related object.
    [Show full text]
  • Local Anesthetics
    Local Anesthetics Introduction and History Cocaine is a naturally occurring compound indigenous to the Andes Mountains, West Indies, and Java. It was the first anesthetic to be discovered and is the only naturally occurring local anesthetic; all others are synthetically derived. Cocaine was introduced into Europe in the 1800s following its isolation from coca beans. Sigmund Freud, the noted Austrian psychoanalyst, used cocaine on his patients and became addicted through self-experimentation. In the latter half of the 1800s, interest in the drug became widespread, and many of cocaine's pharmacologic actions and adverse effects were elucidated during this time. In the 1880s, Koller introduced cocaine to the field of ophthalmology, and Hall introduced it to dentistry Overwiev Local anesthetics (LAs) are drugs that block the sensation of pain in the region where they are administered. LAs act by reversibly blocking the sodium channels of nerve fibers, thereby inhibiting the conduction of nerve impulses. Nerve fibers which carry pain sensation have the smallest diameter and are the first to be blocked by LAs. Loss of motor function and sensation of touch and pressure follow, depending on the duration of action and dose of the LA used. LAs can be infiltrated into skin/subcutaneous tissues to achieve local anesthesia or into the epidural/subarachnoid space to achieve regional anesthesia (e.g., spinal anesthesia, epidural anesthesia, etc.). Some LAs (lidocaine, prilocaine, tetracaine) are effective on topical application and are used before minor invasive procedures (venipuncture, bladder catheterization, endoscopy/laryngoscopy). LAs are divided into two groups based on their chemical structure. The amide group (lidocaine, prilocaine, mepivacaine, etc.) is safer and, hence, more commonly used in clinical practice.
    [Show full text]
  • A Comprehensive Guide Ram Roth Elizabeth A.M. Frost Clifford Gevirtz
    The Role of Anesthesiology in Global Health A Comprehensive Guide Ram Roth Elizabeth A.M. Frost Cli ord Gevirtz Editors Carrie L.H. Atcheson Associate Editor 123 The Role of Anesthesiology in Global Health Ram Roth • Elizabeth A.M. Frost Clifford Gevirtz Editors Carrie L.H. Atcheson Associate Editor The Role of Anesthesiology in Global Health A Comprehensive Guide Editors Ram Roth Elizabeth A.M. Frost Department of Anesthesiology Department of Anesthesiology Icahn School of Medicine at Mount Sinai Icahn School of Medicine at Mount Sinai New York , NY , USA New York , NY , USA Clifford Gevirtz Department of Anesthesiology LSU Health Sciences Center New Orleans , LA , USA Associate Editor Carrie L.H. Atcheson Oregon Anesthesiology Group Department of Anesthesiology Adventist Medical Center Portland , OR , USA ISBN 978-3-319-09422-9 ISBN 978-3-319-09423-6 (eBook) DOI 10.1007/978-3-319-09423-6 Springer Cham Heidelberg New York Dordrecht London Library of Congress Control Number: 2014956567 © Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Second Generation Antiarrhythmic Agents: Have We Reached Antiarrhythmic Nirvana?
    JACC Vol. 9. NO.2 459 February 1987:459-63 EDITORIAL REVIEWS Second Generation Antiarrhythmic Agents: Have We Reached Antiarrhythmic Nirvana? LEONARD N. HOROWITZ, MD, FACC, JOEL MORGANROTH, MD, FACC Philadelphia, Pennsylvania During the first half of the 20th century, antiarrhythmic some cases novel, but because their preapproval evaluations therapy was principally directed toward supraventricular ar­ followed a more rigorous and circumspect path. More in­ rhythmia; only relatively recently has therapy of ventricular formation is available to us so we can decide when and how arrhythmias been emphasized. In fact, significant pharma­ these agents should be employed. cologic treatment of ventricular arrhythmias was minimal Like all antiarrhythmic drugs of the first generation, the until routine use of quinidine and procainamide began in new agents have the potential to provoke or worsen ven­ the 1950s (1,2). The first generation oral antiarrhythmic tricular arrhythmias. These proarrhythmic effects vary in drugs, quinidine, procainamide and disopyramide, previ­ incidence and may present a major problem in certain patient ously constituted the principal antiarrhythmic agents for long­ groups such as those with sustained ventricular tachyar­ term treatment of ventricular arrhythmias in the United States. rhythrnias, reduced left ventricular function and conduction Compared with modem regulatory standards, the data on disturbances. In common with other antiarrhythmic drugs, which the use of these drugs was based were modest at best the second generation drugs have not been shown to prevent and rudimentary at worst. However, because good clinical sudden death in patients with ventricular ectopic activity. judgment compensates for a multitude of deficiencies, we These factors, along with efficacy and potential toxicity, have been able to provide effective antiarrhythmic therapy must be considered in selecting antiarrhythmic regimens for to many patients with this rather limited pharmacopoeia.
