New Observations on the Asexual Reproduction of Aurelia Aurita (Cnidaria, Scyphozoa) with Comments on Its Life Cycle and Adaptive Significance

Total Page:16

File Type:pdf, Size:1020Kb

New Observations on the Asexual Reproduction of Aurelia Aurita (Cnidaria, Scyphozoa) with Comments on Its Life Cycle and Adaptive Significance Invertebrate Zoology, 2007, 4(2): 111127 © INVERTEBRATE ZOOLOGY, 2007 New observations on the asexual reproduction of Aurelia aurita (Cnidaria, Scyphozoa) with comments on its life cycle and adaptive significance Alejandro A. Vagelli New Jersey Academy for Aquatic Sciences. 1 Riverside Drive, Camden. N. J. 08103. U.S.A. e-mail: [email protected] ABSTRACT: Two previously unreported asexual reproductive mechanisms have been observed in Aurelia aurita (Linnaeus, 1758). In one, scyphistomae produce internally several planula-like propagules that are released through the oral cavity and pass through a planktonic stage before settlement and metamorphosis. The second consists in the generation of free-swimming planuloids which are extruded through the external body wall of the scyphistomae. In contrast to the various budding process described in scyphozoans, both new mechanisms produce ramets that do not develop adult scyphistoma morphology prior to their release, and they only do so after passing through a free-swimming period that lasts up to several weeks. KEY WORDS: planuloids, dispersal, metagenesis, gemmation. Íîâûå ñâåäåíèÿ î áåñïîëîì ðàçìíîæåíèè Aurelia aurita (Cnidaria, Scyphozoa), çàìå÷àíèÿ î æèçíåííîì öèêëå è åãî àäàïòèâíîì çíà÷åíèè À.À. Âàãåëëè New Jersey Academy for Aquatic Sciences. 1 Riverside Drive, Camden. N. J. 08103. U.S.A. e-mail: [email protected] ÐÅÇÞÌÅ: Äâà ðàíåå íåèçâåñòíûõ ñïîñîáà áåñïîëîãî ðàçìíîæåíèÿ îáíàðóæåíû ó Aurelia aurita (Linnaeus, 1758).  îäíîì ñëó÷àå âíóòðè ñöèôèñòîìû îáðàçóþòñÿ ïëàíóëîïîäîáíûå ïðîïàãóëû, âûõîäÿùèå ÷åðåç ðîòîâîå îòâåðñòèå è ïðîõîäÿùèå ïåðåä îñåäàíèåì è ìåòàìîðôîçîì ïëàíêòîííóþ ñòàäèþ ðàçâèòèÿ. Âî âòîðîì ñëó÷àå îáðàçóþòñÿ ñâîáîäíîïëàâàþùèå ïëàíóëîèäû, âûäåëÿåìûõ ÷åðåç íàðóæíûé ïîêðîâ òåëà ñöèôèñòîìû.  îòëè÷èå îò ðàçíîîáðàçíûõ ñïîñîáîâ áåñïîëîãî ðàçìíîæåíèÿ èçâåñòíûõ ó ñöèôîçîéíûõ, îáà íîâûõ ñïîñîáà áåñïîëîãî ðàçìíîæåíèÿ âåäóò ê îáðàçîâàíèþ îñîáåé, ïðèîáðåòàþùèõ îáëèê âçðîñëîé ñöèôèñòîìû íå ïåðåä îòäåëå- íèåì îò ìàòåðèíñêîé îñîáè, à ïîñëå ïðîõîæäåíèÿ ñâîáîäíîïëàâàþùåé ñòàäèè, äëèòåëüíîñòü êîòîðîé ìîæåò äîñòèãàòü íåñêîëüêèõ íåäåëü. ÊËÞ×ÅÂÛÅ ÑËÎÂÀ: ïëàíóëîèä, ðàññåëåíèå, ìåòàãåíåç, áåñïîëîå ðàçìíîæåíèå. 112 A.A. Vagelli Introduction submerged in four 30-l tanks (four sheets in each tank). As the scyphistomae reproduced by The life stages and various reproductive mech- budding and spread along the plastic sheets, anisms of Aurelia aurita (Linnaeus) have been portions were transferred to more plastic sheets the classic example of the scyphozoan life cycle and to forty 10-cm Petri dishes (polyp dishes). for invertebrate textbooks , and the subject of The new plastic sheets and Petri dishes were many scientific papers on development and re- equally divided into two 100-l tanks. All six productive mechanisms (Agassiz, 1860, 1862; tanks flowed together in a recirculating system Haeckel, 1881; Lambert, 1935; Berrill, 1949), consisting of a pump, a 120-l sump, a biofilter budding (Perez, 1922; Renton, 1930; Gilchrist, and a chiller. Artificial seawater was used 1937), strobilation (Spangenberg, 1971, 1974; throughout the study for both tanks and Petri Olmon, Webb, 1974; Kato et al., 1973; Balcer, dishes. The salinity range was 3033. The pH Black, 1991) life stages (Spanenberg, 1965; Lu- varied between 7.8 and 8, while nitrites and cas, 2001), and recruitment of planula larvae ammonia remained at 0 mg/l. Water tempera- (Grondal, 1989). Also, several works have been ture was maintained at 22°C except when stro- published on podocyst production (Chapman, bilation was being induced. The system was 1966, 1968, 1970), and regeneration (Lesh-Lau- kept covered from light to avoid algae growth, rie, Corriel, 1973; Steinberg, 1963) for this spe- and no aeration was provided. Scyphistomae cies. However, the production of free-swimming were fed (ad lib.) four times a week with newly propagules was not previously documented for hatched Artemia salina. A. aurita. Moreover, despite detailed reports of important variations on A. aurita ontogeny (e.g., Scyphistomae observations and collection Haeckel, 1881; Berrill, 1949; Thiel, 1966, Kaki- of