2014-12 R&C Newsletter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
KS2 Tortoise Shapes and Sizes
TORTOISE SHAPES AND SIZE... ? Not all tortoises look the same. What can you learn about a tortoise from looking at the shape of its shell? Some Galapagos tortoises have Some Galapagos tortoises have domed shells like this saddleback shells like this An adaptation is a feature an animal has which helps it survive. If an animal has a greater chance of surviving then it has a greater chance of having more babies who are also likely to have the same adaptation. In the space below, draw one of our Galapagos giant tortoises. Make notes describing the TASK 1 different adaptations of the tortoise and how those features might help the tortoise survive in the wild. Worksheet 2 KS2 1 ? Not all the Galapagos Islands have the same habitat. What can you tell about the habitat of a tortoise by looking at the shape of its shell? Some of the Galapagos Islands are Some of the Galapagos Islands are smaller and dryer, where tall cacti larger and wetter, where many plants grow. plants grow close to the ground. TASK 2 Of the two tortoise shell shapes, which is likely to be better for reaching tall cacti plants? ______________________________________________________________________________________________ ______________________________________________________________________________________________ ______________________________________________________________________________________________ Which of these island types is likely to provide enough food for tortoises to grow to large sizes? ______________________________________________________________________________________________ -
An Introduction to Lemurs for Teachers and Educators
AN INTRODUCTION TO LEMURS FOR TEACHERS AND EDUCATORS WELCOME TO THE WORLD OF AKO THE AYE-AYE The Ako the Aye-Aye Educator’s Guide introduces you to the remarkable world of lemurs. This guide provides background information about the biological concepts conveyed through the 21 Ako lessons. These lessons were created to accompany the Ako books. The Ako book series were developed by renowned primatologist Alison Jolly for students in Madagascar to inspire understanding and appreciation for the unique primates that share their island home. In addition to the books there is also a set of posters which showcase the habitat of each lemur species and their forest “neighbors.” GOALS OF THE AKO LESSONS: • Inspire students to make a positive difference for lemurs and other wildlife. • Promote environmental awareness, understanding and appreciation. • Provide activities that connect students to nature and motivate conservation action. HOW TO USE THIS GUIDE Each lesson aligns with a specific grade level (Kindergarten-1st, 2nd-3rd and 4th-5th) and one of the seven environmental themes below. Before carrying out an activity, we recommend reading the corresponding section in this guide that matches the theme of the lesson. The themes are: • LOOKING AT LEMURS—CLASSIFICATION AND BIODIVERSITY (PAGE 4) • EXPLORING LEMUR HABITATS (PAGE 10) • INVESTIGATING LEMUR ADAPTATIONS (PAGE 18) • DISCOVERING LEMUR COMMUNITIES—INTER-DEPENDENCE (PAGE 23) • LEARNING ABOUT LEMUR LIFE—LIFE CYCLES AND BEHAVIOR (PAGE 26) • DISCOVERING MADAGASCAR’S PEOPLE AND PLACES (PAGE 33) • MAKING A DIFFERENCE FOR LEMURS (PAGE 40) Lessons can be completed chronologically or independently. Each activity incorporates multiple learning styles and subject areas. -
HABITAT MANAGEMENT PLAN Green Bay and Gravel Island
HABITAT MANAGEMENT PLAN Green Bay and Gravel Island National Wildlife Refuges October 2017 Habitat Management Plans provide long-term guidance for management decisions; set forth goals, objectives, and strategies needed to accomplish refuge purposes; and, identify the Fish and Wildlife Service’s best estimate of future needs. These plans detail program planning levels that are sometimes substantially above current budget allocations and as such, are primarily for Service strategic planning and program prioritization purposes. The plans do not constitute a commitment for staffing increases, operational and maintenance increases, or funding for future land acquisition. The National Wildlife Refuge System, managed by the U.S. Fish and Wildlife Service, is the world's premier system of public lands and waters set aside to conserve America's fish, wildlife, and plants. Since the designation of the first wildlife refuge in 1903, the System has grown to encompass more than 150 million acres, 556 national wildlife refuges and other units of the Refuge System, plus 38 wetland management