Algorithms for Test Generation and Fault Simulation of Path-Delay

Total Page:16

File Type:pdf, Size:1020Kb

Algorithms for Test Generation and Fault Simulation of Path-Delay ALGORITHMS FOR TEST GENERATION AND FAULT SIMULATION OF PATH DELAY FAULTS IN LOGIC CIRCUITS A Thesis Submitted For the Degree of Doctor of Philosophy in the Faculty of Engineering by ANANTA KUMAR MAJHI Department of Electrical Communication Engineering INDIAN INSTITUTE OF SCIENCE BANGALORE INDIA NOVEMBER To Bhai Perfection is the goal of human life but human eorts are limited Happiness does not come merely through human endeavour but comes through grace Blessed are those who have the grace of both God and master Swami Rama i Acknowledgments It gives me immense pleasure to sincerely thank every one who help ed me in various ways to complete this dissertation First and foremost I bow b efore the Lord Almighty with a grateful heart for His blessings which have made me what Iam I express my deep sense of gratitude to my research sup ervisor Dr James Jacob of the ECE Department He has b een an excellent teacher counseller and guide to me and has given me continual encouragement and wise guidance throughout the course of my research work I am also indebted to him and his family for their p ersonal care love and understanding during many dicult times heartfelt gratitude to my research cosup ervisor Prof L M I place on record my Patnaik of the CSA Department for his encouragement moral supp ort and valuable suggestions I am obliged to him not only for providing the computing facilities in Micro pro cessor Applications Lab oratory but also for his p ersonal care and fatherly guidance which will always b e rememb ered and treasured by me My heartfelt thanks to Dr Vishwani D Agrawal of the ATT Bell Labs USA for acting as an unocial research cosup ervisor by always being there for me with his and encouragement during the entire course valuable advice suggestions keen interest of this work His comments and suggestions have greatly help ed me in improving my thinking presenting and writing skills I thank him also for providing me the most recent preprints and publications and for having gone through the entire manuscript I would like to thank Prof V U Reddy past Chairman and Prof A Selvara jan present Chairman of the ECE Department and Prof N Balakrishnan the Chairman of SERC for providing the nancial assistance and necessary computing facilities for my edavathy for allowing researchwork Imust also thank Prof A Kumar and Prof T S V me to use their lab oratory facilities during the initial period of my research career and also for their love and concern over the years I have greatly b eneted by the scholarly advice and suggestions from Dr M K Srinivas Rutgers Univ USA Pradip Mandal Jacob Augustine and P R Sureshkumar ii I thank them for their friendship and encouragement during my research work I would also like to thank Dr Srinivas Patil Dr Ankan Pramanick Dr Ira Pramanick and Dr L N Reddy all of IBM USA and Keerthi Heragu of Univ of Illinois USA for providing me copies of their theses and recent publications in the area of my work I ISc has b een a stimulating environment esp ecially b ecause of myloving friends Ani mesh Ratikanta Lo chan Purna Mano j Prasant Saro j Barada Krutibas Himansu Ni ra j Venkatesh Ra jendra Raghu Pradipta Dillip Pratap Chidananda Subhra Radha Gowri Nanda Namita Shorey Prem Sai Mala and others They have truly shared my life enjoyable during my stay on the campus My many a lighter moment and made sp ecial thanks to Animesh for being always with me in pain and pleasure and sharing my feelings at my monotonous moments I am esp ecially grateful to Biswa jit Biswamohan Moharana and family Ra jesh and family Rout and familyfor their love and concern as a younger brother and for making my stay comfortable in Bangalore Uninvited app earances in their houses on various o ccasions will always be remembered by me It is my pleasure to thank Chandramouli Mahadevan Pro ject Manager Pro duct Division Texas Instruments India Bangalore for his kind help and un Engineering derstanding during the nal phase of the work Life is always cheerful in TI I due to friends like Bala jee SriVidhya Debaleena Baskar Swagata Swathi Vinayak Sara ja RSR Palani and Prakash The nancial assistance from Texas Instruments India for printing and