gemmae and free-swimming buds numa, 1975), its life cycle is still commonly An Olympus SCH dissection microscope depicted in a simplified manner (e.g., Grondahl, (7.564 x) was utilized to regularly observe 1988; Pechenik, 1991) even when it is utilized to scyphistomae attached to the polyp dishes. Mi- base models of dispersion and patterns of distri- crophotographs were taken with an Olympus bution (Dawson, et al., 2005). PC 35 mm camera attached to the microscope, Scyphistomae of Aurelia aurita have been and an Olympus SH2 (1000 x) light-microscope kept in culture for ten years with the goal of was used to observe planuloid development. To obtaining medusas for public display. During follow daily migration of internal produced this time, strobilation has been induced and the propagules, individual scyphistomae were dis- processes of budding, regeneration, cyst pro- tinguished by marks on the polyp dish bottoms. duction, and production of free-swimming Once propagules were observed in a particular propagules observed several times. This paper scyphistoma, they were photographically docu- reports two previously undocumented asexual mented, and a fine mark was made on the polyp reproductive mechanisms in scyphistomae of A. dish bottom to note the current position of each aurita, in which the internal and external pro- propagule. duction of free-swimming planuloid propagules To collect internally produced propagules are involved. In addition, the life cycle of this from the scyphistomae gastrovascular cavity, a species as it is known to date is reviewed, as well fine tuberculin needle was used to gently touch as discusses its adaptive significance. the oral area. This produced a quick reflex consisting of a stalk shortening and the opening Materials and methods of the oral cavity. A 400 µm glass pipette was then used to remove the propagules, which were General conditions isolated into 5-cm Petri dishes (planuloid dish- Scyphistomae of Aurelia aurita were kept es) containing salt water filtered through a 0.45 attached on sixteen 10 x 5 cm plastic sheets µm membrane filter. Also, free (non-artificially New asexually produced propagules for Aurelia aurita 113 extracted) internally generated propagules and three weeks in as a free-swimming stage before free-swimming externally produced planuloids settling down and attaching. found in polyp dishes, were transferred to indi- Metamorphosis began with an oralaboral vidual planuloid dishes to facilitate the study of elongation followed by the opening of the gas- their individual development. trovascular cavity. Soon thereafter, the first two All planuloid dishes were kept floating in tentacles developed (Figs 2D, 3A). Generally both 100-l tanks. When propagules developed the first tentacle began to differentiate, while the gastrovascular openings and the first tentacle, second followed one or two days later . Four to they were fed rotifers (Brachionus plicatilis), six days afterward, two more tentacles began to and after the development of the second tenta- develop simultaneously. Depending upon the cle, they were fed newly hatched Artemia sali- availability of food and on water quality, new na nauplii. Water was replaced daily by new scyphistomae developed eight tentacles in three filtered sea water, approximately three hours to four weeks and sixteen tentacles after three after feeding. more weeks. Results External production of Free-Swimming propagules (EFSP) Internal production of Free-Swimming Propagules (IFSP) The production of EFSP by scyphistomae of Aurelia aurita was characterized by the release IFSP were produced from the internal body of large free-swimming planuloids from the ex- wall of the gastrovascular cavity and stolons. ternal surface of scyphistomae. The EFSP devel- Scyphistomae liberated several IFSP (usually oped as outgrowths protruding usually from the between three and five) at the same time. Inter- lower half of the stalk and stolons (Fig. 3B,C). nal FSP slowly migrated from stolons and the Although they had a broad range of forms and aboral region to the oral region (Figs 1AC, sizes, reaching up to one half of the scyphistoma 2A). The time necessary for the propagules to size, most EFSP measured between 200 and 800 migrate from the aboral region to the oral open- µm. They usually have a spherical shape, although ing was between one and three days and depend- cylindrical and polyhedral also were observed. ed primarily