districts. This page intentionally left blank. Habitat Management Plan for Green Bay and Gravel Island National Wildlife Refuges EXECUTIVE SUMMARY This Habitat Management Plan (HMP) provides vision and specific guidance on enhancing and managing habitat for the resources of concern (ROC) at the refuge. The contributions of the refuge to ecosystem- and landscape-scale wildlife and biodiversity conservation, specifically migratory waterfowl, are incorporated into this HMP. The HMP is intended to provide habitat management direction for the next 15 years. The HMP is also needed to ensure that the refuge continues to conserve habitat for migratory birds in the context of climate change, which affects all units of the National Wildlife Refuge System. -
Basal Turtles Shell Bone Histology Indicates Terrestrial Palaeoecology Of
Downloaded from rspb.royalsocietypublishing.org on May 22, 2012 Shell bone histology indicates terrestrial palaeoecology of basal turtles Torsten M Scheyer and P.Martin Sander Proc. R. Soc. B 2007 274, 1885-1893 doi: 10.1098/rspb.2007.0499 Supplementary data "Data Supplement" http://rspb.royalsocietypublishing.org/content/suppl/2009/03/13/274.1620.1885.DC1.ht ml References This article cites 26 articles, 5 of which can be accessed free http://rspb.royalsocietypublishing.org/content/274/1620/1885.full.html#ref-list-1 Article cited in: http://rspb.royalsocietypublishing.org/content/274/1620/1885.full.html#related-urls Receive free email alerts when new articles cite this article - sign up in the box at the top Email alerting service right-hand corner of the article or click here To subscribe to Proc. R. Soc. B go to: http://rspb.royalsocietypublishing.org/subscriptions Downloaded from rspb.royalsocietypublishing.org on May 22, 2012 Proc. R. Soc. B (2007) 274, 1885–1893 doi:10.1098/rspb.2007.0499 Published online 22 May 2007 Shell bone histology indicates terrestrial palaeoecology of basal turtles Torsten M. Scheyer*,† and P. Martin Sander Institute of Palaeontology, University of Bonn, Nussallee 8, 53115 Bonn, Germany The palaeoecology of basal turtles from the Late Triassic was classically viewed as being semi-aquatic, similar to the lifestyle of modern snapping turtles. Lately, this view was questioned based on limb bone proportions, and a terrestrial palaeoecology was suggested for the turtle stem. Here, we present independent shell bone microstructural evidence for a terrestrial habitat of the oldest and basal most well- known turtles, i.e. -
Universidad Nacional Del Comahue Centro Regional Universitario Bariloche
Universidad Nacional del Comahue Centro Regional Universitario Bariloche Título de la Tesis Microanatomía y osteohistología del caparazón de los Testudinata del Mesozoico y Cenozoico de Argentina: Aspectos sistemáticos y paleoecológicos implicados Trabajo de Tesis para optar al Título de Doctor en Biología Tesista: Lic. en Ciencias Biológicas Juan Marcos Jannello Director: Dr. Ignacio A. Cerda Co-director: Dr. Marcelo S. de la Fuente 2018 Tesis Doctoral UNCo J. Marcos Jannello 2018 Resumen Las inusuales estructuras óseas observadas entre los vertebrados, como el cuello largo de la jirafa o el cráneo en forma de T del tiburón martillo, han interesado a los científicos desde hace mucho tiempo. Uno de estos casos es el clado Testudinata el cual representa uno de los grupos más fascinantes y enigmáticos conocidos entre de los amniotas. Su inconfundible plan corporal, que ha persistido desde el Triásico tardío hasta la actualidad, se caracteriza por la presencia del caparazón, el cual encierra a las cinturas, tanto pectoral como pélvica, dentro de la caja torácica desarrollada. Esta estructura les ha permitido a las tortugas adaptarse con éxito a diversos ambientes (por ejemplo, terrestres, acuáticos continentales, marinos costeros e incluso marinos pelágicos). Su capacidad para habitar diferentes nichos ecológicos, su importante diversidad taxonómica y su plan corporal particular hacen de los Testudinata un modelo de estudio muy atrayente dentro de los vertebrados. Una disciplina que ha demostrado ser una herramienta muy importante para abordar varios temas relacionados al caparazón de las tortugas, es la paleohistología. Esta disciplina se ha involucrado en temas diversos tales como el origen del caparazón, el origen del desarrollo y mantenimiento de la ornamentación, la paleoecología y la sistemática. -
Human Translocation As an Alternative Hypothesis to Explain the Presence of Giant Tortoises on Remote Islands in the Southwestern Indian Ocean