xeroxing the nal manuscript is greatly acknowledged Finallywords cannot express my feelings of gratitude to my beloved mother uncle their unwavering encouragement moral supp ort and sac and other family members for rice without which this work would not have been completed Their love and blessings were a p erp etual source of inspiration to me Ananta iii Abstract Ascertaining correct op eration of digital logic circuits requires verication of functional behavior as well as correct op eration at desired clo ckspeed The maximum allowable clo ck rate in a digital circuit is determined by the propagation delays of the combinational logic network b etween latches If the delay of the manufactured network exceeds sp ecications due to some physical defects or pro cess variations unstabilized and p ossibly incorrect logic values maybelatched in memory elements Delay fault testing can b e used to ensure that manufactured digital circuits meet their timing sp ecications In this thesis we present novel and ecient algorithms for test generation and fault simulation of path delay faults in combinational logic circuits We have develop ed a novel delay fault simulator for combinational logic circuits both robust and nonrobust tests for path which is capable of simultaneously analyzing delay faults Only a simple binary logic is used instead of the multivalued algebra as is used in most existing simulators A rule based approach is develop ed to identify all robust and nonrobust paths tested byatwopattern test while backtracing from primary outputs to primary inputs in a depthrst manner Rules identify probable glitches as they propagate through the circuit and thus determine when a test b ecomes nonrobust Exp erimental results for benchmark circuits determine the p erformance of the simulator For coverage all path delay faults are for deterministic as well as random test vectors implicitly considered We have also develop ed an ecient automatic test generation algorithm for path delay faults in combinational circuits To facilitate simultaneous consideration of robust and nonrobust tests we employ a value logic system Once a robust test is found for a path with a given transition our algorithm derives another test for the opp osite transition with minimal extra eort The derived test in most cases is either a robust or ktrace pro cedure is employed nonrobust test for the same path An ecient multiple bac for satisfying the test generation ob jectives A path selection metho d is prop osed which covers all lines in the logic circuit by the longest as well as the shortest p ossible paths iv through them The fault simulator integrated with the test generation system gives information on robust and nonrobust detection of faults either from a given target set or all path faults Exp erimental results on several b enchmark circuits substantiate the eciency of our algorithm A comparison with other published results is given We prop ose a new coverage metric and a twopass test generation metho d for delay faults in combinational circuits The coverage metric termed as line delay fault coverage on paths passing through each line in the circuit one for the considers two delay faults rising transition and the other for the falling transition However the test criterion is dierent from that of the slowtorise and slowtofall transition faults The new test called line delay test is a path delay test for the longest robustly testable path pro ducing a given transition on the target line The maximum numb er of tests and faults is limited to twice the number of lines Using a twopass test generation pro cedure we b egin with a minimal set of longest paths covering all lines and generate tests for them Fault the line delay fault coverage The second pass considers simulation is used to determine those lines for which line delay tests could not b e generated in the rst pass and attempts to generate robust tests for successively shorter paths through these lines until a test for the longest robustly testable path is found We present a theorem stating that a redundant stuckat fault makes all path delay faults involving that faulty line untestable for either a rising or falling transition dep ending on the typ e of the stuckat fault The use of this theorem considerably reduces the eort of delay test generation An implementation of our algorithm