Normes Pour L'échange Des Modèles En Biologie Des Systèmes

Total Page:16

File Type:pdf, Size:1020Kb

Normes Pour L'échange Des Modèles En Biologie Des Systèmes Normes pour l’échange des modèles en biologie des systèmes Mémoire présenté le 12 Novembre 2013 par Nicolas LE NOVÈRE en vue de l’obtention d’une Habilitation à Diriger des Recherches de l’université BORDEAUX SEGALEN Président du jury : Pr Frédéric Yves Bois, professeur à l’université de Compiègne Rapporteur : Dr François Fages, directeur de recherche à l’INRIA Rapporteur : Dr Macha Nikolski, chargée de recherche à l’Université de Bordeaux 1 Rapporteur : Dr Denis Thieffry, professeur à l’École Normale Supérieure de Paris Membre du jury : Dr Anne Poupon, directrice de recherche à l’INRA Remerciements Merci tout d’abord aux membres du jury de cette HDR, qui ont tous répondu présent à l’appel. La recherche décrite dans ce manuscrit a bénéficié de l’apport d’un nombre très important de collègues. Il est malheureusement impossible de les remercier tous ici, et je m’en excuse. Il est également impossible de remercier toutes les organisations ayant participé au financement des réunions qui ont permis le développement des normes et de leur support informatique. Cependant, j’aimerais mentionner le Laboratoire Européen de Biologie Moléculaire (EMBL), qui à travers le support financier de mon groupe durant 9 ans a permis l’émergence de toutes ces normes et le développement de plusieurs outils clés pour leur support. L’Organisation japo- naise pour le Développement des Nouvelles Énergies et de la Technologie Industrielle (NEDO) a financé le développement de SBGN. Le Conseil pour la Recherche en Biotechnologie et en Sciences Biologiques britannique (BBSRC), l’Institut National des Sciences Médicales Géné- rales américain (NIGMS) et la Commission Européenne ont financé à différents degrés plusieurs des normes présentées. Mon activité dans le domaines des normes pour la biologie des systèmes n’aurait jamais existé sans le support de Dame Professeure Janet Thornton, qui m’a recruté au laboratoire Eu- ropéen de Bioinformatique, et m’a toujours soutenu malgré l’aspect non traditionnel de cette activité. Aucune de ces normes n’aurait vu le jour sans les impulsions visionnaires du Dr Hiroaki Kitano, une première fois pour SBML et une seconde pour SBGN. Ces visions se sont transfor- mées en réalités largement grâce au Dr Michael Hucka, qui a fait de SBML une des normes les mieux supportées en biologie. Mike est également le premier à avoir entrevu l’importance de la sémantique et la nécessité de centraliser l’échange des modèles. Le Dr Andrew Finney a joué un rôle important dans la genèse de MIRIAM et son support par SBML. Camille Laibe a développé l’infrastructure supportant l’utilisation des identifiants partagés, et Dr Nick Juty a curé le contenu du registre MIRIAM. Mélanie Courtot et Camille Laibe ont développé l’infrastructure supportant le développement et l’utilisation de SBO. Nick Juty a maintenu l’ontologie. Le Dr Dagmar Waltemath a participé à la genèse de MIASE, SED- ML et KiSAO, et est la principale source d’énergie derrière SED-ML. Dr Christian Knüpfer est le développeur initial et principal de TEDDY. Anna Zhukova a entièrement reconstruit KiSAO, est est responsable de la plus grande partie de son contenu actuel. En plus de son activité d’édi- teur pour SED-ML, le Dr Frank Bergmann a supporté inlassablement nos efforts, développant outils de démonstration et bibliothèques logicielles. Les formats normalisés décrits dans ce manuscrit sont maintenus par des éditeurs élus par la i ii communauté. Ces éditeurs ne sont pas rémunérés, et ont tous une activité professionnelle à coté. Leur travail d’éditeur est rarement reconnu, que ce soit par les utilisateurs ou d’un point de vue académique. Je les remercie, en mon nom, et au nom des coordinateurs du projet COMBINE. Je voudrais aussi remercier la communauté toute entière des modélisateurs en biologie des systèmes pour leur réactivité, leur imagination et leur esprit