Message from the Ministry of Marine Affairs and Fisheries for the International Ocean Science, Technology and Policy Symposium 2009"
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Head of Regional Investment and Permittance Board of East Kalimantan) Coal Mining Potencies in East Kalimantan Brief Profile of East Kalimantan
PRESENTED BY DIDDY RUSDIANSYAH A.D (HEAD OF REGIONAL INVESTMENT AND PERMITTANCE BOARD OF EAST KALIMANTAN) COAL MINING POTENCIES IN EAST KALIMANTAN BRIEF PROFILE OF EAST KALIMANTAN Total area of Kalimantan Timur is 125.336,81 km square (or 12,726,752 hectares), consists of : - 3 (three) Cities : 1. Samarinda 2. Balikpapan 3. Bontang - 7 (seven) Regencies : 4. Kutai Kartanegara 5. Kutai Timur 6. Kutai Barat 7. Berau 8. Penajam Paser Utara 9. Paser 10. Mahakam Hullu Its population up to 2014 is 3,508 million inhabitants, with the result that the average population density is 26,14 inhabitants/km square REGIONAL GEOLOGY ....... From geological point of view, East Kalimantan is located in three major tertiary sedimentary basins which have major impact on the process of mineral resources formation in the region. The three basins are : Kutai Basin which covers the area of Mahakam Hilir and Mahakam Hulu. Pasir Basin which covers the area of Paser. Tarakan Basin which covers the area of Tarakan, Berau, and Bulungan. COAL BEARING FORMATION Coal Bearing Formations in Kalimantan Timur are : Balikpapan Formation Pulaubalang Formation Pamaluan Formation Kuaro Formation Wahau Formation Batuayau Formation Tanjung Formation Warukin Formation Telakai Formation Birang Formation Latih Formation COAL RESOURCES AND RESERVES IN EAST KALIMANTAN IN 2012 – 2014 Coal Calorie 5000 up to 7000 Ccl and Sulphur 0,8 up to 1,5 Description 2012 2013 2014 Resources 31.817.269.817 32.258.774.367 30.651.444.628 (MT) Reserves 9.244.407.452 9.525.868.005 8.826.730.632 -
International Journal of Education and Research Vol. 4 No. 2 February 2016 DETERMINANTS and EFFECTS of STRUCTURAL ECONOMIC
International Journal of Education and Research Vol. 4 No. 2 February 2016 DETERMINANTS AND EFFECTS OF STRUCTURAL ECONOMIC CHANGE ON EMPLOYMENT AND INCOME INEQUALITY IN EAST KALIMANTAN Author’s Name and Affiliation Syaiful Anwar, S.E., M.Si. (Universitas Borneo Tarakan) Prof. Dr. H. Muhammad Yunus Zain, M.A. (Universitas Hasanuddin) Dr. Sanusi Fattah, S.E., M.Si. (Universitas Hasanuddin) Dr. Abd. Hamid Paddu, S.E., M.A. (Universitas Hasanuddin) Abstract The objectives from this research are to knowing and analyzing the influence of natural resources revenue-sharing, government capital expenditure, investment, road infrastructure towards labor absorption either direct or indirectly through economic structure comprise primary, secondary, and tertiary sectors.This research also examines influence of labor absorption towards income imbalance directly in East Kalimantan. From the 14 districts/cities in East Kalimantan province, this study takes totally sample of 13 districts/cities, namely Balikpapan, Samarinda, Bontang, Berau City, West Kutai regency, East Kutai regency, Penajam Paser Utara, Pasir Malinau, Nunukan, Bulungan, and Tarakan. Type of data used in this research is secondary data in the form of time series of the 2001-2012 annual in each districts/city (as many as 13 districts/cities). This study used the approach path analysis as a technique to analyze the structural relationships. Development of the modelin this study was to examine the relationship between exogenous and endogenous variables, simultaneously. Based on research result, revealed that there is an affected result that relate to the impact of determinants economic structure changes in East Kalimantan. Keywords : economy structure, labor absorption, income imbalance BACKGROUND The issue of imbalance in Indonesia has become unresolved problem in developments meadow. -