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/298072054 Human translocation as an alternative hypothesis to explain the presence of giant tortoises on remote islands in the Southwestern Indian Ocean ARTICLE in JOURNAL OF BIOGEOGRAPHY · MARCH 2016 Impact Factor: 4.59 · DOI: 10.1111/jbi.12751 READS 63 3 AUTHORS: Lucienne Wilmé Patrick Waeber Missouri Botanical Garden ETH Zurich 50 PUBLICATIONS 599 CITATIONS 37 PUBLICATIONS 113 CITATIONS SEE PROFILE SEE PROFILE Jörg U. Ganzhorn University of Hamburg 208 PUBLICATIONS 5,425 CITATIONS SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Lucienne Wilmé letting you access and read them immediately. Retrieved on: 18 March 2016 Journal of Biogeography (J. Biogeogr.) (2016) PERSPECTIVE Human translocation as an alternative hypothesis to explain the presence of giant tortoises on remote islands in the south-western Indian Ocean Lucienne Wilme1,2,*, Patrick O. Waeber3 and Joerg U. Ganzhorn4 1School of Agronomy, Water and Forest ABSTRACT Department, University of Antananarivo, Giant tortoises are known from several remote islands in the Indian Ocean Madagascar, 2Missouri Botanical Garden, (IO). Our present understanding of ocean circulation patterns, the age of the Madagascar Research & Conservation Program, Madagascar, 3Forest Management islands, and the life history traits of giant tortoises makes it difficult to com- and Development, Department of prehend how these animals arrived -
Lemurs, Little and Large
Lesson Description LEMURS, LITTLE Students practice measuring and learn that lemurs come in many sizes by measuring the length of Bitika the mouse lemur AND LARGE and other lemur species that she encounters on her evening adventure. The discussion focuses on lemur biodiversity (and 2-3rd grade also island gigantism and dwarfism) and the risks and benefits Language Arts, Science. Math of being big and small. Students will know that lemurs come in a variety of sizes and be able to use different tools ● Sets of marked lemur measurement rope and and units to measure them. identification, made using: ● Lemur Fact Cards ● Thick yarn or twine (15 feet long, one per group of ● Measure the length of different lemur species students plus one for the teacher) ● Describe why lemurs are so diverse in size ● Toilet paper, paper towel roll, or similar tube ● Measure lengths using a variety of tools ● Paper clips (8 per group of students ) ● Compare various units of measurement ● Colored tape (to mark lengths on rope) ● Describe why island species are sometimes very ● Masking tape to tape the ends of the large or very small lemur measuring rope to the floor ● Understand complexity of conservation issues ● Menabe-Antanimena Ako Poster i LOOKING AT LEMURS SETUP . Print out one set of Lemur Fact Cards for each rope. Cut out each card and hole-punch the corner. Place a paper clip through the hole. The paper clip will be used to attach the card at the distance representing the length of each lemur depicted. Cut one 15 foot length of yarn for each student group. -
Comparative Thinking in Biology
Comparative Thinking in Biology Adrian Currie This material has been published in the Cambridge University Press series Elements in the Philosophy of Biology, edited by Grant Ramsey and Michael Ruse. This version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. © Adrian Currie. Acknowledgements I’m grateful to Marta Halina, Sabina Leonelli, Alison McConwell, Aaron Novick, Trevor Pearce, Russell Powell, William Wong and two anonymous referees for extremely useful and kind feedback on draft material. Also thanks to Grant Ramsey and Michael Ruse. Ideas from this element were presented to Exeter’s Cognition and Culture reading group, at Philosophy of Biology at Dolphin Beach 13 and at the Recent Trends in Philosophy of Biology conference in Bilkent; thanks to the audiences there. Many thanks to Kimberly Brumble for the wonderful illustrations. Some of the research for this Element was funded by the Templeton World Charity Foundation. Dedicated to the incomparable Kate. Table of Contents Cats versus Dogs............................................................................................................................... 1 1. Comparative Thinking .......................................................................................................... 14 1.1 Comparative Concepts .................................................................................................... 14 1.2 Two Kinds of Inference ................................................................................................... -
Does Relaxed Predation Drive Phenotypic Divergence Among Insular Populations?