d’initiative. Avoir un retour tech- nique par des personnes qui maîtrisent les subtilités informatiques tout en comprenant les pro- blèmes biologiques est sans prix. Mais plus encore, je remercie cette communauté pour son excellent esprit de camaraderie, qui transforme l’atmosphère des réunions de travail et permets des progrès plus rapide. Mon grand écart entre modélisation des voies de signalisation et développement de normes ne m’a souvent pas permis d’accorder à mon groupe de recherche toute l’attention qui lui était due. Je m’en excuse et remercie ses membres de leur attitude compréhensive (teintée parfois d’incompréhension quant à l’objet de mes obsessions). Enfin je veux remercier ma famille, qui a due supporter mes voyages incessants, mes dis- cours techniques totalement incompréhensibles et mes tee-shirts aux acronymes mystérieux et à l’esthétique douteuse. Résumé Avec le succès croissant de la biologie des systèmes, modèles mathématiques et simulations numériques se multiplient dans la littérature. De plus, la taille de ces modèles augmente ainsi que leur complexité. Enfin, les utilisations des modèles informatiques se diversifient, impliquant analyses, représentations, intégration avec d’autre types de données etc. Des normes sont donc nécessaires pour s’assurer que les informations partagées, incluant la description des modèles ainsi que des procédures à leur appliquer, soient comprises et utilisées correctement. Il existe trois types principaux de normes en biologie. Les directives minimales listent l’information qui doit absolument être fournie avec une donnée afin de la rendre intelligible. Les formats structu- rés permettent d’encoder les données et les informations prescrites. Enfin les terminologies ou vocabulaires contrôlés, dont les ontologies, permettent une sémantique définie et partagée. Le Systems Biology Markup Language, développé depuis 2000, fournit un format struc- turé pour encoder les modèles en biologie des systèmes. Cependant, la description de la seule structure des modèles ne suffit pas à leur vérification et utilisation. Depuis 2005, j’ai mené la construction de briques complémentaires pour construire un mur couvrant tout le cycle de vie des modèles et de leurs utilisations. La Minimal Information Required in the Annotation of Mo- dels (MIRIAM) liste l’information qui doit être fournie avec un modèle pour permettre une réutilisation optimale. La Minimal Information About a Simulation Experiment (MIASE) liste l’information qui doit être fournie pour permettre de reproduire une expérience de simulation numérique. Afin d’encoder l’information requise par MIASE, nous avons créé le Simulation Ex- periment Description Markup Language (SED-ML). Afin d’ajouter une couche sémantique aux formats structurés, nous avons créé trois ontologies. La Systems Biology Ontology caractérise les éléments d’un modèle. La Kinetic Simulation Algorithm Ontology classifies les algorithmes utilisés pour simuler et analyser les modèles. La Terminology for the Description of Dynamics permet de décrire le comportement temporel des variables d’un système. Enfin afin de facili- ter l’exploration, la compréhension et l’échange des modèles, nous avons développé la Systems Biology Graphical Notation (SBGN). SBGN est un ensemble de langage visuels fait de sym- boles et syntaxes normalisés pour représenter les réseaux d’interactions biochimiques. L’ensemble de ces outils informatiques a permis d’améliorer l’échange et la réutilisation des modèles en biologie des systèmes. En sus de cet objectif attendu, un nouveau domaine d’activité s’est développé, dont le sujet est la construction, la comparaison et l’intégration des modèles, entre eux et avec d’autres types de données biologiques. iii Table des matières Remerciements i Résumé iii Abréviations utilisées vi 1 Introduction et présentation du travail 1 1.1 Encodage des modèles dans un format standard . .1 1.2 Curation des modèles . .5 1.3 Description des simulations . .6 1.4 Sémantique et ontologies . .8 1.5 Représentation graphique des modèles . 