Ferrocenophanes with All Carbon Bridges

Total Page:16

File Type:pdf, Size:1020Kb

Ferrocenophanes with All Carbon Bridges Journal of Organometallic Chemistry 578 (1999) 31–42 Review Ferrocenophanes with all carbon bridges Richard W. Heo, T. Randall Lee * Department of Chemistry, Uni6ersity of Houston, Houston, TX 77204-5641, USA Received 10 July 1998 Abstract The most prevalent organometallic analogs of cyclophanes are the ferrocenophanes, in which the two cyclopentadienyl (Cp) groups of ferrocene are joined by an atomic or a molecular bridge. This review describes the synthesis and study of ferrocenophanes that possess exclusively carbon-based bridges. The use of this class of ferrocenophane in the design and development of new organometallic materials is emphasized. © 1999 Elsevier Science S.A. All rights reserved. Keywords: Ferrocene; Ferrocenophane; Organometallic; Polymers 1. Introduction Soon after the discovery that ferrocene could easily be functionalized [13–15], interest in the preparation of Since its discovery in the early 1950s, ferrocene has bridged ferrocenes (ferrocenophanes) began. Ferro- attracted the attention of scientists worldwide [1]. Re- cenophanes are ring systems in which the two Cp groups markably, this ‘new type of organo-iron compound’ was of ferrocene are joined by an atomic or a molecular found to be aromatic, highly stable, and soluble in most bridge. Scientists have synthesized a wide variety of common organic solvents. The X-ray crystal structure of ferrocenophanes with numerous modes of ring attach- ferrocene revealed an iron metal sandwiched by two ment [16,17]. Some bridges contain from two to more cyclopentadienyl (Cp) ligands, which lie in parallel than ten contiguous carbon atoms, while others contain planes [2,3]. The Cp ligands are bonded covalently to the heteroatomic atoms, such as phosphorus, sulfur, silicon, iron center; however, they rotate freely with respect to and germanium [18–25]. In addition to mono-bridged each other and slightly prefer the staggered conforma- systems, multi-bridged ferrocenophanes containing as tion (ring twist angle=36°) [4]. While ferrocene is many as five bridges on one ferrocene have been pre- diamagnetic, the lone pairs on the metal center permit it pared [26–29]. Macromolecules containing more than to act as a weak base [5–10]. In the presence of strong one bridging ferrocene nucleus have also been synthe- non-oxidizing acids, for example, the metal center under- sized [30–46]. The incorporation of various types of goes protonation and subsequent rapid isotopic ex- bridges has given rise to questions regarding the struc- change with the ten protons of the Cp rings. Other tural integrity of ferrocenophanes and the influence that reviews provide comprehensive descriptions of the prop- the bridges can have on the chemistry of these molecules. erties and reactivities of ferrocene and its derivatives Depending on the size and chemical makeup, for exam- [11,12]. ple, bridging ultimately limits the relative motion of the rings. If the bridge cannot accommodate the natural CpCp% separation of ferrocene, then the rings are forced * Corresponding author. Tel.: +1-713-743-2724; fax: +1-713-743- to tilt away from planarity, influencing both the confor- 2726. mation as well as the chemistry of the ferrocenophanes. 0022-328X/99/$ - see front matter © 1999 Elsevier Science S.A. All rights reserved. PII: S0022-328X(98)01126-7 32 R.W. Heo, T.R. Lee / Journal of Organometallic Chemistry 578 (1999) 31–42 The nomenclature of ferrocenophanes is derived conjugated organometallic system that can be used as from the system proposed by Smith [47] and Vo¨gtle et the basis for the construction of new types of stable al. [48] for naming bridged organic aromatic cy- optoelectronic materials [53–55]. clophanes and metallocenophanes. All bridged fer- Due to these attractive features, ferrocenes and ferro- rocenes are referred to as ‘ferrocenophanes’. cenophanes have found use as building blocks for Ferrocenophanes can then be divided into two different metal-based polymers [49,56–60]. Polymers with metals classes. The first class is comprised of derivatives in incorporated in the backbone are of particular interest which one ferrocene nucleus is connected by one or due to potential interactions between the metal centers. more bridges between the Cp rings. These ferrocenes This type of ‘electronic communication’ might manifest are denoted as [m][n][o][p][q]ferrocenophanes, where itself either as through-bond effects, through-space ef- the number in the square brackets represents the length fects, or perhaps a combination of both. The coopera- of the bridge. Using the above convention, tivity can be used to influence redox processes and [3]ferrocenophane 1 contains a single three-carbon other reactions at the metal centers. To this end, bridge, and [3][3]ferrocenophane 2 contains two three- strained [1]ferrocenophanes and [2]ferrocenophanes carbon bridges. Ferrocenophanes can further be de- have been used as monomers in thermal ring opening scribed by denoting the location of these bridges on polymerizations to give polymers with transition metals each of the Cp rings, as in [3](1,1%)[3](3,3%)ferro- in the backbone [49,57–60]. While these polymers are cenophane 2. This nomenclature indicates that the stable toward oxygen and elevated temperatures [59], bridges are located on C-1 and C-3 of both Cp rings. they appear to lack the necessary conjugation required for electron delocalization through the backbone [49]. An alternative strategy utilized by our research group involves the ring opening metathesis polymerization (ROMP) of unsaturated ferrocenophanes [60]. The driving force for this method of polymerization is the relief of ring strain in the monomer [61,62]. This ap- proach is particularly attractive for generating conju- The second class of ferrocenophanes is composed of gated polymers because the unsaturation in the derivatives