doi: 10.1111/jeb.12421 Does relaxed predation drive phenotypic divergence among insular populations? A. RUNEMARK*, M. BRYDEGAARD† &E.I.SVENSSON* *Evolutionary Ecology Unit, Department of Biology, Lund University, Lund, Sweden †Atomic Physics Division, Department of Physics, Lund University, Lund, Sweden Keywords: Abstract antipredator defence; The evolution of striking phenotypes on islands is a well-known phenome- body size; non, and there has been a long-standing debate on the patterns of body size coloration; evolution on islands. The ecological causes driving divergence in insular crypsis; populations are, however, poorly understood. Reduced predator fauna is lizards; expected to lower escape propensity, increase body size and relax selection Podarcis; for crypsis in small-bodied, insular prey species. Here, we investigated population divergence; whether escape behaviour, body size and dorsal coloration have diverged as variance. predicted under predation release in spatially replicated islet and mainland populations of the lizard species Podarcis gaigeae. We show that islet lizards escape approaching observers at shorter distances and are larger than main- land lizards. Additionally, we found evidence for larger between-population variation in body size among the islet populations than mainland popu- lations. Moreover, islet populations are significantly more divergent in dorsal coloration and match their respective habitats poorer than mainland lizards. These results strongly suggest that predation release on islets has driven population divergence in phenotypic and behavioural traits and that selective release has affected both trait means and variances. Relaxed preda- tion pressure is therefore likely to be one of the major ecological factors driving body size divergence on these islands. adjacent mainland localities. -
Chelonia Brongniart Green Sea Turtles
248.1 REPTILIA: TESTUDINES: CHELONIIDAE CHELONIA Catalogue of American Amphibians and Reptiles. The following skull characters are based on specimens of C. mydas (a representative series of skulls from C. depressa has yet HIRTH, HAROLDF. 1980. Chelonia. to be described). Tomium of the lower jaw is strongly serrated while that of the upper jaw possesses ridges on the inner surface; maxilla with vertical ribbing on inner surface; a blunt ridge on Chelonia Brongniart vomer and palatines at the anterior margin of the internal choa• Green sea turtles nae; mandibular symphysis short; the labial and lingual margins rise to points at the symphysis and the two points are connected Chelonia Brongniart, 1800:89. Type-species designated as Che• by a sharp symphysial ridge. lonia mydas Cuvier, 1832 (~Testudo mydas Linnaeus, 1758) by Fitzinger, 1843:30. • DESCRIPTIONS. General descriptions of varying degrees of Chelonias: Rafinesque, 1814:66. Emendation. completeness are in Smith (1931), Deraniyagala (1939), Bourret Caretta (in part): Merrem, 1820:19. (1941), Carr (1952), Loveridge and Williams (1957), and Cogger Chelona Burmeister, 1837:731. Type-species, Testudo mydas (1975) among others. For descriptions of various life stages of C. Linnaeus, 1758 by monotypy. depressa see PERTINENTLITERATURE.Hirth (1980) provides ref• Mydas Cocteau, 1838:22. Type-species, Testudo mydas Lin• erences to descriptions of the life stages of C. mydas. naeus, 1758 by tautonomy. Mydasea Gervais, 1843:457. Type-species, Testudo mydas Lin• • ILLUSTRATIONS. Black and white photos of C. depressa naeus, 1758 by tautonomy. hatchlings are found in Williams et al. (1967), Limpus (1971), and Euchelonia Tschudi, 1846:22. Type-species, Testudo mydas Lin• Bustard (1972). -
