A Composite Approach to Protein Structure Evolution

Total Page:16

File Type:pdf, Size:1020Kb

A Composite Approach to Protein Structure Evolution COMPARATIVE QUANTITATIVE GENETICS OF PROTEIN STRUCTURES: A COMPOSITE APPROACH TO PROTEIN STRUCTURE EVOLUTION by Jose Sergio Hleap Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Dalhousie University Halifax, Nova Scotia December 2015 c Copyright by Jose Sergio Hleap, 2015 To my parents for all the support and the drive they instilled on me To my girlfriend for all the love and support during this process To my supervisor for the guidance provided And last but not least, To whomever had the patience to read this document ii Table of Contents Abstract ...................................... vi List of Abbreviations Used .......................... vii Acknowledgements ............................... x Chapter 1 Introduction .......................... 1 Chapter 2 Morphometrics of protein structures: Geometric mor- phometric approach to protein structure evaluation .. 4 2.1GMmethodsinproteinstructures.................... 8 2.1.1 Abstractingaproteinstructureasashape........... 8 2.1.2 GPSvsProteinstructurealignment............... 9 2.1.3 FormDifferenceinproteinstructures.............. 14 2.2 Applicability of GM-like methods .................... 20 2.2.1 Statistical analysis of the α-Amylase evolutionary variation . 21 2.2.2 StatisticalanalysisoftheNPC1proteinsimulation...... 29 Chapter 3 Defining structural and evolutionary modules in pro- teins: A community detection approach to explore sub- domain architecture ...................... 34 3.1 Landmark definition ........................... 37 3.2 Contact definition ............................. 37 3.2.1 In2Dsimulationdatasets.................... 37 3.2.2 Inproteinstructures....................... 37 3.3Graphconstruction............................ 38 3.3.1 Graphabstraction........................ 39 3.3.2 Community structure or clustering optimization ........ 39 3.4 Statistical significance test of clusters: Controlling the false positives . 40 3.4.1 Refinementofthemembershipvector.............. 41 3.5 Statistical power test of clusters: Acknowledging the false negatives probability ................................. 42 iii 3.6 Bootstrapping: Measuring the accuracy of sample estimates ..... 43 3.7Simulations................................ 47 3.7.1 Multivariatenormalsimulation................. 47 3.7.2 Structuredsimulation....................... 51 3.7.3 Proteinshapesimulation..................... 55 3.8Explorationofotherrealdatasets.................... 56 3.9 Concluding remarks ............................ 62 3.9.1 Putative meaning of the sub-domain architecture ....... 63 Chapter 4 The semantics of the modular architecture of protein structures ............................ 65 4.1 The emergence of modularity: natural selection and the self-organizing natureofproteins............................. 66 4.2 Domains as modules ........................... 69 4.2.1 Proteins as networks: Identifying domains by graph theory . 73 4.3 Sub-domain architecture ......................... 76 4.4 Exploring the hierarchy of protein structure architecture: Perspectives 79 Chapter 5 The response to selection in protein structures: A com- parative quantitative genetics approach ......... 82 5.1 Lynch’s comparative quantitative genetic model: Applications in pro- teinstructures............................... 85 5.1.1 Computational infeasibility of the full comparative approach . 87 5.1.2 Dealing with computational constraints: An approximation to theG-matrix........................... 91 5.1.3 Beyond the OTUs: partitioning the variance within taxonomic units ................................ 94 5.2 Overcoming over-parametrization: Approaching the G-matrix by means oftheP-matrix.............................. 96 5.2.1 The meaning of the pooled within-structure covariance matrix 98 5.3 Response to selection: The case of α-Amylase............. 99 5.3.1 Estimating dynamic and genetic variance-covariance matrices in the α-Amylasedataset.....................101 5.3.2 Concluding remarks ........................ 