The Big Ditch: the Wichita-Valley Center Flood Control Project
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Irrigation Ditches and Their Operation
Irrigation Ditches and their Operation Fact Sheet No. 6.701 Natural Resources Series|Water by R. Waskom, E. Marx, D. Wolfe, and G. Wallace* Water Laws and until its completion. Otherwise, the water Quick Facts Regulations right is forfeited. In addition to a priority date, a water right is recorded based on the • Water rights in Colorado are Current western water law originated location where the water will be diverted or considered a private property during the California gold rush in 1848. Back withdrawn, the amount to be withdrawn, and right. Water rights can be sold then miners would divert water from streams the beneficial use to which it will be put. or inherited, and prices may while mining for gold. Just like the claim on In Colorado, water rights are considered a mining stake, a rule was established stating vary according to supply and a private property right. Water rights can that the first miner to use the water had the demand. be sold or inherited and prices may vary first right to it. After the first miner’s right according to supply and demand. The • Ditch companies coordinate was established, the second miner’s right was consumptively used portion of a water the use, ensure proper recognized, and so on. Claims left abandoned right may be transferred to another area or maintenance and efficient were available to others. Miners brought this use with approval of the water court, with operation of surface water system to Colorado during the gold rush the stipulation that other water rights are of 1859. -
Types of Flooding
Designed for safer living® Focus on Types of flooding Designed for safer living® is a program endorsed by Canada’s insurers to promote disaster-resilient homes. About the Institute for Catastrophic Loss Reduction The Institute for Catastrophic Loss Reduction (ICLR), established in 1997, is a world-class centre for multidisciplinary disaster prevention research and communication. ICLR is an independent, not-for-profit research institute founded by the insurance industry and affiliated with Western University, London, Ontario. The Institute’s mission is to reduce the loss of life and property caused by severe weather and earthquakes through the identification and support of sustained actions that improve society’s capacity to adapt to, anticipate, mitigate, withstand and recover from natural disasters. ICLR’s mandate is to confront the alarming increase in losses caused by natural disasters and to work to reduce deaths, injuries and property damage. Disaster damage has been doubling every five to seven years since the 1960s, an alarming trend. The greatest tragedy is that many disaster losses are preventable. ICLR is committed to the development and communication of disaster prevention knowledge. For the individual homeowner, this translates into the identification of natural hazards that threaten them and their home. The Institute further informs individual homeowners about steps that can be taken to better protect their family and their homes. Waiver The content of this publication is to be used as general information only. This publication does not replace advice from professionals. Contact a professional if you have questions about specific issues. Also contact your municipal government for information specific to your area. -
Characterization of Surface-Water
U.S. Department of the Interior U.S. Geological Survey Characterization of Surface-Water Quality Based on Real-Time Monitoring and Regression Analysis, Quivira National Wildlife Refuge, South-Central Kansas, December 1998 Through June 2001 By VICTORIA G. CHRISTENSEN Water-Resources Investigations Report 01–4248 Prepared in cooperation with the U.S. FISH AND WILDLIFE SERVICE Lawrence, Kansas 2001 U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director For additional information write to: Copies of this report can be purchased from: U.S. Geological Survey District Chief Information Services U.S. Geological Survey Building 810, Federal Center 4821 Quail Crest Place Box 25286 Lawrence, KS 66049–3839 Denver, CO 80225–0286 CONTENTS Abstract.................................................................................................................................................................................. 1 Introduction ........................................................................................................................................................................... 2 Purpose and Scope....................................................................................................................................................... 4 Description of Study Area ........................................................................................................................................... 4 Methods ................................................................................................................................................................................ -
Little Arkansas River Crossing Other Names/Site Number KHRI #159-113; Archeological Site #14RC1302; NPS Plan #87