on the distance from where they Besides the different location of origin, EFSP were produced. differed from IFSP by their compact and massive After reaching the gastrovascular cavity, consistency, their brown-orange coloration, and IFSP remained up to three days before they were their low motility. In addition, they require a released. The actual process of expulsion was considerably longer time to settle and develop very rapid (Fig. 2B,C). The opening of the oral adult structures once detached from the scyphisto- cavity and release of IFSP did not take more ma parent. It was common for EFSP to start than one or two seconds. The number of IFSP metamorphosis four or five weeks after detaching. observed in any scyphistomae varied between three and six, and all migrated and were released Discussion simultaneously. Internal FSP were spherical-ovoid structures Production of IFSP of approximately 200 µm in diameter. They were very consistent in shape and size, and were formed Differences
Recommended publications
  • Fishery Bulletin of the Fish and Wildlife Service V.55
    CHAPTER VIII SPONGES, COELENTERATES, AND CTENOPHORES Blank page retained for pagination THE PORIFERA OF THE GULF OF MEXICO 1 By J. Q. TIERNEY. Marine Laboratory, University of Miami Sponges are one of the dominant sessile inverte­ groups. The. floor of the Gulf between the bars brate groups in the Gulf of Mexico: they extend is sparsely populated. The majority of the ani­ from the intertidal zone down to the deepest mals and plants are concentrated on the rocky Parts of the basin, and almost all of the firm or ledges and outcroppings. rocky sections of the bottom provide attachment The most abundant sponges on these reefs are for them. of several genera representing most of the orders Members of the class Hyalospongea. (Hexacti­ of the class Demospongea. Several species of nellidea) are, almost without exception, limited to Ircinia are quite common as are Verongia, Sphecio­ the deeper waters of the Gulf beyond the 100­ spongia, and several Axinellid and Ancorinid fathom curve. These sponges possess siliceous sponges; Cliona is very abundant, boring into spicules in which (typically) six rays radiate from molluscan shells, coral, and the rock itself. The II. central point; frequently, the spicules are fused sponge population is rich both in variety and in ~gether forming a basket-like skeleton. Spongin number of individuals; for this reason no attempt 18 never present in this group. is made to discuss it in taxonomic detail in this In contrast to the Hyalospongea, representa­ r~sum~. ti\Tes of the clasa Calcispongea are seldom, if Some of the sponges of the Gulf are of world­ ~\Ter, found in deep water.
    [Show full text]
  • Treatment of Lion´S Mane Jellyfish Stings- Hot Water Immersion Versus Topical Corticosteroids
    THE SAHLGRENSKA ACADEMY Treatment of Lion´s Mane jellyfish stings- hot water immersion versus topical corticosteroids Degree Project in Medicine Anna Nordesjö Programme in Medicine Gothenburg, Sweden 2016 Supervisor: Kai Knudsen Department of Anesthesia and Intensive Care Medicine 1 CONTENTS Abstract ................................................................................................................................................... 3 Introduction ............................................................................................................................................. 3 Background ............................................................................................................................................. 4 Jellyfish ............................................................................................................................................... 4 Anatomy .......................................................................................................................................... 4 Nematocysts .................................................................................................................................... 4 Jellyfish in Scandinavian waters ......................................................................................................... 5 Lion’s Mane jellyfish, Cyanea capillata .......................................................................................... 5 Moon jelly, Aurelia aurita ..............................................................................................................