108 Chapter 6 Conclusion ............................110 Appendix A PDB codes and plot equivalences .............113 iv Appendix B PCoA using Cα as landmark ................116 Appendix C Feasibility of different phylogenetic mixed model imple- mentations ............................118 Appendix D BioMed Central license agreement .............124 Appendix E PLOS license ..........................128 Appendix F BENTHAM science Self-archiving policies and copyright agreement ............................130 F.1Self-archivingpolicies...........................130 F.2 Copyright agreement as per electronic mail: Grant of permission . 131 Bibliography ...................................133 v Abstract Structural biology has been long concerned about the emergence of protein structures and the convergence to particular folds. It can be said that protein structures are the realization of genetic information given thermodynamical and biological constraints. Given these properties, let’s refer to a structure as a phenotype. As such, protein structures can be analysed as shapes within a geometric morphometrics framework, and as a phenotype in a quantitative genetics framework. Here, I present a robust way to analyse protein structures statistically in either evolutionary or molecular dynamics sampling. I show how General Procrustes Analysis (GPA) can be applied to aligned molecular dynamics snapshots, and provide evidence that the scaling com- ponent of GPA is not applicable to protein structures. I also show how analysing protein structures as shapes can give insights into dynamic and evolutionary patterns. Analysing proteins as shapes also gives the possibility to apply known techniques to assess modularity. Traditional techniques have dimensionality limitations. I show how to overcome these limitations and propose a robust way to analyse protein struc- ture modularity. I show how a protein can be partitioned into biologically meaningful clusters, which can be used for description, protein prediction, or analysis of protein dynamics and evolution. The meaning of such modules is discussed further, and a hierarchical model for protein structure modularity is proposed. Also, methods to explore different kinds of modules at different kinds of hierarchy are explored. Finally, given that protein structures are phenotypes, the potential response to selection can be assessed by means of comparative quantitative genetics. I show that traditional comparative approaches have a heavy computational burden, therefore making the analysis infeasible. Nevertheless, similar approaches are developed to efficiently and accurately generate the estimations when the phenotypic variance is partitioned based on repeated measures, using a pooled-within covariance estimation. vi List of Abbreviations Used GM: Geometric Morphometrics GPS: Generalized Procrustes Superimposition PCA: Principal Component Analysis CVA: Canonical Variates Analysis PCoA: Principal Coordinate Analysis cMDS: Classical Multidimensional Scaling PLS: Partial Least Square Regression FM: Form Matrix FDM: Form Difference Matrix MATT: Multiple Alignment with Translations and Twists HOMSTRAD: HOMologous STRucture Alignment Database SABmark: Sequence Alignment Benchmark SCOP: Structural Classification of Proteins RMSD: Root Mean Square Deviation I: Most influential point FD: Form Difference/Form deformation PPA: Porcine Pancreatic Amylase PSI-BLAST: Position-Specific Iterative Basic Local Alignment Search Tool PDB: Protein Data Bank vii PFAM: Protein Families database GH13: Glycoside Hydrolase Family 13 ET: Evolutionary Trace HPA: Human Pancreatic Amylase TMA: Tenebrio molitor α-Amylase AHA: Pseudoalteromonas haloplanktis α-Amylase Arg: Arginine; also abbreviated as ARG or R Lys: Lysine; Also abbreviated as LYS or L Asn: Asparagine; Also abbreviated as ASN or N EC: Enzyme Commission ML: Maximum Likelihood GTR: General Time Reversible HGT: Horizontal Gene Transfer NPC1: Nieman-Pick Type C-1 MD: Molecular Dynamics PVP: Proportion of Variable with enough Power PCS principal components space LD: Linear Discriminants AFU: Autonomic Folding Units CATH: Class, Architecture, Topology, Homology database LGT: Lateral Gene Transfer viii RIN: Residue Interaction Networks PSN: Protein Structure Networks PK: Pyruvate Kinase RCN: Residue contact Networks AN: All Neighbours NSN: Non-Sequential Neighbours FA: Factor Analytic SEM: Structural Equations Modelling GLM: Generalized Linear Models PMM: Phylogenetic Mixed Models REML: Restricted Maximum Likelihood MCMC: Markov Chain Monte Carlo CPC: Common Principal Component RS: Random Skewers BGLMM: Bayesian Generalized Linear