NPS Form 10-900 0MB No. 1024-0018 United States Department of the Interior 17ECEIVED 2280 National Park Service _ FEB 18 2014 National Register of Historic Places i'.lFGI STER OF HISTORIC PLACES Registration Form 1~:c\l l! ll\l.i\L PA RK SERVICE This form is for use in nominating or requesting determinations for individual properties and districts. See instructions in National Register Bulletin, How to Complete the National Register of Historic Places Registration Form. If any item does not apply to the property being documented, enter "N/A" for "not applicable." For functions, architectural classification, materials, and areas of significance, enter only categories and subcategories from the instructions. Place additional certification comments, entries, and narrative items on continuation sheets if needed (NPS Form 10- 900a). 1. Name of Property historic name Little Arkansas River Crossing other names/site number KHRI #159-113; Archeological site #14RC1302; NPS Plan #87 2. Location street & number NE intersection Ave P & 30th Rd D not for publication city or town __W_ in_d_o_m__ ____ ___________________ ~ vicinity state Kansas code KS county Rice code 159 zip code 67491 3. State/Federal Agency Certification As the designated authority under the National Historic Preservation Act, as amended, I hereby certify that this _x_ nomination_ request for determination of eligibility meets the documentation standards for registering properties in the National Register of Historic Places and meets the procedural and professional requirements set forth in 36 CFR Part 60. In my opinion, the property _x_ meets __ does not meet the National Register Criteria. I recommend that this property be considered significant at the following level(s) of significance: X national statewide - local ~ eJk~ DSJ-1£() 9.-1 /.·lt Signature of c~ ing official/Title Date State or Federal agency/bureau or Tribal Government In my opinion, the property _meets_ does not meet the National Register criteria. -
Ophir Pass Fen), San Juan Mountains, Colorado
Restoration plan for a rare high elevation sloping fen (Ophir Pass fen), San Juan Mountains, Colorado. By Rod Chimner, Ph.D. (Michigan Technological University) Project Summary and Objectives: We will restore 0.65 ha (1.6 acres) of a unique iron fen in the San Juan Mountains, Colorado. This large and very steep fen (up to 21% slope) has six ditches (a total combined length ~700 ft) that are having a severe impact on the fen by lowering the water table, eliminated plant cover from a large area, and is causing a reversal of peat accumulation. This site is also undergoing severe frost heave and erosion that is preventing colonization of plants, and allowing direct runoff of large amounts of sediments directly into the Middle Fork of Mineral Creek. Therefore, our objective is to restore natural hydrological and vegetation conditions by filling and blocking 6 ditches, replanting the large bare area, and eliminating sediment runoff into the stream. We will restore the Ophir Pass fen by plugging and filling all six ditches, planting Sphagnum and sedges in the restored ditches and bare areas, stabilize steep slopes with coir matting, straw wattles, and excelsior mulch, and conducting pre and post vegetation and hydrologic monitoring. Community and student volunteers will assist with vegetation planting and post monitoring. This project is a collaboration of Mountain Studies Institute, U.S. Forest Service, Michigan Technological University, and Durango Mountain Resort. Project Description and Need: Fens have been thought to be rare in the continental Western U.S. because of the hot and dry climate. However, it has recently become apparent that fens are numerous in the higher elevations of the Rocky Mountains and they support endemic and widely disjunct taxa and unique communities (Cooper and Andrus 1994, Chimner et al. -
Fenland Drainage Ditches
FENLAND DRAINAGE DITCHES LOCAL HABITAT ACTION PLAN FOR CAMBRIDGESHIRE AND PETERBOROUGH Last Updated: April 2009 1 CURRENT STATUS 1.1 Context This Habitat Action Plan is intended to cover drainage ditch habitats within the Fenlands of Cambridgeshire – these are characterised by supporting aquatic and marginal habitats and by forming a network which, by virtue of strategic pumping stations, have been traditionally used to drain the fenland and make it suitable for cultivation and habitation. The area or indeed the total length of ditches in the county is not accurately known but it is clearly a large resource. The Action Plan can also be used as guidance for other drainage ditches outside the fenland area. In East Anglia, drainage ditches have been vital to the maintenance of high quality agricultural land and in the Fenland Landscape Area of Cambridgeshire are still a dominant and highly characteristic landscape feature. Drainage ditches can vary in size from small roadside cuts to 30m wide agricultural drains which, connected together, comprise a large linear, mainly freshwater system. The flow of water in Fenland Landscape Area ditches is typically slow moving and is artificially regulated. However, some smaller drains can be dry, especially in summer. The drainage ditch network connects with streams and rivers which are covered by a separate Rivers and Streams LHAP. 1.2 Biological status Although an artificial habitat, drainage ditches and their associated banks are of high value for a broad range of wildlife. There are many plants -