achieved very high line delay coverage eciency for most of the benchmark circuits We hop e that the novel ideas and algorithms prop osed in this thesis will nd appli cation in the development of ecient CAD to ols for delay fault testing and simulation of real life VLSI circuits The new delay fault coverage metric has the advantages of reduced complexity and high coverage eciency We discuss its limitations with resp ect to the conventional path delay fault mo del Future exp erimental work should establish the validity of our fault coverage metric Contents Intro duction Design and Test of Integrated Circuits DelayFault Testing Why Delay Fault Testing Contribution of the Thesis Organization of the Thesis Prior Work DelayFault Mo dels Transition Fault Mo del Gate Delay Fault Mo del
Recommended publications
  • Chapter 3: Combinational Logic Design
    Chapter 3: Combinational Logic Design 1 Introduction • We have learned all the prerequisite material: – Truth tables and Boolean expressions describe functions – Expressions can be converted into hardware circuits – Boolean algebra and K-maps help simplify expressions and circuits • Now, let us put all of these foundations to good use, to analyze and design some larger circuits 2 Introduction • Logic circuits for digital systems may be – Combinational – Sequential • A combinational circuit consists of logic gates whose outputs at any time are determined by the current input values, i.e., it has no memory elements • A sequential circuit consists of logic gates whose outputs at any time are determined by the current input values as well as the past input values, i.e., it has memory elements 3 Introduction • Each input and output variable is a binary variable • 2^n possible binary input combinations • One possible binary value at the output for each input combination • A truth table or m Boolean functions can be used to specify input-output relation 4 Design Hierarchy • A single very large-scale integrated (VLSI) processos circuit contains several tens of millions of gates! • Imagine interconnecting these gates to form the processor • No complex circuit can be designed simply by interconnecting gates one at a time • Divide and Conquer approach is used to deal with the complexity – Break up the circuit into pieces (blocks) – Define the functions and the interfaces of each block such that the circuit formed by interconnecting the blocks obeys the original circuit specification – If a block is still too large and complex to be designed as a single entity, it can be broken into smaller blocks 5 Divide and Conquer 6 Hierarchical Design due to Divide and Conquer 7 Hierarchical Design • A hierarchy reduce the complexity required to represent the schematic diagram of a circuit • In any hierarchy, the leaves consist of predefined blocks, some of which may be primitives.
    [Show full text]
  • Combinational Logic; Hierarchical Design and Analysis
    Combinational Logic; Hierarchical Design and Analysis Tom Kelliher, CS 240 Feb. 10, 2012 1 Administrivia Announcements Collect assignment. Assignment Read 3.3. From Last Time IC technology. Outline 1. Combinational logic. 2. Hierarchical design 3. Design analysis. 1 Coming Up Design example. 2 Combinational Logic 1. Definition: Logic circuits in which the output(s) depend solely upon current inputs. 2. No feedback or memory. 3. Sequential circuits: outputs depend upon current inputs and previous inputs. Memory or registers. 4. Example — BCD to 7-segment decoder: S0 D0 S1 D1 BCD - 7 Seg S2 D2 S3 D3 Decoder S4 S5 S6 3 Hierarchical Design 1. Transistor counts: 2 Processor Year Transistor Count TI SN7400 1966 16 Intel 4004 1971 2,300 Intel 8085 1976 6,500 Intel 8088 1979 29,000 Intel 80386 1985 275,000 Intel Pentium 1993 3,100,000 Intel Pentium 4 2000 42,000,000 AMD Athlon 64 2003 105,900,000 Intel Core 2 Duo 2006 291,000,000 Intel Core 2 Quad 2006 582,000,000 NVIDIA G80 2006 681,000,000 Intel Dual Core Itanium 2 2006 1,700,000,000 Intel Atom 2008 42,000,000 Six Core Xeon 7400 2008 1,900,000,000 AMD RV770 2008 956,000,000 NVIDIA GT200 2008 1,400,000,000 Eight Core Xeon Nehalem-EX 2010 2,300,000,000 10 Core Xeon Westmere-EX 2011 2,600,000,000 AMD Cayman 2010 2,640,000,000 NVIDIA GF100 2010 3,000,000,000 Altera Stratix V 2011 3,800,000,000 2. Design and conquer: CPU ⇒ Integer Unit ⇒ Adder ⇒ binary full adder ⇒ NAND gates 3.