Mixed Models ix Acknowledgements I would like to especially thank my supervisor Christian Blouin, for teaching me more than expected, and for making my PhD experience as enjoyable as possible, for the lunch talks and for introducing me to Hive, Go and GURPS!. I would also like to thank Professors Norbert Zeh and Robert Beiko as well as the members of Dr. Beiko’s Lab in Dalhousie University for some helpful suggestions throughout the thesis, as well as the laughs, beers, camps, and all the extracurricular activities, to all of you thank you. To Wilson Chan, Alex Safatli, Kyle Nguyen, Simiao Lu, Tyler Brunet, and Jack Ryan for the collaboration in some parts of the thesis, but mainly for the Pepsi’s o’clocks, the 60’s Mondays and musical weeks, the laughs, and to made working more entertaining. To Liz Mackay for bearing with my writing and help me editing the manuscripts, and to her and her family
Recommended publications
  • Predicting and Characterising Protein-Protein Complexes
    Predicting and Characterising Protein-Protein Complexes Iain Hervé Moal June 2011 Biomolecular Modelling Laboratory, Cancer Research UK London Research Institute and Department of Biochemistry and Molecular Biology, University College London A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry at the University College London. 2 I, Iain Hervé Moal, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Abstract Macromolecular interactions play a key role in all life processes. The con- struction and annotation of protein interaction networks is pivotal for the understanding of these processes, and how their perturbation leads to dis- ease. However the extent of the human interactome and the limitations of the experimental techniques which can be brought to bear upon it necessit- ate theoretical approaches. Presented here are computational investigations into the interactions between biological macromolecules, focusing on the structural prediction of interactions, docking, and their kinetic and thermo- dynamic characterisation via empirical functions. Firstly, the use of normal modes in docking is investigated. Vibrational analysis of proteins are shown to indicate the motions which proteins are intrinsically disposed to under- take, and the use of this information to model flexible deformations upon protein-protein binding is evaluated. Subsequently SwarmDock, a docking algorithm which models flexibility as a linear combination of normal modes, is presented and benchmarked on a wide variety of test cases. This algorithm utilises state of the art energy functions and metaheuristics to navigate the free energy landscape.
    [Show full text]
  • Functional Effects Detailed Research Plan
    GeCIP Detailed Research Plan Form Background The Genomics England Clinical Interpretation Partnership (GeCIP) brings together researchers, clinicians and trainees from both academia and the NHS to analyse, refine and make new discoveries from the data from the 100,000 Genomes Project. The aims of the partnerships are: 1. To optimise: • clinical data and sample collection • clinical reporting • data validation and interpretation. 2. To improve understanding of the implications of genomic findings and improve the accuracy and reliability of information fed back to patients. To add to knowledge of the genetic basis of disease. 3. To provide a sustainable thriving training environment. The initial wave of GeCIP domains was announced in June 2015 following a first round of applications in January 2015. On the 18th June 2015 we invited the inaugurated GeCIP domains to develop more detailed research plans working closely with Genomics England. These will be used to ensure that the plans are complimentary and add real value across the GeCIP portfolio and address the aims and objectives of the 100,000 Genomes Project. They will be shared with the MRC, Wellcome Trust, NIHR and Cancer Research UK as existing members of the GeCIP Board to give advance warning and manage funding requests to maximise the funds available to each domain. However, formal applications will then be required to be submitted to individual funders. They will allow Genomics England to plan shared core analyses and the required research and computing infrastructure to support the proposed research. They will also form the basis of assessment by the Project’s Access Review Committee, to permit access to data.