Download This PDF File
Composition and Distribution of Dolphin in Savu Sea National Marine Park, East Nusa Tenggara (Mujiyanto., et al) Available online at: http://ejournal-balitbang.kkp.go.id/index.php/ifrj e-mail:[email protected] INDONESIANFISHERIESRESEARCHJOURNAL Volume 23 Nomor 2 December 2017 p-ISSN: 0853-8980 e-ISSN: 2502-6569 Accreditation Number: 704/AU3/P2MI-LIPI/10/2015 COMPOSITION AND DISTRIBUTION OF DOLPHIN IN SAVU SEA NATIONAL MARINE PARK, EAST NUSA TENGGARA Mujiyanto*1, Riswanto1, Dharmadi2 and Wildan Ghiffary3 1Research Institute for Fisheries Enhancement and Conservation, Cilalawi Street No. 1, Jatiluhur Purwakarta, West Java Indonesia - 41152 2Center for Fisheries Research and Development, Ancol – Jakarta, Indonesia 3Fusion for Nature - Master Candidate of Wageningen University, Drovendaalsesteeg 4, 6708 PB Wageningen, Belanda Received; Februari 20-2017 Received in revised from December 22-2017; Accepted December 28-2017 ABSTRACT Dolphins are one of the most interesting cetacean types included in family Delphinidae or known as the oceanic dolphins from genus Stenella sp. and Tursiops sp. Migration and abundance of dolphins are affected by the presence of food and oceanographic conditions. The purpose of this research is to determine the composition and distribution of dolphins in relation to the water quality parameters. Benefits of this research are expected to provide information on the relationship between distributions of the family Delphinidae cetacean (oceanic dolphins) and oceanographic conditions. The method for this research is descriptive exploratory, with models onboard tracking survey. Field observations were done in November 2015 and period of March-April 2016 outside and inside Savu Sea National Marine Park waters. The sighting of dolphin in November and March- April found as much seven species: bottlenose dolphin, fraser’s dolphin, pantropical spotted dolphin, risso’s dolphin, rough-toothed dolphin, spinner dolphin and stripped dolphin. -
Guest Experience
Guest Experience Contents The Amanwana Experience 3 Spa & Wellness 29 During Your Stay 5 Amanwana Spa Facilities 29 A New Spa Language 30 Aman Signature Rituals 32 Amanwana Dive Centre 7 Nourishing 33 Grounding 34 Diving at Amanwana Bay 7 Purifying 35 Diving at the Outer Reefs 8 Body Treatments 37 Diving at Satonda Island 10 Massages 38 Night Diving 13 Courses & Certifications 14 Moyo Conservation Fund 41 At Sea & On Land 17 Island Conservation 41 Species Protection 42 Water Sports 17 Community Outreach & Excursions 18 Camp Responsibility 43 On the Beach 19 Trekking & Cycling 20 Amanwana Kids 45 Leisure Cruises & Charters 23 Little Adventurers 45 Leisure Cruises 23 Fishing 24 Charters 25 Dining Experiences 27 Memorable Moments 27 2 The Amanwana Experience Moyo Island is located approximately eight degrees south of the equator, within the regency of Nusa Tenggara Barat. The island has been a nature reserve since 1976 and measures forty kilometres by ten kilometres, with a total area of 36,000 hectares. Moyo’s highest point is 600 meters above the Flores Sea. The tropical climate provides a year-round temperature of 27-30°C and a consistent water temperature of around 28°C. There are two distinct seasons. The monsoon or wet season is from December to March and the dry season from April to November. The vegetation on the island ranges from savannah to dense jungle. The savannah land dominates the plateaus and the jungle the remaining areas. Many varieties of trees are found on the island, such as native teak, tamarind, fig, coral and banyan. -