City of Fort Lupton
CITY OF FORT LUPTON 2018 MUNICIPAL WATER EFFICIENCY PLAN EXECUTIVE SUMMARY The City of Fort Lupton (City or Fort Lupton) is a business and family friendly municipality located at the intersection of Highway 85 and Highway 52 in Weld County. The City lies on the quieter eastern plains but is in close proximity to the main throughway of Interstate 25, with easy access to the Cities of Boulder, Greeley and the Denver metropolis. The South Platte River flows through the west side of the City, originating from snowmelt in the high-altitude areas of the Colorado Rockies. Fort Lupton residents enjoy a panoramic view of the scenic Rocky Mountains while being located only 30 minutes from the Denver International Airport. Fort Lupton provides water to its growing number of residents, commercial businesses, industries and agricultural water users and serves a population of approximately 8,160 people. The purpose of this Municipal Water Efficiency Plan (MWEP or Plan) is to guide Fort Lupton in the process of water efficiency planning and implementation as it continues to grow and develop. This Plan will aid the City in water conservation to complement its existing comprehensive master planning activities and community goals. The benefits of water efficiency activities may include delaying the purchase of costly water supplies and infrastructure upgrades; reducing wastewater flows and treatment and associated costs; and improved water management and stewardship. Fort Lupton’s goal is to optimize its existing water supplies and system through practical conservation measures while maintaining its high quality of life for residents. The City’s current water resources portfolio is comprised of treated (or potable) and non-potable water supplies. -
Severe Weather Safety Guide Flash Flooding
What causes River Flooding? Stay informed! • Persistent storms over the same area for long Listen to NOAA Weather Radio, local radio or Severe periods of time. television for the latest weather and river forecasts. • Combined rainfall and snowmelt • Ice jams Weather • Releases from man made lakes • Excessive rain from tropical systems making Safety landfall. How does the NWS issue To check out the latest river forecast information Guide and current stages on our area rivers, visit: Flood/Flash Flood Warnings? http://weather.gov/pah/ahps Flash Check out the National Weather Service Paducah website for the latest information at Flooding weather.gov/paducah Call for the latest forecast from the National Weather Service’s Weather Information Now number: Paducah, KY: 270-744-6331 Evansville, IN: 812-425-5549 National Weather Service forecasters rely on a A reference guide from your network of almost 10,000 gages to monitor the National Oceanic & Atmospheric Administration height of rivers and streams across the Nation. National Weather Service National Weather Service This gage data is only one of many different 8250 Kentucky Highway 3520 Paducah, Kentucky sources for data. Forecasters use data from the Doppler Radar, surface weather observations, West Paducah, KY 42086 snow melt/cover information and many other 270-744-6440 different data sources in order to monitor the threat for flooding. FLOODS KILL MORE PEOPLE FACT: Almost half of all flash flood Flooding PER YEAR THAN ANY OTHER fatalities occur in vehicles. WEATHER PHENOMENAN. fatalities occur in vehicles. Safety • As little as 6 inches of water may cause you to lose What are Flash Floods ? control of your vehicle. -
Predictive Modelling of Spatial Biodiversity Data to Support Ecological Network Mapping: a Case Study in the Fens
Predictive modelling of spatial biodiversity data to support ecological network mapping: a case study in the Fens Christopher J Panter, Paul M Dolman, Hannah L Mossman Final Report: July 2013 Supported and steered by the Fens for the Future partnership and the Environment Agency www.fensforthefuture.org.uk Published by: School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK Suggested citation: Panter C.J., Dolman P.M., Mossman, H.L (2013) Predictive modelling of spatial biodiversity data to support ecological network mapping: a case study in the Fens. University of East Anglia, Norwich. ISBN: 978-0-9567812-3-9 © Copyright rests with the authors. Acknowledgements This project was supported and steered by the Fens for the Future partnership. Funding was provided by the Environment Agency (Dominic Coath). We thank all of the species recorders and natural historians, without whom this work would not be possible. Cover picture: Extract of a map showing the predicted distribution of biodiversity. Contents Executive summary .................................................................................................................... 4 Introduction ............................................................................................................................... 5 Methodology .......................................................................................................................... 6 Biological data ................................................................................................................... -