10 2 Directives pour l’annotation des modèles 13 3 Directives pour la description des simulations 21 4 Langage pour la description des simulations 35 5 Terminologies pour la biologie des systèmes 46 6 Norme graphique pour la biologie des systèmes 59 7 Conclusions et perspectives 83 7.1 Impact des normes présentées dans ce manuscrit . 83 7.2 Que nous manque-t’il ? . 84 iv v 7.3 Vision . 88 Bibliographie 91 A Curriculum Vitæ 97 A.1 Qualifications et titres . 97 A.2 Expérience de recherche . 97 A.3 Honneurs . 98 A.4 Financements sur dossiers . 98 B Animation de la recherche 100 B.1 Encadrement d’étudiant . 100 B.2 Enseignement . 100 B.3 Évaluation scientifique . 101 B.4 Présentations . 102 B.4.1 Invitations à présenter dans des conférences internationales . 102 B.4.2 Autres présentations . 104 B.4.3 Cours . 108 C Liste de publications 111 C.1 Publications dans des journaux à comité de lecture . 111 C.2 Publications dans des comptes rendus de conférences à comités de lecture . 121 C.3 Chapitres, éditoriaux, publications dans des revues sans comité de lecture etc. 122 C.4 Rapports techniques . 124 Abréviations utilisées Nota bene : Les versions étendues des acronymes sont considérées comme des noms propres, et sont utilisées telles quelles dans le texte, sans traduction en français. COMBINE Computational Modeling in Biology Network KiSAOK inetic Simulation Algorithm Ontology MIASEM inimum Information Required In the Annotation of Models MIRIAMM inimum Information About a Simulation Experiment SED-MLS imulation Experiment Description Markup Language SBGNS ystems Biology Graphical Notation SBGN-MLS ystems Biology Graphical Notation Markup Language SBMLS ystems Biology Markup Language SBOS ystems Biology Ontology TEDDY Terminology for the Description of Dynamics URIU niform Resource Identifier XHTML eXtensible Hypertext Markup Language XMLE xtensible Markup Language vi 1 Introduction et présentation du travail Il y a une quinzaine d’années, l’essor de la biologie des systèmes a profondément changé le paysage de la recherche en biologie. Il est encore tôt pour évaluer l’impact de cet évènement (parfois caractérisé comme un « changement de paradigme », similaire à l’arrivée de la phy- siologie au XIXème siècle ou de la biologie moléculaire au milieu du XXème).
Recommended publications
  • Predicting and Characterising Protein-Protein Complexes
    Predicting and Characterising Protein-Protein Complexes Iain Hervé Moal June 2011 Biomolecular Modelling Laboratory, Cancer Research UK London Research Institute and Department of Biochemistry and Molecular Biology, University College London A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry at the University College London. 2 I, Iain Hervé Moal, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Abstract Macromolecular interactions play a key role in all life processes. The con- struction and annotation of protein interaction networks is pivotal for the understanding of these processes, and how their perturbation leads to dis- ease. However the extent of the human interactome and the limitations of the experimental techniques which can be brought to bear upon it necessit- ate theoretical approaches. Presented here are computational investigations into the interactions between biological macromolecules, focusing on the structural prediction of interactions, docking, and their kinetic and thermo- dynamic characterisation via empirical functions. Firstly, the use of normal modes in docking is investigated. Vibrational analysis of proteins are shown to indicate the motions which proteins are intrinsically disposed to under- take, and the use of this information to model flexible deformations upon protein-protein binding is evaluated. Subsequently SwarmDock, a docking algorithm which models flexibility as a linear combination of normal modes, is presented and benchmarked on a wide variety of test cases. This algorithm utilises state of the art energy functions and metaheuristics to navigate the free energy landscape.