The Seasonal Variability of Sea Surface Temperature and Chlorophyll-A Concentration in the South of Makassar Strait
Available online at www.sciencedirect.com ScienceDirect Procedia Environmental Sciences 33 ( 2016 ) 583 – 599 The 2nd International Symposium on LAPAN-IPB Satellite for Food Security and Environmental Monitoring 2015, LISAT-FSEM 2015 The seasonal variability of sea surface temperature and chlorophyll-a concentration in the south of Makassar Strait Bisman Nababan*, Novilia Rosyadi, Djisman Manurung, Nyoman M. Natih, and Romdonul Hakim Department of Marine Science and Technology, Bogor Agricultural University, Jl. Lingkar Akademik, Kampus IPB Darmaga, Bogor 16680, Indonesia Abstract The sea surface temperature (SST) and chlorophyll-a (Chl-a) variabilities in the south of Makassar Strait were mostly affected by monsoonal wind speed/directions and riverine freshwater inflows. The east-southeast (ESE) wind (May-October) played a major role in an upwelling formation in the region starting in the southern tip of the southern Sulawesi Island. Of the 17 years time period, the variability of the SST values ranged from 25.7°C (August 2004) - 30.89°C (March 2007). An upwelling initiation typically occurred in early May when ESE wind speed was at <5 m/s, a fully developed upwelling event usually occurred in June when ESE wind speed reached >5 m/s, whereas the largest upwelling event always occurred in August of each year. Upwelling event generally diminished in September and terminated in October. At the time of the maximum upwelling events (August), the formation of upwelling could be observed up to about 330 km toward the southwest of the southern tip of the Sulawesi island. Interannually, El Niño Southern Oscillation (ENSO) intensified the upwelling event during the east season through an intensification of the ESE wind speed. -
Resting Cyst Distribution and Molecular
fmicb-10-00306 February 19, 2019 Time: 17:5 # 1 ORIGINAL RESEARCH published: 21 February 2019 doi: 10.3389/fmicb.2019.00306 Resting Cyst Distribution and Molecular Identification of the Harmful Dinoflagellate Margalefidinium polykrikoides (Gymnodiniales, Dinophyceae) in Lampung Bay, Sumatra, Indonesia Edited by: Ramiro Logares, Hikmah Thoha1, Muawanah2, Mariana D. Bayu Intan1, Arief Rachman1, Institute of Marine Sciences (ICM), Oksto Ridho Sianturi1, Tumpak Sidabutar1, Mitsunori Iwataki3, Kazuya Takahashi3, Spain Jean-Christophe Avarre4*† and Estelle Masseret1,5† Reviewed by: 1 2 Nataliia Annenkova, Research Center for Oceanography, Indonesian Institute of Sciences, Jakarta, Indonesia, Main Center for Marine 3 Limnological Institute (RAS), Russia Aquaculture of Lampung, Directorate General of Aquaculture, Lampung, Indonesia, Asian Natural Environmental Science 4 Albert Reñé, Center, The University of Tokyo, Tokyo, Japan, ISEM, IRD, CNRS, EPHE, University of Montpellier, Montpellier, France, 5 Institute of Marine Sciences (ICM), MARBEC, University of Montpellier, IRD, Ifremer, CNRS, Montpellier, France Spain Isabel Bravo, Margalefidinium polykrikoides, an unarmored dinoflagellate, was suspected to be the Instituto Español de Oceanografía (IEO), Spain causative agent of the harmful algal blooms – associated with massive fish mortalities – *Correspondence: that have occurred continually in Lampung Bay, Indonesia, since the first bloom Jean-Christophe Avarre event in October 2012. In this study, after examination of the morphology of putative [email protected] M. polykrikoides-like cysts sampled in bottom sediments, cyst bed distribution of this †These authors have contributed equally to this work harmful species was explored in the inner bay. Sediment samples showed that resting cysts, including several morphotypes previously reported as M. polykrikoides, were most Specialty section: abundant on the northern coast of Lampung Bay, ranging from 20.6 to 645.6 cysts g−1 This article was submitted to Aquatic Microbiology, dry sediment. -