New York State Canal Corporation Flood Warning and Optimization System
K19-10283720JGM New York State Canal Corporation Flood Warning and Optimization System SCOPE OF SERVICES K19-10283720JGM Contents 1 Background of the Project........................................................................................................... 3 2 Existing FWOS features ............................................................................................................... 5 2.1 Data Import Interfaces ............................................................................................................ 5 2.2 Numeric Models ...................................................................................................................... 5 2.2.1 Hydrologic Model............................................................................................................. 6 2.2.2 Hydraulic Model .............................................................................................................. 6 2.3 Data Dissemination Interfaces .................................................................................................. 6 3 Technical Landscape ................................................................................................................... 7 3.1 Software ................................................................................................................................. 7 3.1.1 Systems......................................................................................................................... 7 3.1.2 FWOS Software .............................................................................................................. -
Fluvial Sediment in the Little Arkansas River Basin Kansas
Fluvial Sediment in the Little Arkansas River Basin Kansas GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1798-B Prepared in cooperation with the City of fflichita and the Kansas Water Resources Board Fluvial Sediment in the Little Arkansas River Basin Kansas By C. D. ALBERT and G. J. STRAMEL SEDIMENTATION IN SMALL DRAINAGE BASINS GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1798-B Prepared in cooperation with the City of ff^ichita and the Kansas ff^ater Resources Board UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1966 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 60 cents (paper cover) CONTENTS Page Abstract__._____________ ___________.__________________________ Bl Introduction._____________________________________________________ 1 Description of the basin.___________________________________________ 2 Geology. __________________________________________ 3 Geomorphology _ ______________________________________________ 4 Soils. ______________________________-_-_-__---___ 5 Land use and vegetation.______________________________________ 7 Climate._____________________________________________________ 7 Runoff ___________________________________________________ 8 Fluvial sediment._________________________________________________ 13 Field investigations and methods._______________________________ 13 Laboratory methods.__________________________________________ 14 Suspended sediment.__________________________________________ -
A Water-Budget Approach to Restoring a Sedge Fen Affected by Diking and Ditching
Journal of Hydrology 320 (2006) 501–517 www.elsevier.com/locate/jhydrol A water-budget approach to restoring a sedge fen affected by diking and ditching Douglas A. Wilcoxa,*, Michael J. Sweatb,1, Martha L. Carlsona, Kurt P. Kowalskia aUS Geological Survey, Great Lakes Science Center, 1451 Green Road, Ann Arbor, MI 48105, USA bUS Geological Survey, 6520 Mercantile Way, Suite 5, Lansing, MI 48911, USA Received 10 May 2005; revised 23 May 2005 Abstract A vast, ground-water-supported sedge fen in the Upper Peninsula of Michigan, USA was ditched in the early 1900 s in a failed attempt to promote agriculture. Dikes were later constructed to impound seasonal sheet surface flows for waterfowl management. The US Fish and Wildlife Service, which now manages the wetland as part of Seney National Wildlife Refuge, sought to redirect water flows from impounded C-3 Pool to reduce erosion in downstream Walsh Ditch, reduce ground-water losses into the ditch, and restore sheet flows of surface water to the peatland. A water budget was developed for C-3 Pool, which serves as the central receiving and distribution body for water in the affected wetland. Surface-water inflows and outflows were measured in associated ditches and natural creeks, ground-water flows were estimated using a network of wells and piezometers, and precipitation and evaporation/evapotranspiration components were estimated using local meteorological data. Water budgets for the 1999 springtime peak flow period and the 1999 water year were used to estimate required releases of water from C-3 Pool via outlets other than Walsh Ditch and to guide other restoration activities.