    [Show full text]
  • The Basics of Logic Design
    C APPENDIX The Basics of Logic Design C.1 Introduction C-3 I always loved that C.2 Gates, Truth Tables, and Logic word, Boolean. Equations C-4 C.3 Combinational Logic C-9 Claude Shannon C.4 Using a Hardware Description IEEE Spectrum, April 1992 Language (Shannon’s master’s thesis showed that C-20 the algebra invented by George Boole in C.5 Constructing a Basic Arithmetic Logic the 1800s could represent the workings of Unit C-26 electrical switches.) C.6 Faster Addition: Carry Lookahead C-38 C.7 Clocks C-48 AAppendixC-9780123747501.inddppendixC-9780123747501.indd 2 226/07/116/07/11 66:28:28 PPMM C.8 Memory Elements: Flip-Flops, Latches, and Registers C-50 C.9 Memory Elements: SRAMs and DRAMs C-58 C.10 Finite-State Machines C-67 C.11 Timing Methodologies C-72 C.12 Field Programmable Devices C-78 C.13 Concluding Remarks C-79 C.14 Exercises C-80 C.1 Introduction This appendix provides a brief discussion of the basics of logic design. It does not replace a course in logic design, nor will it enable you to design signifi cant working logic systems. If you have little or no exposure to logic design, however, this appendix will provide suffi cient background to understand all the material in this book. In addition, if you are looking to understand some of the motivation behind how computers are implemented, this material will serve as a useful intro- duction. If your curiosity is aroused but not sated by this appendix, the references at the end provide several additional sources of information.
    [Show full text]
  • Combinational Logic
    MEC520 디지털 공학 Combinational Logic Jee-Hwan Ryu School of Mechanical Engineering Korea University of Technology and Education Combinational circuits Outputs are determined from the present inputs Consist of input/output variables and logic gates Binary signal to registers Binary signal from registers Sequential Circuits Outputs are determined from the present inputs and the state of the storage elements The state of the storage elements is a function of previous inputs Depends on present and past inputs Korea University of Technology and Education Analysis procedure To determine the function from a given circuit diagram Analysis procedure Make sure the circuit is combinational or sequential No Feedback and memory elements Obtain the output Boolean functions or the truth table Korea University of Technology and Education Obtain Procedure-Boolean Function Boolean function from a logic diagram Label all gate outputs with arbitrary symbols Make output functions at each level Substitute final outputs to input variables Korea University of Technology and Education Obtain Procedure-Truth Table Truth table from a logic diagram Put the input variables to binary numbers Determine the output value at each gate Obtain truth table Korea University of Technology and Education Example Korea University of Technology and Education Design Procedure Procedure to design a combinational circuit 1. Determine the required number of input and output from specification 2. Assign a symbol to each input/output 3. Derive the truth table from the
    [Show full text]
  • Chapter 6 - Combinational Logic Systems GCSE Electronics – Component 1: Discovering Electronics
    Chapter 6 - Combinational logic systems GCSE Electronics – Component 1: Discovering Electronics Combinational logic systems Learners should be able to: (a) recognise 1/0 as two-state logic levels (b) identify and use NOT gates and 2-input AND, OR, NAND and NOR gates, singly and in combination (c) produce a suitable truth table from a given system specification and for a given logic circuit (d) use truth tables to analyse a system of gates (e) use Boolean algebra to represent the output of truth tables or logic gates and use the basic Boolean identities A.B = A+B and A+B = A.B (f) design processing systems consisting of logic gates to solve problems (g) simplify logic circuits using NAND gate redundancy (h) analyse and design systems from a given truth table to solve a given problem (i) use data sheets to select a logic IC for given applications and to identify pin connections (j) design and use switches and pull-up or pull-down resistors to provide correct logic level/edge-triggered signals for logic gates and timing circuits 180 © WJEC 2017 Chapter 6 - Combinational logic systems GCSE Electronics – Component 1: Discovering Electronics Introduction In this chapter we will be concentrating on the basics of digital logic circuits which will then be extended in Component 2. We should start by ensuring that you understand the difference between a digital signal and an analogue signal. An analogue signal Voltage (V) Max This is a signal that can have any value between the zero and maximum of the power supply. Changes between values can occur slowly or rapidly depending on the system involved.