    [Show full text]
  • Cassiopea Xamachana (Upside-Down Jellyfish)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Cassiopea xamachana (Upside-down Jellyfish) Order: Rhizostomeae (Eight-armed Jellyfish) Class: Scyphozoa (Jellyfish) Phylum: Cnidaria (Corals, Sea Anemones and Jellyfish) Fig. 1. Upside-down jellyfish, Cassiopea xamachana. [http://images.fineartamerica.com/images-medium-large/upside-down-jellyfish-cassiopea-sp-pete-oxford.jpg, downloaded 9 March 2016] TRAITS. Cassiopea xamachana, also known as the upside-down jellyfish, is quite large with a dominant medusa (adult jellyfish phase) about 30cm in diameter (Encyclopaedia of Life, 2014), resembling more of a sea anemone than a typical jellyfish. The name is associated with the fact that the umbrella (bell-shaped part) settles on the bottom of the sea floor while its frilly tentacles face upwards (Fig. 1). The saucer-shaped umbrella is relatively flat with a well-defined central depression on the upper surface (exumbrella), the side opposite the tentacles (Berryman, 2016). This depression gives the jellyfish the ability to stick to the bottom of the sea floor while it pulsates gently, via a suction action. There are eight oral arms (tentacles) around the mouth, branched elaborately in four pairs. The most commonly seen colour is a greenish grey-blue, due to the presence of zooxanthellae (algae) embedded in the mesoglea (jelly) of the body, and especially the arms. The mobile medusa stage is dioecious, which means that there are separate males and females, although there are no features which distinguish the sexes. The polyp stage is sessile (fixed to the substrate) and small (Sterrer, 1986). UWI The Online Guide to the Animals of Trinidad and Tobago Ecology DISTRIBUTION.
    [Show full text]
  • Population Structures and Levels of Connectivity for Scyphozoan and Cubozoan Jellyfish
    diversity Review Population Structures and Levels of Connectivity for Scyphozoan and Cubozoan Jellyfish Michael J. Kingsford * , Jodie A. Schlaefer and Scott J. Morrissey Marine Biology and Aquaculture, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; [email protected] (J.A.S.); [email protected] (S.J.M.) * Correspondence: [email protected] Abstract: Understanding the hierarchy of populations from the scale of metapopulations to mesopop- ulations and member local populations is fundamental to understanding the population dynamics of any species. Jellyfish by definition are planktonic and it would be assumed that connectivity would be high among local populations, and that populations would minimally vary in both ecological and genetic clade-level differences over broad spatial scales (i.e., hundreds to thousands of km). Although data exists on the connectivity of scyphozoan jellyfish, there are few data on cubozoans. Cubozoans are capable swimmers and have more complex and sophisticated visual abilities than scyphozoans. We predict, therefore, that cubozoans have the potential to have finer spatial scale differences in population structure than their relatives, the scyphozoans. Here we review the data available on the population structures of scyphozoans and what is known about cubozoans. The evidence from realized connectivity and estimates of potential connectivity for scyphozoans indicates the following. Some jellyfish taxa have a large metapopulation and very large stocks (>1000 s of km), while others have clade-level differences on the scale of tens of km. Data on distributions, genetics of medusa and Citation: Kingsford, M.J.; Schlaefer, polyps, statolith shape, elemental chemistry of statoliths and biophysical modelling of connectivity J.A.; Morrissey, S.J.