    [Show full text]
  • Functional Effects Detailed Research Plan
    GeCIP Detailed Research Plan Form Background The Genomics England Clinical Interpretation Partnership (GeCIP) brings together researchers, clinicians and trainees from both academia and the NHS to analyse, refine and make new discoveries from the data from the 100,000 Genomes Project. The aims of the partnerships are: 1. To optimise: • clinical data and sample collection • clinical reporting • data validation and interpretation. 2. To improve understanding of the implications of genomic findings and improve the accuracy and reliability of information fed back to patients. To add to knowledge of the genetic basis of disease. 3. To provide a sustainable thriving training environment. The initial wave of GeCIP domains was announced in June 2015 following a first round of applications in January 2015. On the 18th June 2015 we invited the inaugurated GeCIP domains to develop more detailed research plans working closely with Genomics England. These will be used to ensure that the plans are complimentary and add real value across the GeCIP portfolio and address the aims and objectives of the 100,000 Genomes Project. They will be shared with the MRC, Wellcome Trust, NIHR and Cancer Research UK as existing members of the GeCIP Board to give advance warning and manage funding requests to maximise the funds available to each domain. However, formal applications will then be required to be submitted to individual funders. They will allow Genomics England to plan shared core analyses and the required research and computing infrastructure to support the proposed research. They will also form the basis of assessment by the Project’s Access Review Committee, to permit access to data.
    [Show full text]
  • Development of Novel Strategies for Template-Based Protein Structure Prediction
    Imperial College London Department of Life Sciences PhD Thesis Development of novel strategies for template-based protein structure prediction Stefans Mezulis supervised by Prof. Michael Sternberg Prof. William Knottenbelt September 2016 Abstract The most successful methods for predicting the structure of a protein from its sequence rely on identifying homologous sequences with a known struc- ture and building a model from these structures. A key component of these homology modelling pipelines is a model combination method, responsible for combining homologous structures into a coherent whole. Presented in this thesis is poing2, a model combination method using physics-, knowledge- and template-based constraints to assemble proteins us- ing information from known structures. By combining intrinsic bond length, angle and torsional constraints with long- and short-range information ex- tracted from template structures, poing2 assembles simplified protein models using molecular dynamics algorithms. Compared to the widely-used model combination tool MODELLER, poing2 is able to assemble models of ap- proximately equal quality. When supplied only with poor quality templates or templates that do not cover the majority of the query sequence, poing2 significantly outperforms MODELLER. Additionally presented in this work is PhyreStorm, a tool for quickly and accurately aligning the three-dimensional structure of a query protein with the Protein Data Bank (PDB). The PhyreStorm web server provides comprehensive, current and rapid structural comparisons to the protein data bank, providing researchers with another tool from which a range of biological insights may be drawn. By partitioning the PDB into clusters of similar structures and performing an initial alignment to the representatives of each cluster, PhyreStorm is able to quickly determine which structures should be excluded from the alignment.
    [Show full text]
  • Centre for Bioinformatics Imperial College London
    Centre for Bioinformatics Imperial College London Inaugural Report January 2003 Centre Director: Prof Michael Sternberg www.imperial.ac.uk/bioinformatics [email protected] Support Service Head: Dr Sarah Butcher www.codon.bioinformatics.ic.ac.uk [email protected] Centre for Bioinformatics - Imperial College London - Inaugural Report - January 2003 1 Contents Summary..................................................................................................................... 3 1. Background and Objectives .................................................................................... 4 1.1 Background ....................................................................................................... 4 1.2 Objectives of the Centre for Bioinformatics ....................................................... 4 1.3 Objectives of the Bioinformatics Support Service.............................................. 5 1.4 Historical Notes ................................................................................................. 5 2. Management ........................................................................................................... 6 3. Biographies of the Team......................................................................................... 7 4. Bioinformatics Research at Imperial ....................................................................... 8 4.1 Affiliates of the Centre ....................................................................................... 8 4.2 Research Grants
    [Show full text]
  • Centre for Bioinformatics Imperial College London Second Report 31
    Centre for Bioinformatics Imperial College London Second Report 31 May 2004 Centre Director: Prof Michael Sternberg www.imperial.ac.uk/bioinformatics [email protected] Support Service Head: Dr Sarah Butcher www.codon.bioinformatics.ic.ac.uk [email protected] Centre for Bioinformatics - Imperial College London - Second Report - May 2004 1 Contents Summary..................................................................................................................... 3 1. Background and Objectives .................................................................................. 4 1.1 Objectives of the Report........................................................................................ 4 1.2 Background........................................................................................................... 4 1.3 Objectives of the Centre for Bioinformatics........................................................... 5 1.4 Objectives of the Bioinformatics Support Service ................................................. 5 2. Management ......................................................................................................... 6 3. Biographies of the Team....................................................................................... 7 4. Bioinformatics Research at Imperial ..................................................................... 8 4.1 Affiliates of the Centre........................................................................................... 8 4.2 Research..............................................................................................................