Cusk Eels, Brotulas [=Cherublemma Trotter [E
FAMILY Ophidiidae Rafinesque, 1810 - cusk eels SUBFAMILY Ophidiinae Rafinesque, 1810 - cusk eels [=Ofidini, Otophidioidei, Lepophidiinae, Genypterinae] Notes: Ofidini Rafinesque, 1810b:38 [ref. 3595] (ordine) Ophidion [as Ophidium; latinized to Ophididae by Bonaparte 1831:162, 184 [ref. 4978] (family); stem corrected to Ophidi- by Lowe 1843:92 [ref. 2832], confirmed by Günther 1862a:317, 370 [ref. 1969], by Gill 1872:3 [ref. 26254] and by Carus 1893:578 [ref. 17975]; considered valid with this authorship by Gill 1893b:136 [ref. 26255], by Goode & Bean 1896:345 [ref. 1848], by Nolf 1985:64 [ref. 32698], by Patterson 1993:636 [ref. 32940] and by Sheiko 2013:63 [ref. 32944] Article 11.7.2; family name sometimes seen as Ophidionidae] Otophidioidei Garman, 1899:390 [ref. 1540] (no family-group name) Lepophidiinae Robins, 1961:218 [ref. 3785] (subfamily) Lepophidium Genypterinae Lea, 1980 (subfamily) Genypterus [in unpublished dissertation: Systematics and zoogeography of cusk-eels of the family Ophidiidae, subfamily Ophidiinae, from the eastern Pacific Ocean, University of Miami, not available] GENUS Cherublemma Trotter, 1926 - cusk eels, brotulas [=Cherublemma Trotter [E. S.], 1926:119, Brotuloides Robins [C. R.], 1961:214] Notes: [ref. 4466]. Neut. Cherublemma lelepris Trotter, 1926. Type by monotypy. •Valid as Cherublemma Trotter, 1926 -- (Pequeño 1989:48 [ref. 14125], Robins in Nielsen et al. 1999:27, 28 [ref. 24448], Castellanos-Galindo et al. 2006:205 [ref. 28944]). Current status: Valid as Cherublemma Trotter, 1926. Ophidiidae: Ophidiinae. (Brotuloides) [ref. 3785]. Masc. Leptophidium emmelas Gilbert, 1890. Type by original designation (also monotypic). •Synonym of Cherublemma Trotter, 1926 -- (Castro-Aguirre et al. 1993:80 [ref. 21807] based on placement of type species, Robins in Nielsen et al. -
A NEW SPECIES of SOLENOCERA (CRUSTACEA: DECAPODA: SOLENOCERIDAE) from NORTHERN AUSTRALIA Isabel Perez Farfante and D
28 August 1980 PROC. BIOL. SOC. WASH. 93(2), 1980, pp. 421-434 A NEW SPECIES OF SOLENOCERA (CRUSTACEA: DECAPODA: SOLENOCERIDAE) FROM NORTHERN AUSTRALIA Isabel Perez Farfante and D. L. Grey Abstract.—Solenocera australiana, new species, a close ally of S. halli and S. melantho, is described from material collected in shallow water, 15 to 24 m, off the Northern Territory, Australia. This species is characterized by the antennular flagella which gradually narrow distally toward the 2 or 3 distalmost articles; the roughly lanceolate distal part of the dorsolateral lobules of the petasma which are supported by submesial ribs; and the presence of two pairs of thelycal protuberances on the anterior part of ster- nite XIV, the mesial one usually considerably larger than the lateral, as well as by the straight anterior border of the thoracic ridge. In July 1972, during routine fishery monitoring by the staff of the Fisheries Division, Department of Primary Production, Darwin, a collection of shrimps of the genus Solenocera was taken from commercial grounds north of Groote Eylandt in the western Gulf of Carpentaria. Since that time ad- ditional specimens have been obtained during the course of sampling of penaeid shrimps by fishery research vessels in waters adjacent to the North- ern Territory, mostly in Van Diemen Gulf, but also in other localities off this province by commercial trawlers. Van Diemen Gulf has not attracted significant commercial fishing for pe- naeid shrimps—the only members of the superfamily Penaeoidea that at present are economically important in northern Australia—and to make a preliminary evaluation of its potential as a fishery, a series of brief surveys were made between May 1977 and February 1978. -