    [Show full text]
  • Changing Jellyfish Populations: Trends in Large Marine Ecosystems
    CHANGING JELLYFISH POPULATIONS: TRENDS IN LARGE MARINE ECOSYSTEMS by Lucas Brotz B.Sc., The University of British Columbia, 2000 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in The Faculty of Graduate Studies (Oceanography) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) October 2011 © Lucas Brotz, 2011 Abstract Although there are various indications and claims that jellyfish have been increasing at a global scale in recent decades, a rigorous demonstration to this effect has never been presented. As this is mainly due to scarcity of quantitative time series of jellyfish abundance from scientific surveys, an attempt is presented here to complement such data with non- conventional information from other sources. This was accomplished using the analytical framework of fuzzy logic, which allows the combination of information with variable degrees of cardinality, reliability, and temporal and spatial coverage. Data were aggregated and analysed at the scale of Large Marine Ecosystem (LME). Of the 66 LMEs defined thus far, which cover the world’s coastal waters and seas, trends of jellyfish abundance (increasing, decreasing, or stable/variable) were identified (occurring after 1950) for 45, with variable degrees of confidence. Of these 45 LMEs, the overwhelming majority (31 or 69%) showed increasing trends. Recent evidence also suggests that the observed increases in jellyfish populations may be due to the effects of human activities, such as overfishing, global warming, pollution, and coastal development. Changing jellyfish populations were tested for links with anthropogenic impacts at the LME scale, using a variety of indicators and a generalized additive model. Significant correlations were found with several indicators of ecosystem health, as well as marine aquaculture production, suggesting that the observed increases in jellyfish populations are indeed due to human activities and the continued degradation of the marine environment.
    [Show full text]
  • Hydra) and Develop Into Ciliated Planula That Settle to Form Sessile Polyp
    Chapter 4 Cnidarians (Coelenterata) 1 Phylum Cnidaria • 11,000 spp • Free living in marine water mainly • few spp in freshwater • Carnivorous predators primarily with • some spp in mutualistic symbiosis with photosynthetic algae • Dimorphic or polymorphic – Polyp: anemone, tube with a mouth surrounded by tentacles, specialized in sedentary (sessile) life attached to substrate – Medusa: jellyfish, bell-shaped free-floating, swim by pulsating contractions 2 Phylum Cnidaria • Diploblastic with gelatinous non-living mesoglea (may contain amoeboid cells) between the epidermis ( epitheliomuscular cells) and gastrodermis (nutritive muscular cells) • Radially symmetrical; organic level of body organization; with nerve cell network and muscle cells; • Gastrovascular cavity with one opening (mouth) surrounded by tentacles; 3 Phylum Cnidaria-feeding • Cnidoblasts are cells that secrete cnidae (nematocysts) and bear cnidocil that perceives chemical and tactile stimulation leading to nematocyst discharge • Cnida is a proteinaceous capsule with operculum and internal long coiled tube under osmotic pressure; • Nematocysts are >30 different types for different functions including food collection, defense and locomotion. They can wrap, stick to, penetrate or secreting proteinaceous deadly toxins. Into the prey. 4 Cnidocyte with nematocyst Trigger hair Cnidocil fluid coiled thread Undischarged Discharged < 0.1 mm 5 Classification of Cnidaria I • Classified into 4 classes: Scyphozoa, Cubozoa, Hydrozoa, & Anthozoa on the basis of dominant form and mode of
    [Show full text]
  • Life Cycle of Chrysaora Fuscescens (Cnidaria: Scyphozoa) and a Key to Sympatric Ephyrae1
    Life Cycle of Chrysaora fuscescens (Cnidaria: Scyphozoa) and a Key to Sympatric Ephyrae1 Chad L. Widmer2 Abstract: The life cycle of the Northeast Pacific sea nettle, Chrysaora fuscescens Brandt, 1835, is described from gametes to the juvenile medusa stage. In vitro techniques were used to fertilize eggs from field-collected medusae. Ciliated plan- ula larvae swam, settled, and metamorphosed into scyphistomae. Scyphistomae reproduced asexually through podocysts and produced ephyrae by undergoing strobilation. The benthic life history stages of C. fuscescens are compared with benthic life stages of two sympatric species, and a key to sympatric scyphome- dusa ephyrae is included. All observations were based on specimens maintained at the Monterey Bay Aquarium jelly laboratory, Monterey, California. The Northeast Pacific sea nettle, Chry- tained at the Monterey Bay Aquarium, Mon- saora fuscescens Brandt, 1835, ranges from terey, California, for over a decade, with Mexico to British Columbia and generally ap- cultures started by F. Sommer, D. Wrobel, pears along the California and Oregon coasts B. B. Upton, and C.L.W. However the life in late summer through fall (Wrobel and cycle remained undescribed. Chrysaora fusces- Mills 1998). Relatively little is known about cens belongs to the family Pelagiidae (Gersh- the biology or ecology of C. fuscescens, but win and Collins 2002), medusae of which are when present in large numbers it probably characterized as having a central stomach plays an important role in its ecosystem giving rise to completely separated and because of its high biomass (Shenker 1984, unbranched radiating pouches and without 1985). Chrysaora fuscescens eats zooplankton a ring-canal.