    [Show full text]
  • Spinout Equinox Pharma Speeds up and Reduces the Cost of Drug Discovery
    Spinout Equinox Pharma speeds up and reduces the cost of drug discovery pinout Equinox Pharma1 provides a service to the pharma and biopharma industries that helps in the development of new drugs. The company, established by researchers from Imperial College London in IMPACT SUMMARY 2008, is using its own proprietary software to help speed up and reduce the cost of discovery processes. S Spinout Equinox Pharma provides services to the agri- tech and pharmaceuticals industries to accelerate the Equinox is based on BBSRC-funded collaborative research The technology also has applications in the agrochemical discovery of molecules that could form the basis of new conducted by Professors Stephen Muggleton2, Royal sector, and is being used by global agri-tech company products such as drugs or herbicides. Academy Chair in Machine Learning, Mike Sternberg3, Chair Syngenta. The company arose from BBSRC bioinformatics and of Structural Bioinformatics, and Paul Freemont4, Chair of structural biology research at Imperial College London. Protein Crystallography, at Imperial College London. “The power of a logic-based approach is that it can Technology commercialisation company NetScientific propose chemically-novel molecules that can have Ltd has invested £250K in Equinox. The technology developed by the company takes a logic- enhanced properties and are able to be the subject of novel Equinox customers include major pharmaceutical based approach to discover novel drugs, using computers to ‘composition of matter’ patents,” says Muggleton. companies such as Japanese pharmaceutical company learn from a set of biologically-active molecules. It combines Astellas and agro chemical companies such as knowledge about traditional drug discovery methods and Proving the technology Syngenta, as well as SMEs based in the UK, Europe, computer-based analyses, and focuses on the key stages in A three-year BBSRC grant in 2003 funded the work of Japan and the USA.
    [Show full text]
  • Virtual Screening of Human Class-A Gpcrs Using Ligand Profiles Built on Multiple Ligand-Receptor Interactions
    Article Virtual Screening of Human Class-A GPCRs Using Ligand Profiles Built on Multiple Ligand–Receptor Interactions Wallace K.B. Chan 1,2 and Yang Zhang 1,3 1 - Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA 2 - Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA 3 - Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA Correspondence to Yang Zhang: Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109-2218, USA. [email protected] https://doi.org/10.1016/j.jmb.2020.07.003 Edited by Michael Sternberg Abstract G protein-coupled receptors (GPCRs) are a large family of integral membrane proteins responsible for cellular signal transductions. Identification of therapeutic compounds to regulate physiological processes is an important first step of drug discovery. We proposed MAGELLAN, a novel hierarchical virtual-screening (VS) pipeline, which starts with low-resolution protein structure prediction and structure-based binding-site identification, followed by homologous GPCR detections through structure and orthosteric binding-site comparisons. Ligand profiles constructed from the homologous ligand–GPCR complexes are then used to thread through compound databases for VS. The pipeline was first tested in a large-scale retrospective screening experiment against 224 human Class A GPCRs, where MAGELLAN achieved a median enrichment factor (EF) of 14.38, significantly higher than that using individual ligand profiles. Next, MAGELLAN was examined on 5 and 20 GPCRs from two public VS databases (DUD-E and GPCR-Bench) and resulted in an average EF of 9.75 and 13.70, respectively, which compare favorably with other state-of- the-art docking- and ligand-based methods, including AutoDock Vina (with EF = 1.48/3.16 in DUD-E and GPCR-Bench), DOCK 6 (2.12/3.47 in DUD-E and GPCR-Bench), PoLi (2.2 in DUD-E), and FINDSITEC- comb2.0 (2.90 in DUD-E).