    [Show full text]
  • Development of Novel Strategies for Template-Based Protein Structure Prediction
    Imperial College London Department of Life Sciences PhD Thesis Development of novel strategies for template-based protein structure prediction Stefans Mezulis supervised by Prof. Michael Sternberg Prof. William Knottenbelt September 2016 Abstract The most successful methods for predicting the structure of a protein from its sequence rely on identifying homologous sequences with a known struc- ture and building a model from these structures. A key component of these homology modelling pipelines is a model combination method, responsible for combining homologous structures into a coherent whole. Presented in this thesis is poing2, a model combination method using physics-, knowledge- and template-based constraints to assemble proteins us- ing information from known structures. By combining intrinsic bond length, angle and torsional constraints with long- and short-range information ex- tracted from template structures, poing2 assembles simplified protein models using molecular dynamics algorithms. Compared to the widely-used model combination tool MODELLER, poing2 is able to assemble models of ap- proximately equal quality. When supplied only with poor quality templates or templates that do not cover the majority of the query sequence, poing2 significantly outperforms MODELLER. Additionally presented in this work is PhyreStorm, a tool for quickly and accurately aligning the three-dimensional structure of a query protein with the Protein Data Bank (PDB). The PhyreStorm web server provides comprehensive, current and rapid structural comparisons to the protein data bank, providing researchers with another tool from which a range of biological insights may be drawn. By partitioning the PDB into clusters of similar structures and performing an initial alignment to the representatives of each cluster, PhyreStorm is able to quickly determine which structures should be excluded from the alignment.
    [Show full text]
  • Centre for Bioinformatics Imperial College London
    Centre for Bioinformatics Imperial College London Inaugural Report January 2003 Centre Director: Prof Michael Sternberg www.imperial.ac.uk/bioinformatics [email protected] Support Service Head: Dr Sarah Butcher www.codon.bioinformatics.ic.ac.uk [email protected] Centre for Bioinformatics - Imperial College London - Inaugural Report - January 2003 1 Contents Summary..................................................................................................................... 3 1. Background and Objectives .................................................................................... 4 1.1 Background ....................................................................................................... 4 1.2 Objectives of the Centre for Bioinformatics ....................................................... 4 1.3 Objectives of the Bioinformatics Support Service.............................................. 5 1.4 Historical Notes ................................................................................................. 5 2. Management ........................................................................................................... 6 3. Biographies of the Team......................................................................................... 7 4. Bioinformatics Research at Imperial ....................................................................... 8 4.1 Affiliates of the Centre ....................................................................................... 8 4.2 Research Grants
    [Show full text]
  • Centre for Bioinformatics Imperial College London Second Report 31
    Centre for Bioinformatics Imperial College London Second Report 31 May 2004 Centre Director: Prof Michael Sternberg www.imperial.ac.uk/bioinformatics [email protected] Support Service Head: Dr Sarah Butcher www.codon.bioinformatics.ic.ac.uk [email protected] Centre for Bioinformatics - Imperial College London - Second Report - May 2004 1 Contents Summary..................................................................................................................... 3 1. Background and Objectives .................................................................................. 4 1.1 Objectives of the Report........................................................................................ 4 1.2 Background........................................................................................................... 4 1.3 Objectives of the Centre for Bioinformatics........................................................... 5 1.4 Objectives of the Bioinformatics Support Service ................................................. 5 2. Management ......................................................................................................... 6 3. Biographies of the Team....................................................................................... 7 4. Bioinformatics Research at Imperial ..................................................................... 8 4.1 Affiliates of the Centre........................................................................................... 8 4.2 Research..............................................................................................................