    [Show full text]
  • CS 61C: Great Ideas in Computer Architecture Combinational and Sequential Logic, Boolean Algebra
    CS 61C: Great Ideas in Computer Architecture Combinational and Sequential Logic, Boolean Algebra Instructor: Justin Hsia 7/24/2013 Summer 2013 ‐‐ Lecture #18 1 Review of Last Lecture • OpenMP as simple parallel extension to C – During parallel fork, be aware of which variables should be shared vs. private among threads – Work‐sharing accomplished with for/sections – Synchronization accomplished with critical/atomic/reduction • Hardware is made up of transistors and wires – Transistors are voltage‐controlled switches – Building blocks of all higher‐level blocks 7/24/2013 Summer 2013 ‐‐ Lecture #18 2 Great Idea #1: Levels of Representation/Interpretation temp = v[k]; Higher‐Level Language v[k] = v[k+1]; Program (e.g. C) v[k+1] = temp; Compiler lw $t0, 0($2) Assembly Language lw $t1, 4($2) Program (e.g. MIPS) sw $t1, 0($2) sw $t0, 4($2) Assembler 0000 1001 1100 0110 1010 1111 0101 1000 Machine Language 1010 1111 0101 1000 0000 1001 1100 0110 Program (MIPS) 1100 0110 1010 1111 0101 1000 0000 1001 0101 1000 0000 1001 1100 0110 1010 1111 Machine Interpretation We are here Hardware Architecture Description (e.g. block diagrams) Architecture Implementation Logic Circuit Description (Circuit Schematic Diagrams) 7/24/2013 Summer 2013 ‐‐ Lecture #18 3 Synchronous Digital Systems Hardware of a processor, such as the MIPS, is an example of a Synchronous Digital System Synchronous: •All operations coordinated by a central clock ‒ “Heartbeat” of the system! Digital: • Represent all values with two discrete values •Electrical signals are treated as 1’s
    [Show full text]
  • LECTURE 4 Logic Design LOGIC DESIGN
    LECTURE 4 Logic Design LOGIC DESIGN The language of the machine is binary – that is, sequences of 1’s and 0’s. But why? • At the hardware level, computers are streams of signals. These signals only have two states of interest, high voltage and low voltage. • Binary is merely a natural abstraction for the underlying signals. • Rather than talking about voltage levels, we talk about logically true signals (having a value 1) and logically false signals (having a value 0). • We might also say that logically true signals are asserted, while logically false signals are de-asserted. LOGIC BLOCKS Logic Blocks are programmable logic components which take some input and produce some output according to a set of logical rules. • Combinational Logic Blocks – depend only on a set of inputs. Any given input will always result in the same output. • Sequential Logic Blocks – maintain an internal state, which may affect the output obtained for a given set of input values. TRUTH TABLES Defining a combinational logic block is as simple as defining the output values for all of the possible sets of input values. Because our input takes only one of two values – 0 or 1 – for � inputs, there are 2# possible input combinations. As long as we can define the output for each of these combinations, our combinational logic block is fully defined. TRUTH TABLES • Consider a logic function with three inputs, A, B, and C, and three outputs, D, E, and F. • D is true if at least one input is true, • E is true if exactly two inputs are true, and • F is true only if all three inputs are true.