    [Show full text]
  • The Origin of Tetraradial Symmetry in Cnidarians
    The origin of tetraradial symmetry in cnidarians JERZY DZIK, ANDRZEJ BALINSKI AND YUANLIN SUN Dzik, J., Balinski, A. & Sun, Y. 2017: The origin of tetraradial symmetry in cnidarians. Lethaia, DOI: 10.1111/let.12199. Serially arranged sets of eight septa-like structures occur in the basal part of phosphatic tubes of Sphenothallus from the early Ordovician (early Floian) Fenxi- ang Formation in Hubei Province of China. They are similar in shape, location and number, to cusps in chitinous tubes of extant coronate scyphozoan polyps, which supports the widely accepted cnidarian affinity of this problematic fossil. However, unlike the recent Medusozoa, the tubes of Sphenothallus are flattened at later stages of development, showing biradial symmetry. Moreover, the septa (cusps) in Sphenothallus are obliquely arranged, which introduces a bilateral component to the tube symmetry. This makes Sphenothallus similar to the Early Cambrian Paiutitubulites, having similar septa but with even more apparent bilat- eral disposition. Biradial symmetry also characterizes the Early Cambrian tubular fossil Hexaconularia, showing a similarity to the conulariids. However, instead of being strictly tetraradial like conulariids, Hexaconularia shows hexaradial symme- try superimposed on the biradial one. A conulariid with a smooth test showing signs of the ‘origami’ plicated closure of the aperture found in the Fenxiang For- mation supports the idea that tetraradial symmetry of conulariids resulted from geometrical constrains connected with this kind of closure. Its minute basal attachment surface makes it likely that the holdfasts characterizing Sphenothallus and advanced conulariids are secondary features. This concurs with the lack of any such holdfast in the earliest Cambrian Torellella, as well as in the possibly related Olivooides and Quadrapyrgites.
    [Show full text]
  • Impact of Scyphozoan Venoms on Human Health and Current First Aid Options for Stings
    toxins Review Impact of Scyphozoan Venoms on Human Health and Current First Aid Options for Stings Alessia Remigante 1,2, Roberta Costa 1, Rossana Morabito 2 ID , Giuseppa La Spada 2, Angela Marino 2 ID and Silvia Dossena 1,* ID 1 Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria; [email protected] (A.R.); [email protected] (R.C.) 2 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, I-98166 Messina, Italy; [email protected] (R.M.); [email protected] (G.L.S.); [email protected] (A.M.) * Correspondence: [email protected]; Tel.: +43-662-2420-80564 Received: 10 February 2018; Accepted: 21 March 2018; Published: 23 March 2018 Abstract: Cnidaria include the most venomous animals of the world. Among Cnidaria, Scyphozoa (true jellyfish) are ubiquitous, abundant, and often come into accidental contact with humans and, therefore, represent a threat for public health and safety. The venom of Scyphozoa is a complex mixture of bioactive substances—including thermolabile enzymes such as phospholipases, metalloproteinases, and, possibly, pore-forming proteins—and is only partially characterized. Scyphozoan stings may lead to local and systemic reactions via toxic and immunological mechanisms; some of these reactions may represent a medical emergency. However, the adoption of safe and efficacious first aid measures for jellyfish stings is hampered by the diffusion of folk remedies, anecdotal reports, and lack of consensus in the scientific literature. Species-specific differences may hinder the identification of treatments that work for all stings.