    [Show full text]
  • Spinout Equinox Pharma Speeds up and Reduces the Cost of Drug Discovery
    Spinout Equinox Pharma speeds up and reduces the cost of drug discovery pinout Equinox Pharma1 provides a service to the pharma and biopharma industries that helps in the development of new drugs. The company, established by researchers from Imperial College London in IMPACT SUMMARY 2008, is using its own proprietary software to help speed up and reduce the cost of discovery processes. S Spinout Equinox Pharma provides services to the agri- tech and pharmaceuticals industries to accelerate the Equinox is based on BBSRC-funded collaborative research The technology also has applications in the agrochemical discovery of molecules that could form the basis of new conducted by Professors Stephen Muggleton2, Royal sector, and is being used by global agri-tech company products such as drugs or herbicides. Academy Chair in Machine Learning, Mike Sternberg3, Chair Syngenta. The company arose from BBSRC bioinformatics and of Structural Bioinformatics, and Paul Freemont4, Chair of structural biology research at Imperial College London. Protein Crystallography, at Imperial College London. “The power of a logic-based approach is that it can Technology commercialisation company NetScientific propose chemically-novel molecules that can have Ltd has invested £250K in Equinox. The technology developed by the company takes a logic- enhanced properties and are able to be the subject of novel Equinox customers include major pharmaceutical based approach to discover novel drugs, using computers to ‘composition of matter’ patents,” says Muggleton. companies such as Japanese pharmaceutical company learn from a set of biologically-active molecules. It combines Astellas and agro chemical companies such as knowledge about traditional drug discovery methods and Proving the technology Syngenta, as well as SMEs based in the UK, Europe, computer-based analyses, and focuses on the key stages in A three-year BBSRC grant in 2003 funded the work of Japan and the USA.
    [Show full text]
  • Virtual Screening of Human Class-A Gpcrs Using Ligand Profiles Built on Multiple Ligand-Receptor Interactions
    Article Virtual Screening of Human Class-A GPCRs Using Ligand Profiles Built on Multiple Ligand–Receptor Interactions Wallace K.B. Chan 1,2 and Yang Zhang 1,3 1 - Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA 2 - Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA 3 - Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA Correspondence to Yang Zhang: Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109-2218, USA. [email protected] https://doi.org/10.1016/j.jmb.2020.07.003 Edited by Michael Sternberg Abstract G protein-coupled receptors (GPCRs) are a large family of integral membrane proteins responsible for cellular signal transductions. Identification of therapeutic compounds to regulate physiological processes is an important first step of drug discovery. We proposed MAGELLAN, a novel hierarchical virtual-screening (VS) pipeline, which starts with low-resolution protein structure prediction and structure-based binding-site identification, followed by homologous GPCR detections through structure and orthosteric binding-site comparisons. Ligand profiles constructed from the homologous ligand–GPCR complexes are then used to thread through compound databases for VS. The pipeline was first tested in a large-scale retrospective screening experiment against 224 human Class A GPCRs, where MAGELLAN achieved a median enrichment factor (EF) of 14.38, significantly higher than that using individual ligand profiles. Next, MAGELLAN was examined on 5 and 20 GPCRs from two public VS databases (DUD-E and GPCR-Bench) and resulted in an average EF of 9.75 and 13.70, respectively, which compare favorably with other state-of- the-art docking- and ligand-based methods, including AutoDock Vina (with EF = 1.48/3.16 in DUD-E and GPCR-Bench), DOCK 6 (2.12/3.47 in DUD-E and GPCR-Bench), PoLi (2.2 in DUD-E), and FINDSITEC- comb2.0 (2.90 in DUD-E).
    [Show full text]
  • Drosophila Melanogaster
    ORTHOLOGOUS PAIR TRANSFER AND HYBRID BAYES METHODS TO PREDICT THE PROTEIN-PROTEIN INTERACTION NETWORK OF THE ANOPHELES GAMBIAE MOSQUITOES By Qiuxiang Li SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY AT IMPERIAL COLLEGE LONDON SOUTH KENSINGTON, LONDON SW7 2AZ 2008 °c Copyright by Qiuxiang Li, 2008 IMPERIAL COLLEGE LONDON DIVISION OF CELL & MOLECULAR BIOLOGY The undersigned hereby certify that they have read and recommend to the Faculty of Natural Sciences for acceptance a thesis entitled \Orthologous pair transfer and hybrid Bayes methods to predict the protein-protein interaction network of the Anopheles gambiae mosquitoes" by Qiuxiang Li in partial ful¯llment of the requirements for the degree of Doctor of Philosophy. Dated: 2008 Research Supervisors: Professor Andrea Crisanti Professor Stephen H. Muggleton Examining Committee: Dr. Michael Tristem Dr. Tania Dottorini ii IMPERIAL COLLEGE LONDON Date: 2008 Author: Qiuxiang Li Title: Orthologous pair transfer and hybrid Bayes methods to predict the protein-protein interaction network of the Anopheles gambiae mosquitoes Division: Cell & Molecular Biology Degree: Ph.D. Convocation: March Year: 2008 Permission is herewith granted to Imperial College London to circulate and to have copied for non-commercial purposes, at its discretion, the above title upon the request of individuals or institutions. Signature of Author THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR'S WRITTEN PERMISSION. THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH USE IS CLEARLY ACKNOWLEDGED.