    [Show full text]
  • A Composite Approach to Protein Structure Evolution
    COMPARATIVE QUANTITATIVE GENETICS OF PROTEIN STRUCTURES: A COMPOSITE APPROACH TO PROTEIN STRUCTURE EVOLUTION by Jose Sergio Hleap Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Dalhousie University Halifax, Nova Scotia December 2015 c Copyright by Jose Sergio Hleap, 2015 To my parents for all the support and the drive they instilled on me To my girlfriend for all the love and support during this process To my supervisor for the guidance provided And last but not least, To whomever had the patience to read this document ii Table of Contents Abstract ...................................... vi List of Abbreviations Used .......................... vii Acknowledgements ............................... x Chapter 1 Introduction .......................... 1 Chapter 2 Morphometrics of protein structures: Geometric mor- phometric approach to protein structure evaluation .. 4 2.1GMmethodsinproteinstructures.................... 8 2.1.1 Abstractingaproteinstructureasashape........... 8 2.1.2 GPSvsProteinstructurealignment............... 9 2.1.3 FormDifferenceinproteinstructures.............. 14 2.2 Applicability of GM-like methods .................... 20 2.2.1 Statistical analysis of the α-Amylase evolutionary variation . 21 2.2.2 StatisticalanalysisoftheNPC1proteinsimulation...... 29 Chapter 3 Defining structural and evolutionary modules in pro- teins: A community detection approach to explore sub- domain architecture ...................... 34 3.1 Landmark definition ........................... 37 3.2 Contact
    [Show full text]
  • Drosophila Melanogaster
    ORTHOLOGOUS PAIR TRANSFER AND HYBRID BAYES METHODS TO PREDICT THE PROTEIN-PROTEIN INTERACTION NETWORK OF THE ANOPHELES GAMBIAE MOSQUITOES By Qiuxiang Li SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY AT IMPERIAL COLLEGE LONDON SOUTH KENSINGTON, LONDON SW7 2AZ 2008 °c Copyright by Qiuxiang Li, 2008 IMPERIAL COLLEGE LONDON DIVISION OF CELL & MOLECULAR BIOLOGY The undersigned hereby certify that they have read and recommend to the Faculty of Natural Sciences for acceptance a thesis entitled \Orthologous pair transfer and hybrid Bayes methods to predict the protein-protein interaction network of the Anopheles gambiae mosquitoes" by Qiuxiang Li in partial ful¯llment of the requirements for the degree of Doctor of Philosophy. Dated: 2008 Research Supervisors: Professor Andrea Crisanti Professor Stephen H. Muggleton Examining Committee: Dr. Michael Tristem Dr. Tania Dottorini ii IMPERIAL COLLEGE LONDON Date: 2008 Author: Qiuxiang Li Title: Orthologous pair transfer and hybrid Bayes methods to predict the protein-protein interaction network of the Anopheles gambiae mosquitoes Division: Cell & Molecular Biology Degree: Ph.D. Convocation: March Year: 2008 Permission is herewith granted to Imperial College London to circulate and to have copied for non-commercial purposes, at its discretion, the above title upon the request of individuals or institutions. Signature of Author THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR'S WRITTEN PERMISSION. THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH USE IS CLEARLY ACKNOWLEDGED.
    [Show full text]
  • Erepo-ORP: Exploring the Opportunity Space to Combat Orphan Diseases with Existing Drugs
    Databases/ Web Servers eRepo-ORP: Exploring the Opportunity Space to Combat Orphan Diseases with Existing Drugs Michal Brylinski 1,2, Misagh Naderi 1, Rajiv Gandhi Govindaraj 1 and Jeffrey Lemoine 1,3 1 - Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA 2 - Center for Computation & Technology, Louisiana State University, Baton Rouge, LA 70803, USA 3 - Division of Computer Science and Engineering, Louisiana State University, Baton Rouge, LA 70803, USA Correspondence to Michal Brylinski: Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. [email protected] https://doi.org/10.1016/j.jmb.2017.12.001 Edited by Michael Sternberg Abstract About 7000 rare, or orphan, diseases affect more than 350 million people worldwide. Although these conditions collectively pose significant health care problems, drug companies seldom develop drugs for orphan diseases due to extremely limited individual markets. Consequently, developing new treatments for often life-threatening orphan diseases is primarily contingent on financial incentives from governments, special research grants, and private philanthropy. Computer-aided drug repositioning is a cheaper and faster alternative to traditional drug discovery offering a promising venue for orphan drug research. Here, we present eRepo-ORP, a comprehensive resource constructed by a large-scale repositioning of existing drugs to orphan diseases with a collection of structural bioinformatics tools, including eThread, eFindSite, and eMatchSite. Specifically, a systematic exploration of 320,856 possible links between known drugs in DrugBank and orphan proteins obtained from Orphanet reveals as many as 18,145 candidates for repurposing. In order to illustrate how potential therapeutics for rare diseases can be identified with eRepo-ORP, we discuss the repositioning of a kinase inhibitor for Ras-associated autoimmune leukoproliferative disease.