    [Show full text]
  • Formulation Development Strategies
    FORMULATION DEVELOPMENT STRATEGIES FOR ORAL EXTENDED RELEASE DOSAGE FORMS Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin vorgelegt von ARAYA RAIWA aus Bangkok, Thailand May, 2011 1. Gutachter: Prof. Dr. Roland Bodmeier 2. Gutachter: Prof. Dr. Jürgen Siepmann Disputation am 9.Juni 2011 TO MY FAMILY ACKNOWLEDGEMENTS First and foremost, I wish to express my deepest gratitude to my supervisor, Prof. Dr. Roland Bodmeier for his professional guidance, helpful advices and encouragement. I am very grateful for his scientific and financial support and for providing me such an interesting topic. Furthermore, I am very thankful to him for the opportunity to support his editorial role in the European Journal of Pharmaceutical Sciences. I would like to thank Prof. Dr. Jürgen Siepmann for co-evaluating this thesis. Thanks are extended to Prof. Dr. Herbert Kolodziej, Prof. Dr. Johannes Peter Surmann and Dr. Martin Körber for serving as members of my thesis advisor committee. I am particular thankful to Dr. Andrei Dashevsky, Dr. Nantharat Pearnchob and Dr. Martin Körber for their very useful discussion; Dr. Burkhard Dickenhorst for evaluating parts of this thesis; Mrs. Angelika Schwarz for her assistance with administrative issues; Mr. Andreas Krause, Mrs. Eva Ewest and Mr. Stefan Walter for the prompt and diligent technical support. Sincere thanks are extended to Dr. Ildiko Terebesi, Dr. Burkhard Dickenhorst, Dr. Soravoot Rujivipat and Dr. Samar El-Samaligy for the friendly atmosphere in the lab My special thanks are owing to all members from the Kelchstrasse for their practical advice, enjoyable discussion and kindness throughout the years.
    [Show full text]
  • Drug and Medication Classification Schedule
    KENTUCKY HORSE RACING COMMISSION UNIFORM DRUG, MEDICATION, AND SUBSTANCE CLASSIFICATION SCHEDULE KHRC 8-020-1 (11/2018) Class A drugs, medications, and substances are those (1) that have the highest potential to influence performance in the equine athlete, regardless of their approval by the United States Food and Drug Administration, or (2) that lack approval by the United States Food and Drug Administration but have pharmacologic effects similar to certain Class B drugs, medications, or substances that are approved by the United States Food and Drug Administration. Acecarbromal Bolasterone Cimaterol Divalproex Fluanisone Acetophenazine Boldione Citalopram Dixyrazine Fludiazepam Adinazolam Brimondine Cllibucaine Donepezil Flunitrazepam Alcuronium Bromazepam Clobazam Dopamine Fluopromazine Alfentanil Bromfenac Clocapramine Doxacurium Fluoresone Almotriptan Bromisovalum Clomethiazole Doxapram Fluoxetine Alphaprodine Bromocriptine Clomipramine Doxazosin Flupenthixol Alpidem Bromperidol Clonazepam Doxefazepam Flupirtine Alprazolam Brotizolam Clorazepate Doxepin Flurazepam Alprenolol Bufexamac Clormecaine Droperidol Fluspirilene Althesin Bupivacaine Clostebol Duloxetine Flutoprazepam Aminorex Buprenorphine Clothiapine Eletriptan Fluvoxamine Amisulpride Buspirone Clotiazepam Enalapril Formebolone Amitriptyline Bupropion Cloxazolam Enciprazine Fosinopril Amobarbital Butabartital Clozapine Endorphins Furzabol Amoxapine Butacaine Cobratoxin Enkephalins Galantamine Amperozide Butalbital Cocaine Ephedrine Gallamine Amphetamine Butanilicaine Codeine
    [Show full text]
  • ACC/AHA/ESC Practice Guideline
    ACC/AHA/ESC Practice Guideline ACC/AHA/ESC Guidelines for the Management of Patients With Supraventricular Arrhythmias*—Executive Summary A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Supraventricular Arrhythmias) Developed in Collaboration With NASPE-Heart Rhythm Society Committee Members Carina Blomström-Lundqvist, MD, PhD, FACC, FESC, Co-chair; Melvin M. Scheinman, MD, FACC, Co-chair; Etienne M. Aliot, MD, FACC, FESC; Joseph S. Alpert, MD, FACC, FAHA, FESC; Hugh Calkins, MD, FACC, FAHA; A. John Camm, MD, FACC, FAHA, FESC; W. Barton Campbell, MD, FACC, FAHA; David E. Haines, MD, FACC; Karl H. Kuck, MD, FACC, FESC; Bruce B. Lerman, MD, FACC; D. Douglas Miller, MD, CM, FACC; Charlie Willard Shaeffer, Jr, MD, FACC; William G. Stevenson, MD, FACC; Gordon F. Tomaselli, MD, FACC, FAHA Task Force Members Elliott M. Antman, MD, FACC, FAHA, Chair; Sidney C. Smith, Jr, MD, FACC, FAHA, FESC, Vice-Chair; Joseph S. Alpert, MD, FACC, FAHA, FESC; David P. Faxon, MD, FACC, FAHA; Valentin Fuster, MD, PhD, FACC, FAHA, FESC; Raymond J. Gibbons, MD, FACC, FAHA†‡; Gabriel Gregoratos, MD, FACC, FAHA; Loren F. Hiratzka, MD, FACC, FAHA; Sharon Ann Hunt, MD, FACC, FAHA; Alice K. Jacobs, MD, FACC, FAHA; Richard O. Russell, Jr, MD, FACC, FAHA† ESC Committee for Practice Guidelines Members Silvia G. Priori, MD, PhD, FESC, Chair; Jean-Jacques Blanc, MD, PhD, FESC; Andzrej Budaj, MD, FESC; Enrique Fernandez Burgos, MD; Martin Cowie, MD, PhD, FESC; Jaap Willem Deckers, MD, PhD, FESC; Maria Angeles Alonso Garcia, MD, FESC; Werner W.