    [Show full text]
  • Combinational Logic Circuits
    CHAPTER 4 COMBINATIONAL LOGIC CIRCUITS ■ OUTLINE 4-1 Sum-of-Products Form 4-10 Troubleshooting Digital 4-2 Simplifying Logic Circuits Systems 4-3 Algebraic Simplification 4-11 Internal Digital IC Faults 4-4 Designing Combinational 4-12 External Faults Logic Circuits 4-13 Troubleshooting Prototyped 4-5 Karnaugh Map Method Circuits 4-6 Exclusive-OR and 4-14 Programmable Logic Devices Exclusive-NOR Circuits 4-15 Representing Data in HDL 4-7 Parity Generator and Checker 4-16 Truth Tables Using HDL 4-8 Enable/Disable Circuits 4-17 Decision Control Structures 4-9 Basic Characteristics of in HDL Digital ICs M04_WIDM0130_12_SE_C04.indd 136 1/8/16 8:38 PM ■ CHAPTER OUTCOMES Upon completion of this chapter, you will be able to: ■■ Convert a logic expression into a sum-of-products expression. ■■ Perform the necessary steps to reduce a sum-of-products expression to its simplest form. ■■ Use Boolean algebra and the Karnaugh map as tools to simplify and design logic circuits. ■■ Explain the operation of both exclusive-OR and exclusive-NOR circuits. ■■ Design simple logic circuits without the help of a truth table. ■■ Describe how to implement enable circuits. ■■ Cite the basic characteristics of TTL and CMOS digital ICs. ■■ Use the basic troubleshooting rules of digital systems. ■■ Deduce from observed results the faults of malfunctioning combina- tional logic circuits. ■■ Describe the fundamental idea of programmable logic devices (PLDs). ■■ Describe the steps involved in programming a PLD to perform a simple combinational logic function. ■■ Describe hierarchical design methods. ■■ Identify proper data types for single-bit, bit array, and numeric value variables.
    [Show full text]
  • Tutorial on Adder and Subtractor Logic Circuits Digital Adder: 1. Half Adder 2. Full Adder. Half Adder- Full Adder
    Tutorial on Adder and Subtractor Logic Circuits Digital Adder: In digital electronics an adder is a logic circuit that implements addition of numbers. In many computers and other types of processors, adders are used to calculate addresses, similar operations and table indices in the arithmetic logic unit (ALU) and also in other parts of the processors. These can be built for many numerical representations like binary coded decimal or excess-3. Adders are classified into two types: 1. Half adder 2. Full adder. Half Adder- The half adder circuit is required to add two input digits (for Ex. A and B) and generate a carry and sum. The half adder adds two binary digits called as augend and addend and produces two outputs as sum and carry (XOR is applied to both inputs to produce sum and AND gate is applied to both inputs to produce carry). It means half adder circuits can add only two digits in other words if we need to add more than 2 digits it will not work, so, it the limitation of an half adder electronic circuits. To resolve this problem a full adder circuit is required. Application- The ALU of a computer uses half adder to compute the binary addition operation on two bits. Half adder is used to make full adder as a full adder requires 3 inputs, the third input being an input carry i.e. we will be able to cascade the carry bit from one adder to the other. Ripple carry adder is possible to create a logical circuit using multiple full adders to add N- bit numbers.
    [Show full text]
  • Sequential Logic – Each Circuit Element Used at Most Once Sequential Circuits
    Review of Combinational Circuits Combinational circuits. Basic abstraction = switch. In principle, can build TOY computer with a combinational circuit. – 255 16 = 4,080 inputs 24080 rows in truth table! – no simple pattern Sequential Logic – each circuit element used at most once Sequential circuits. Reuse circuit elements Introduction to Computer by storing bits in "memory." ALU Yung-Yu Chuang combinational with slides by Sedgewick & Wayne (introcs.cs.princeton.edu), Nisan & Schocken Memory state (www.nand2tetris.org) and Harris & Harris (DDCA) 2 Combinational vs. Sequential Circuits Flip-Flop Combinational circuits. Flip-flop Output determined solely by inputs. A small and useful sequential circuit Can draw with no loops. Abstraction that remembers one bit Ex: majority, adder, ALU. Basis of important computer components for – register – memory Sequential circuits. – counter Output determined by inputs and There are several flavors previous outputs. Ex: memory, program counter, CPU. 3 4 S-R flip flop Relay-based flip-flop RSQ 00 Ex. Simplest feedback loop. Two relays A and B, both connected 01 to power, each blocked by the other. 10 State determined by whichever switches first. The state is latched. 11 Stable. Q=S+RQ output1 input2 input1 output2 5 6 SR Flip Flop Flip-Flop SR flip flop. Two cross-coupled NOR gates. Flip-flop. A way to control the feedback loop. Q=R(S+Q) Abstraction that "remembers" one bit. R S Basic building block for memory and registers. RSQ Q 00 01 10 11 Caveat. Need to deal with switching delay. 7 8 Truth Table and Timing Diagram Clock SR Flip Flop Truth Table Truth table.