Lombok Island, Sumbawa Island, and Samalas Volcano
ECOLE DOCTORALE DE GEOGRAPHIE DE PARIS (ED 4434) Laboratoire de Géographie Physique - UMR 8591 Doctoral Thesis in Geography Bachtiar Wahyu MUTAQIN IMPACTS GÉOMORPHIQUES DE L'ÉRUPTION DU SAMALAS EN 1257 LE LONG DU DÉTROIT D'ALAS, NUSA TENGGARA OUEST, INDONÉSIE Defense on: 11 December 2018 Supervised by : Prof. Franck LAVIGNE (Université Paris 1 – Panthhéon Sorbonne) Prof. HARTONO (Universitas Gadjah Mada) Rapporteurs : Prof. Hervé REGNAULD (Université de Rennes 2) Prof. SUWARDJI (Universitas Mataram) Examiners : Prof. Nathalie CARCAUD (AgroCampus Ouest) Dr. Danang Sri HADMOKO (Universitas Gadjah Mada) 1 Abstract As the most powerful event in Lombok’s recent eruptive history, volcanic materials that were expelled by the Samalas volcano in 1257 CE covered the entire of Lombok Island and are widespread in its eastern part. Almost 800 years after the eruption, the geomorphological impact of this eruption on the island of Lombok remains unknown, whereas its overall climatic and societal consequences are now better understood. A combination of stratigraphic information, present-day topography, geophysical measurement with two-dimensional resistivity profiling technique, local written sources, as well as laboratory and computational analysis, were used to obtain detailed information concerning geomorphic impacts of the 1257 CE eruption of Samalas volcano on the coastal area along the Alas Strait in West Nusa Tenggara Province, Indonesia. This study provides new information related to the geomorphic impact of a major eruption volcanic in coastal areas, in this case, on the eastern part of Lombok and the western coast of Sumbawa. In the first place, the study result shows that since the 1257 CE eruption, the landscape on the eastern part of Lombok is still evolved until the present time. -
East Kalimantan
PROVINCE INFOGRAPHIC EAST KALIMANTAN Nunukan NUNUKAN Tideng Pale Malinau TANA The boundaries and names shown and the TID UNG designations used on this map do not imply KOTA TARAKAN official endorsement or acceptance by the Tarakan United Nations. MA LINAU BULUNGAN Tanjungselor MOST DENSE LEAST DENSE Tanjung Selor Kota Balikpapan Malinau Tanjungredep MOST POPULATED LEAST POPULATED BERA U Kota Samarinda Tana Tidung 14 1,435 KUTAI DISTRICTS VILLAGES TIMUR Putussibau Sangatta 136 KAPU AS Ujoh Bilang HULU SUB-DISTRICTS Bontang SINTANG KOTA MU RUNG KUTAI BONTANG RAYA KARTANEGARA Legend: Sendawar KOTA SAMARIND A Administrative Boundary Tenggarong Samarinda Samarinda Province Province Capital Purukcahu District District Capital BARITO KUTAI GUNUN G UTARA BARAT MA S Population Transportation Muara Teweh PEN AJAM Population counts at 1km resolution Toll road PA SER Kuala Kurun UTARA KOTA Pasangkayu Primary road 0 BALIKPAPAN Secondary road 1 - 5 Balikpapan Port 6 - 25 Penajam BARITO KATINGAN Airport 26 - 50 SELATAN 51 - 100 Buntok KOTA Other KAPU AS TABALONG PASER 101 - 500 PALANGKA Kasongan Volcano 501 - 2,500 RAYA Tanah Grogot Tamiang Water/Lake 2,501 - 5,000 KOTAWARINGIN Layang Tobadak Tanjung 5,000 - 130,000 TIMUR Palangka Raya BARITO Coastline/River TIMUR Palangkaraya Paringin MA MUJU HULU BALANGAN SUNGAI Amuntai TAPIN UTARA Barabai HULU Sampit SUNGAI KOTA PULANG BARITO HULU SUNGAI Mamuju MA MASA SELATAN TEN GAH BARU GEOGRAPHY PISAU KUALA Mamuju TORA JA East Kalimantan is located at 4°24'N - 2°25'S and 113°44' - 119°00'E. The province borders with Malaysia, specifically Sabah and Sarawak (North), the Sulawesi Ocean and Makasar Straits (East), South Kalimantan (South) and West Kalimantan, Central Kalimantan and Malaysia (West). -