Antartic Peninsula and Tierra Del Fuego: 100
ANTARCTIC PENINSULA & TIERRA DEL FUEGO BALKEMA – Proceedings and Monographs in Engineering, Water and Earth Sciences Antarctic Peninsula & Tierra del Fuego: 100 years of Swedish-Argentine scientific cooperation at the end of the world Edited by Jorge Rabassa & María Laura Borla Proceedings of “Otto Nordenskjöld’s Antarctic Expedition of 1901–1903 and Swedish Scientists in Patagonia: A Symposium”, held in Buenos Aires, La Plata and Ushuaia, Argentina, March 2–7, 2003. LONDON / LEIDEN / NEW YORK / PHILADELPHIA / SINGAPORE Cover photo information: “The Otto Nordenskjöld’s Expedition to Antarctic Peninsula, 1901–1903. The wintering party in front of the hut on Snow Hill, Antarctica, 30th September 1902. From left to right: Bodman, Jonassen, Nordenskjöld, Ekelöf, Åkerlund and Sobral. Photo: G. Bodman. From the book: Otto Nordenskjöld & John Gunnar Andersson, et al., “Antarctica: or, Two Years amongst the Ice of the South Pole” (London: Hurst & Blackett., 1905)”. Taylor & Francis is an imprint of the Taylor & Francis Group, an informa business This edition published in the Taylor & Francis e-Library, 2007. “To purchase your own copy of this or any of Taylor & Francis or Routledge’s collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk.” © 2007 Taylor & Francis Group plc, London, UK All rights reserved. No part of this publication or the information contained herein may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, by photocopying, recording or otherwise, without written prior permission from the publishers. Although all care is taken to ensure the integrity and quality of this publication and the information herein, no responsibility is assumed by the publishers nor the author for any damage to property or persons as a result of operation or use of this publication and/or the information contained herein. -
The Island Rule and Its Application to Multiple Plant Traits
The island rule and its application to multiple plant traits Annemieke Lona Hedi Hendriks A thesis submitted to the Victoria University of Wellington in partial fulfilment of the requirements for the degree of Master of Science in Ecology and Biodiversity Victoria University of Wellington, New Zealand 2019 ii “The larger the island of knowledge, the longer the shoreline of wonder” Ralph W. Sockman. iii iv General Abstract Aim The Island Rule refers to a continuum of body size changes where large mainland species evolve to become smaller and small species evolve to become larger on islands. Previous work focuses almost solely on animals, with virtually no previous tests of its predictions on plants. I tested for (1) reduced floral size diversity on islands, a logical corollary of the island rule and (2) evidence of the Island Rule in plant stature, leaf size and petiole length. Location Small islands surrounding New Zealand; Antipodes, Auckland, Bounty, Campbell, Chatham, Kermadec, Lord Howe, Macquarie, Norfolk, Snares, Stewart and the Three Kings. Methods I compared the morphology of 65 island endemics and their closest ‘mainland’ relative. Species pairs were identified. Differences between archipelagos located at various latitudes were also assessed. Results Floral sizes were reduced on islands relative to the ‘mainland’, consistent with predictions of the Island Rule. Plant stature, leaf size and petiole length conformed to the Island Rule, with smaller plants increasing in size, and larger plants decreasing in size. Main conclusions Results indicate that the conceptual umbrella of the Island Rule can be expanded to plants, accelerating understanding of how plant traits evolve on isolated islands.