    [Show full text]
  • Erepo-ORP: Exploring the Opportunity Space to Combat Orphan Diseases with Existing Drugs
    Databases/ Web Servers eRepo-ORP: Exploring the Opportunity Space to Combat Orphan Diseases with Existing Drugs Michal Brylinski 1,2, Misagh Naderi 1, Rajiv Gandhi Govindaraj 1 and Jeffrey Lemoine 1,3 1 - Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA 2 - Center for Computation & Technology, Louisiana State University, Baton Rouge, LA 70803, USA 3 - Division of Computer Science and Engineering, Louisiana State University, Baton Rouge, LA 70803, USA Correspondence to Michal Brylinski: Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. [email protected] https://doi.org/10.1016/j.jmb.2017.12.001 Edited by Michael Sternberg Abstract About 7000 rare, or orphan, diseases affect more than 350 million people worldwide. Although these conditions collectively pose significant health care problems, drug companies seldom develop drugs for orphan diseases due to extremely limited individual markets. Consequently, developing new treatments for often life-threatening orphan diseases is primarily contingent on financial incentives from governments, special research grants, and private philanthropy. Computer-aided drug repositioning is a cheaper and faster alternative to traditional drug discovery offering a promising venue for orphan drug research. Here, we present eRepo-ORP, a comprehensive resource constructed by a large-scale repositioning of existing drugs to orphan diseases with a collection of structural bioinformatics tools, including eThread, eFindSite, and eMatchSite. Specifically, a systematic exploration of 320,856 possible links between known drugs in DrugBank and orphan proteins obtained from Orphanet reveals as many as 18,145 candidates for repurposing. In order to illustrate how potential therapeutics for rare diseases can be identified with eRepo-ORP, we discuss the repositioning of a kinase inhibitor for Ras-associated autoimmune leukoproliferative disease.
    [Show full text]
  • Annual Review 2003
    The Wellcome Trust is an independent – 30 September 2003 1 October 2002 Review Annual Trust Wellcome The research-funding charity, established under the will of Sir Henry Wellcome in 1936. Annual It is funded from a private endowment, which is managed with long-term stability and growth in mind. Review Its mission is to foster and promote research with the aim of improving human and animal health. Its work covers four areas: 2003 Knowledge – improving our understanding of human and animal biology in health and disease, and of the past and present role of medicine in society. Resources – providing exceptional researchers with the infrastructural and career support they need to fulfil their potential. Translation – ensuring maximum health benefits are gained from biomedical research. Public engagement – raising awareness of the medical, ethical and social implications of biomedical science. www.wellcome.ac.uk Annual Review 2003 Contents 2 From the Director 6 Making a difference 8 Financial summary 10 Knowledge 16 Resources Advancing knowledge and Contributing to a long-term and understanding in the biomedical vibrant research environment. sciences and their impact on society – past, present and future. 22 Translation 28 Public engagement Advancing the translation of Trust- Engaging with the public through funded research into health benefits. informed dialogue. The cover images are of objects displayed at the ‘Medicine Man’ exhibition at the British Museum in 2003.The exhibition commemorated the 150th anniversary of the birth of Henry Wellcome. Front cover Back cover, left Back cover, right Yoruban figures representing Protective amulet said to Tobacco resuscitator kit. 34 A year at the Trust deceased twins, 1870–1910.