    [Show full text]
  • Annual Review 2003
    The Wellcome Trust is an independent – 30 September 2003 1 October 2002 Review Annual Trust Wellcome The research-funding charity, established under the will of Sir Henry Wellcome in 1936. Annual It is funded from a private endowment, which is managed with long-term stability and growth in mind. Review Its mission is to foster and promote research with the aim of improving human and animal health. Its work covers four areas: 2003 Knowledge – improving our understanding of human and animal biology in health and disease, and of the past and present role of medicine in society. Resources – providing exceptional researchers with the infrastructural and career support they need to fulfil their potential. Translation – ensuring maximum health benefits are gained from biomedical research. Public engagement – raising awareness of the medical, ethical and social implications of biomedical science. www.wellcome.ac.uk Annual Review 2003 Contents 2 From the Director 6 Making a difference 8 Financial summary 10 Knowledge 16 Resources Advancing knowledge and Contributing to a long-term and understanding in the biomedical vibrant research environment. sciences and their impact on society – past, present and future. 22 Translation 28 Public engagement Advancing the translation of Trust- Engaging with the public through funded research into health benefits. informed dialogue. The cover images are of objects displayed at the ‘Medicine Man’ exhibition at the British Museum in 2003.The exhibition commemorated the 150th anniversary of the birth of Henry Wellcome. Front cover Back cover, left Back cover, right Yoruban figures representing Protective amulet said to Tobacco resuscitator kit. 34 A year at the Trust deceased twins, 1870–1910.
    [Show full text]
  • ELIXIR UK Node
    ELIXIR‐UK the UK Node of the European Life Sciences Infrastructure for Biological Information www.elixir‐europe.org elixir‐uk.org The USA 2 EUROPE 3 UK: Poor data quality hindering government open data programme • “A Computer Weekly analysis of 50 spending data releases by the Cabinet Office since May 2010 has shown they were so marred by "dirty data" and inconsistent computer encoding, systematic scrutiny would require advanced computer programming skills.” Thursday 28 August 2014 http://www.computerweekly.com/news/2240227682/Poor‐data‐quality‐ hindering‐government‐open‐data‐transparency‐programme 4 Establishing a fresh UK activity Oxford University Computational Genomics Analysis and Training (CGAT) €1.6million The University of Manchester Seed fund The Oxford e‐Research Centre European Bioinformatics Institute (EMBL‐EBI) in kind University of Cardiff & NERC EOS Centre funding The Genome Analysis Centre (TGAC) University College London University of Birmingham University of Edinburgh Queen Mary, London University of Cambridge University of Liverpool Centre for Genomic Medicine Harness existing expertise Core Staff TeSS Staff Train across the Spectrum Technical Life Science Infrastructure Researchers Service Providers TCRS TCIT Training Training Coordinator, Coordinator, Research Infrastructure Science Technology Lee Larcombe Aleks Pawlik ELIXIR‐UK working across Europe: Training Coordination Group Mission: to establish an interacting ELIXIR wide training community & to ensure coherency in the delivery of training related to ELIXIR activities. TrCG members: Chair: Rita Hendricusdottir BE Katrijn Vannerum CZ Daniel Svozil DK Peter Longreen EE Hedi Peterson FI Eija Korpelainen FR Julie Thompson IL Michal Linial IT Allegra Via NL Celia van Gelder NO Ståle Nygård PT Pedro Fernandes SI Brane L.
    [Show full text]