    [Show full text]
  • Compounds and Bulk Powders
    UnitedHealthcare Pharmacy Clinical Pharmacy Programs Program Number 2021 P 1014-13 Program Prior Authorization/Notification Medication Compounds and Bulk Powders P&T Approval Date 1/2012, 02/2013, 04/2013, 07/2013, 10/2013, 11/2013, 2/2014, 4/2014, 10/2014, 4/2015, 7/2015, 4/2016, 10/2016, 10/2017, 10/2018, 10/2019, 5/2020, 1/2021 Effective Date 4/1/2021; Oxford only: 4/1/2021 1. Background: Compounded medications can provide a unique route of delivery for certain patient- specific conditions and administration requirements. Compounded medications should be produced for a single individual and not produced on a large scale. A dollar threshold may be used to identify compounds which require Notification and must meet the criteria below in order to be covered. Drugs included in the compound must be a covered product. Claims for patients under the age of 6 will process automatically for First-Lansoprazole, First-Omeprazole, and Omeprazole + Syrspend SF compounding kits. 2. Coverage Criteriaa: A. Authorization for compounds and bulk powders will be approved based on all of the following criteria (includes bulk powders requested as a single ingredient such as bulk powder formulations of cholestyramine or nystatin when the powder formulation requested is not the commercially available FDA approved product): 1. The requested drug component is a covered medication -AND- 2. The requested drug component is to be administered for an FDA-approved indication -AND- 3. If a drug included in the compound requires prior authorization and/or step therapy, all drug specific clinical criteria must also be met -AND- 4.
    [Show full text]
  • Draft for Public Comment
    Draft for Public Comment Practice guideline update: Treatment of painful diabetic polyneuropathy Report of the Guideline Subcommittee of the American Academy of Neurology Authors (Alphabetical order—final order to be determined later in the guideline development process) Carmel Armon, MD, MSc, MHS1,Vera Bril, MD2, Brian C. Callaghan, MD, MS3, Lindsay Colbert, MA4, William S. David, MD, PhD5, Mary Dolan O’Brien, MLIS6, Kenneth Fink, MD, MPH7, Gary Franklin, MD, MPH8, Gary Gronseth, MD9, John Halperin, MD10, Lawrence B. Harkless, DPM11, Leslie Levine, PhD, VMD, JD12, Nicole Licking, DO13, Bruce A. Perkins, MD, MPH14, Michael Pignone, MD15, Raymond Price, MD16, Alexander Rae-Grant, MD17, Don Smith, MD18, Scott R. Wessels, MPS, ELS6 1. Department of Neurology, Tel Aviv University Sackler School of Medicine, Israel 2. Division of Neurology, Department of Medicine, Toronto General Hospital, ON, Canada 3. Department of Neurology, University of Michigan, Ann Arbor 4. The Foundation for Peripheral Neuropathy, Buffalo Grove, IL 5. Department of Neurology, Massachusetts General Hospital, Boston 6. American Academy of Neurology, Minneapolis, MN 7. Kamehameha Schools, Honolulu, HI 8. Department of Neurology, University of Washington, Seattle, WA 9. Department of Neurology, University of Kansas Medical Center, Kansas City 10. Department of Neurosciences, Overlook Medical Center, Summit, NJ 11. Western University Health Sciences College of Podiatric Medicine, Pomona, CA 1 Draft for Public Comment 12. Neuropathy Action Foundation, Santa Ana, CA 13. New West Physicians, Golden, CO 14. Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, ON 15. Department of Medicine, The University of Texas at Austin 16. Department of Neurology, University of Pennsylvania, Philadelphia 17.
    [Show full text]