    [Show full text]
  • ELIXIR UK Node
    ELIXIR‐UK the UK Node of the European Life Sciences Infrastructure for Biological Information www.elixir‐europe.org elixir‐uk.org The USA 2 EUROPE 3 UK: Poor data quality hindering government open data programme • “A Computer Weekly analysis of 50 spending data releases by the Cabinet Office since May 2010 has shown they were so marred by "dirty data" and inconsistent computer encoding, systematic scrutiny would require advanced computer programming skills.” Thursday 28 August 2014 http://www.computerweekly.com/news/2240227682/Poor‐data‐quality‐ hindering‐government‐open‐data‐transparency‐programme 4 Establishing a fresh UK activity Oxford University Computational Genomics Analysis and Training (CGAT) €1.6million The University of Manchester Seed fund The Oxford e‐Research Centre European Bioinformatics Institute (EMBL‐EBI) in kind University of Cardiff & NERC EOS Centre funding The Genome Analysis Centre (TGAC) University College London University of Birmingham University of Edinburgh Queen Mary, London University of Cambridge University of Liverpool Centre for Genomic Medicine Harness existing expertise Core Staff TeSS Staff Train across the Spectrum Technical Life Science Infrastructure Researchers Service Providers TCRS TCIT Training Training Coordinator, Coordinator, Research Infrastructure Science Technology Lee Larcombe Aleks Pawlik ELIXIR‐UK working across Europe: Training Coordination Group Mission: to establish an interacting ELIXIR wide training community & to ensure coherency in the delivery of training related to ELIXIR activities. TrCG members: Chair: Rita Hendricusdottir BE Katrijn Vannerum CZ Daniel Svozil DK Peter Longreen EE Hedi Peterson FI Eija Korpelainen FR Julie Thompson IL Michal Linial IT Allegra Via NL Celia van Gelder NO Ståle Nygård PT Pedro Fernandes SI Brane L.
    [Show full text]
  • Phyre 2 Results for Rt______
    Phyre 2 Results for rt_______ Phyre Home Retrieve Phyre Job Id Email [email protected] Description rt_______ Date Fri Oct 13 08:57:50 BST 2017 Unique Job ID c509c69101c4c3c9 Sequence PISPIETVPV ... Download FASTA Job Type intensive Job Expiry Final Model Confidence Summary 1 200 201 400 401 Confidence Key High(9) Low (0) 97% of residues modelled at >90% confidence (Details) Publication-ready images Hi-Res image (black background) Hi-Res image (white background) JSmol Viewer Interactive 3D view in JSmol Image coloured by rainbow N → C terminus Model dimensions (Å): X:64.230 Y:83.408 Z:108.188 Sequence analysis Download FASTA version Secondary structure and disorder prediction [Show] Domain analysis [Show] Detailed template information [Hide] file:///E|/SERVICIU/IBAR/ADINA/09/Predictions/3D/RT1_Phyre2.html[22/10/2017 22:25:56] Phyre 2 Results for rt_______ # Confidence Template Alignment Coverage 3D Model % i.d. Template Information PDB header:nucleotidyltransferase c1rthA_ Chain: A: PDB Molecule:hiv-1 reverse transcriptase; 1 100.0 99 PDBTitle: high resolution structures of hiv-1 rt from four rt-2 inhibitor complexes PDB header:transferase c2opqA_ Chain: A: PDB Molecule:reverse transcriptase/ribonuclease h; 2 100.0 97 PDBTitle: crystal structure of l100i mutant hiv-1 reverse transcriptase in2 complex with gw420867x. PDB header:transferase c1mu2A_ 3 100.0 60 Chain: A: PDB Molecule:hiv-2 rt; PDBTitle: crystal structure of hiv-2 reverse transcriptase PDB header:transferase, hydrolase/translation c5dmqA_ Chain: A: PDB Molecule:reverse
    [Show full text]