Bugis Settlers in East Kalimantan's Kutai National Park
Front pages 6/7/98 8:17 PM Page 1 BUGIS SETTLERS IN EAST KALIMANTANÕS KUTAI NATIONAL PARK THEIR PAST AND PRESENT AND SOME POSSIBILITIES FOR THEIR FUTURE Andrew P. Vayda and Ahmad Sahur CIFOR CENTER FOR INTERNATIONAL FORESTRY RESEARCH CIFOR Special Publication Front pages 6/7/98 8:17 PM Page 2 © 1996 Center for International Forestry Research Published by Center for International Forestry Research mailing address: P.O. Box 6596 JKPWB, Jakarta 10065, Indonesia tel.: +62-251-622622 fax: +62-251-622100 e-mail: [email protected] WWW: http://www.cgiar.org/cifor with support from UNDP/UNESCO/Government of Indonesia Project INS/93/004 on Management Support to Kutai National Park Jl. M.H. Thamrin 14 Jakarta Pusat, Indonesia ISBN 979-8764-12-9 Front pages 6/7/98 8:17 PM Page 3 CONTENTS Preface v Introduction 1 Some Teluk Pandan Findings Amenability to Relocation 7 The Pull of Industry and the Pull of the Forest 8 Compensation for Land 11 Patrons and Clients 15 Willingness to Move in Return only for Compensation 18 Effects of Compensation Expectations on Buying and Using Land 24 Comparisons Selimpus 27 Sangkimah 33 Bugis Settlers Relocated to Km 24 40 Bugis Settlers Relocated from Bukit Soeharto 43 Concluding Remarks 49 References Cited 52 Front pages 6/7/98 8:17 PM Page 5 PREFACE This report presents detailed results of human ecology-anthropological research in a very specific place, with a specific ethnic group, and deals with a context which a particular national government sees as a specific ÒproblemÓ. This would seem to make it an unlikely candi- date for publication by CIFOR, an institution mandated and dedicated to research which is of widespread public benefit. -
Problemy Ekorozwoju – Problems of Sustainable Development 2021, 16(1), 133-142
PROBLEMY EKOROZWOJU – PROBLEMS OF SUSTAINABLE DEVELOPMENT 2021, 16(1), 133-142 Cantrang: A Dilemma in Policy Implementation (Case in Lampung Bay, Indonesia) Sieć trałowa: Dylemat we wdrażaniu polityki (przypadek zatoki Lampung w Indonezji) , , Indra Gumay Febryano* *****, Supono* ***, Abdullah Aman Damai*, Debi Hardian*, Gunardi Djoko Winarno*, Novita Tresiana**, **** *Department of Coastal and Marine Zone Management, Postgraduate Program, Universitas Lampung, Bandar Lampung, Indonesia **Department of Public Administration, Faculty of Social and Political Science, Universitas Lampung, Bandar Lampung, Indonesia ***ORCID: 0000-0001-8712-090X ****ORCID: 0000-0001-7242-656X *****E-mail: (Corresponding Author): [email protected], ORCID: 0000-0001-7242-656X Abstract Cantrang is a section of seine nets which has been banned in all regions of Indonesia. However, this policy can stir to pros and cons due to implementation. The purpose of this study is to analyze the success of the stage and the effectiveness of policy implementation on cantrang prohibition in Lampung Bay, Indonesia. Data were collected by interview, observation, and documentation studies, next the policy implementation was reviewed by the mar- keting policy studies then for further analyze was using ambiguity-conflict matrix. The result of this research shows the unsuccessful of the policy marketing on implementing cantrang prohibition policy from policy ac- ceptance side and policy adoption, also on readiness strategy side is failed. Fisher community do not fulfil the policy and not become a part of it, hesitancy of local government as an executor of the policy, vertical conflict between fisherman and government. The analysis of ambiguity-conflict matrix gives the choice of effectiveness politic model implementation and experimentation, replace the administrative policy implementation.