    [Show full text]
  • Lab 1: Combinational Arithmetic Circuits CEG 360/560 - EE 451/651
    CEG 360/560 – EE 451/651 Lab 1 Dr. Doom Lab 1: Combinational Arithmetic Circuits CEG 360/560 - EE 451/651 PURPOSE The purpose of this introductory laboratory project is to familiarize students with the digital de- sign and simulation software available in the laboratory while reviewing important prerequisite concepts. In this lab, we will design a purely combinational device: a 4-bit arithmetic logic unit (ALU). This device will be used in the datapath of the simple computer we implement in Lab 4. This is a two-week project. PRELAB (WEEK ONE): Combinational Arithmetic Devices (10 pts.) The goal of the first week is to review digital arithmetic and design very simple ALU- like circuit. 1) Review prerequisite course material in the text. Pay particular attention to the material on number systems and binary arithmetic, the implementation of combinational devices to per- form such operations, and the interpretation of standard symbols for combinational logic. 2) Construct a truth-table for a combinational circuit Lab1comp with a one 1-bit enable EN, a 2- bit input A (A[1:0]), a 2-bit input B (B[1:0]), and one 2-bit output Z (Z[1:0]). The inputs A and B represent 2-bit binary numbers. When disabled (EN = 0), Z = x0 (binary 00). When enabled, the value of the output Z depends upon the values of A and B, as shown below: Condition Z (Hex) Z (Binary) A < B x1 01 A > B x2 10 A = B x3 11 3) Design a combinational circuit that realizes the functionality of Lab1comp using a 2-bit 4-to- 1 line multiplexer and a minimal number of logic gates.
    [Show full text]
  • UNIT 3 COMBINATIONAL LOGIC Introduction to Combinational Circuits
    UNIT 3 COMBINATIONAL LOGIC Introduction to combinational circuits: A combinational circuit is the digital logic circuit in which the output depends on the combination of inputs at that point of time with total disregard to the past state of the inputs. The digital logic gate is the building block of combinational circuits. The function implemented by combinational circuit is depend upon the Boolean expressions. On the other hand, sequential logic circuits, consists of both logic gates and memory elements such as flip-flops. Figure below shows the combinational circuit having n inputs and and m outputs. The n number of inputs shows that there are 2^n possible combinations of bits at the input. Therefore, the output is expressed in terms m Boolean expressions. Analysis Procedure To obtain the output Boolean functions from a logic diagram, proceed as follows: 1. Label all gate outputs that are a function of input variables with arbitrary symbols. Determine the Boolean functions for each gate output. 2. Label the gates that are a function of input variables and previously labeled gates with other arbitrary symbols. Find the Boolean functions for these gates. 3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained. 4. By repeated substitution of previously defined functions, obtain the output Boolean functions in terms of input variables. Example: F2 = AB + AC + BC; T1 = A + B + C; T2 = ABC; T3 = F2’T1; F1 = T3 + T2 F1 = T3 + T2 = F2’T1 + ABC = A’BC’ + A’B’C + AB’C’ + ABC Derive truth table from logic diagram : We can derive the truth table in Table 4-1 by using the circuit of Fig.4-2.
    [Show full text]