    [Show full text]
  • A Review of Toxins from Cnidaria
    marine drugs Review A Review of Toxins from Cnidaria Isabella D’Ambra 1,* and Chiara Lauritano 2 1 Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy 2 Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-081-5833201 Received: 4 August 2020; Accepted: 30 September 2020; Published: 6 October 2020 Abstract: Cnidarians have been known since ancient times for the painful stings they induce to humans. The effects of the stings range from skin irritation to cardiotoxicity and can result in death of human beings. The noxious effects of cnidarian venoms have stimulated the definition of their composition and their activity. Despite this interest, only a limited number of compounds extracted from cnidarian venoms have been identified and defined in detail. Venoms extracted from Anthozoa are likely the most studied, while venoms from Cubozoa attract research interests due to their lethal effects on humans. The investigation of cnidarian venoms has benefited in very recent times by the application of omics approaches. In this review, we propose an updated synopsis of the toxins identified in the venoms of the main classes of Cnidaria (Hydrozoa, Scyphozoa, Cubozoa, Staurozoa and Anthozoa). We have attempted to consider most of the available information, including a summary of the most recent results from omics and biotechnological studies, with the aim to define the state of the art in the field and provide a background for future research. Keywords: venom; phospholipase; metalloproteinases; ion channels; transcriptomics; proteomics; biotechnological applications 1.
    [Show full text]
  • QAPP Phytoplankton ID 2007-2008
    QAPP Table of Contents LIS Water Quality Monitoring Zooplankton Identification Project 04/18/2018 Table of Contents Title/Signatures page Table of Contents A. Project Management………………………………………………………………... 1 1.1 Problem Definition………………………………………………………………. 1 1.2 Project Description………………………………………………………………. 2 1.3 Project Organization……………………………………………………………... 3 1.4 Distribution List…………………………………………………………………. 4 1.5 Description of Tasks…………………………………………………………….. 5 1.6 Project Report Schedule…………………………………………………………. 5 B. Measurement and Data Acquisition………………………………………………… 6 2.1 Sample Collection, Storage, and Processing…………………………………….. 6 2.1.1 Schedule of Sample Collection………………………………………………. 6 2.1.2 Sample Collection and Preservation…………………………………………. 6 2.1.3 Sample Handling, Tracking and Custody……………………………………. 9 2.1.4 Sample Processing/Zooplankton Identification and Enumeration ………….. 9 2.2 Data Analysis and Report Submission………………………………………….. 14 2.2.1 Spatial and Temporal Variation……………………………………………… 14 2.2.2 Reports……………………………………………………………………….. 14 2.3 Quality Control Requirements and Corrective Measures……………………….. 14 2.3.1 Sampling Quality Control……………………………………………………. 14 2.3.2 Analytical (Identification) Quality Control………………………………….. 15 2.4 Performance Audits……………………………………………………………... 16 2.5 Data Management……………………………………………………………….. 16 C. Assessment and Oversight………………………………………………………….. 16 3.1 Assessments……………………………………………………………………... 16 3.2 Management Reports……………………………………………………………. 17 D. Data Validation and Usability……………………………………………………… 17
    [Show full text]
  • NEMATOCYSTS in FOUR SPECIES of CORALS the Types And
    NEMATOCYSTS IN FOUR SPECIES OF CORALS ABSTRACT The types and distribution of homatocysts in four coral species were studied. Of the 20 maj or categories or nematocysts recognized in the phylum enidaria, five types were encountered in these four corals. They were holotrichous isorhizas, atrichous isorhizas, microbasic masti­ gophore, micro basic amastigophore and macrobasic mastigophore. The type of nematocysts and their abundance varied from coral to coral and even within a single species, the relative distribution of a given type of nematocyst varied in different parts of a polyp. It is suggested that the differences im the nematocysts could be us ed in the classification of corals. Most of the scleractinian corals form been used in the systematics of actinia­ colonies which assume many shapes such rians (Werner, 1965). However, no such as rounded and massive, branching, use of nematocysts has been made in foliaceous and encrusting. In many corals scleractinian corals. The present study the variation in the shape of the corallum provid es some information on the types is largely determined by ecological of nematocysts and their distrib ution in various parts of the body of four species factors and hence it is difficult to diffe­ of corals. This information seems to be rentiate between a growing colony and of value in their taxonomy. a species because the fin al form of certain types of corals is influ­ Favia pallida, Fallia valenciennesi, Favites abducens and -Goniopora pectinata enced by the environment ( Gareau, were the corals used in this study. These 1963; Goreau and Hartman, 1963; were collected from .
    [Show full text]