in which two or more ferrocene nuclei are monomer is retained in the resulting polymer. Conse- connected by one or more bridges. These structures are quently, the goal of achieving conjugation through the named [m.n.o.p. .]ferrocenophanes; the numbers in the backbone of the polymer chain can be realized. Fur- square brackets represent the length of the bridge join- thermore, since ROMP catalysts can tolerate a wide ing the two nuclei, and the number of ferrocene nuclei range of functional groups [63], it should be possible to can be derived from the number of different bridges. utilize specifically designed ferrocenophanes to yield Thus, using this convention, [1.1]ferrocenophane 3 is a conjugated organometallic polymers with tailored elec- binuclear structure with two bridges joining the two tronic properties. ferrocene moieties. These species can be further de- Indeed, there have been many different classes of scribed by denoting the placement of the bridges on the ferrocenophanes reported in the past 30 years, and %% % %%% ring, as in [1.1](1,1 ;1 ,1 )ferrocenophane 3. several reviews have documented these discoveries Ferrocenophanes have drawn interest for a variety of [16,17]. Due, however, to the recent developments out- reasons [49,50]. Many of the desirable characteristics of lined above, we feel that a review of carbon-rich ferro- the parent ferrocene are retained in the ferro- cenophanes is timely. Consequently, this review will be cenophanes, leading to useful applications for the restricted to the synthesis and structure of ferro- bridged structures. First, ferrocene and many of its cenophanes having all carbon bridges. derivatives are highly thermally stable, withstanding temperatures as high as 500°C [51]. Second, unlike many organometallic compounds, ferrocene is stable in 2. [1]Ferrocenophanes air. Consequently, ferrocene-based materials can be used in a wide variety of applications without fear of To our knowledge, no examples of [1]ferroceno- degradation. Third, ferrocene and its derivatives can phanes bridged by a single carbon atom have been reversibly undergo single electron oxidation to give reported. A single carbon bridge would substantially stable, deep green ferrocenium radical cations. This distort the Cp rings from planarity, forcing the ferro- feature makes ferrocenyl systems particularly attractive cenyl moiety into an unstable puckered conformation. electrochemical agents for use in chemical sensing and There are, however, numerous examples of other technologies [52]. Fourth, the p-electrons of both [1]ferrocenophanes bridged by single heteroatoms, such Cp rings of ferrocene are delocalized through the d- as oxygen, sulfur, silicon, and germanium [20–24]. Ap- electrons of the transition metal, thereby providing a parently, the relatively large atomic radii of these atoms R.W. Heo, T.R. Lee / Journal of Organometallic Chemistry 578 (1999) 31–42 33 Scheme 1. Synthesis of 1,1,2,2-tetramethyl[2]ferrocenophane 4 from 6,6-dimethylfulvene. affords less tilting of the Cp rings and thus greater Scheme 2 illustrates the concept that the incorpora- stability than in the case of a single carbon bridge. tion of unsaturated carbon bridges into ferro- cenophanes can be used as a strategy to produce fully conjugated organometallic polymers. As with other 3. [2]Ferrocenophanes macromolecules of this type [75,76], however, poor solubility has hindered the preparation and characteri- Due to the relatively short length of CC bonds, zation of high molecular weight species. Consequently, ferrocenophanes bridged by two carbon atoms, the problems associated with solubility must be solved [2]ferrocenophanes, would also be expected to experi- before useful, processable
Recommended publications
  • A Novel Series of Titanocene Dichloride Derivatives: Synthesis, Characterization and Assessment of Their
    A novel series of titanocene dichloride derivatives: synthesis, characterization and assessment of their cytotoxic properties by Gregory David Potter A thesis submitted to the Department of Chemistry in conformity with the requirements for the degree of Doctor of Philosophy Queen’s University Kingston, Ontario, Canada May, 2008 Copyright © Gregory David Potter, 2008 Abstract Although cis-PtCl2(NH3)2 (cisplatin) has been widely used as a chemotherapeutic agent, its use can be accompanied by toxic side effects and the development of drug resistance. Consequently, much research has been focused on the discovery of novel transition metal compounds which elicit elevated cytotoxicities coupled with reduced toxic side effects and non-cross resistance. Recently, research in this lab has focused on preparing derivatives of titanocene dichloride (TDC), a highly active chemotherapeutic agent, with pendant alkylammonium groups on one or both rings. Earlier results have demonstrated that derivatives containing either cyclic or chiral alkylammonium groups had increased cytotoxic activities. This research therefore investigated a new series of TDC complexes focusing specifically on derivatives bearing cyclic and chiral alkylammonium groups. A library of ten cyclic derivatives and six chiral derivatives were synthesized and fully characterized. These derivatives have undergone in vitro testing as anti-tumour agents using human lung, ovarian, and cervical carcinoma cell lines (A549, H209, H69, H69/CP, A2780, A2780/CP and HeLa). These standard cell lines represent solid tumour types for which new drugs are urgently needed. The potencies of all of the Ti (IV) derivatives varied greatly (range from 10.8 μM - >1000 μM), although some trends were observed. In general, the dicationic analogues exhibited greater potency than the corresponding monocationic derivatives.
    [Show full text]
  • Accepted Version
    Citation for published version: Hamilton, JA, Pugh, T, Johnson, AL, Kingsley, AJ & Richards, SP 2016, 'Cobalt(I) olefin complexes: precursors for metal-organic chemical vapor deposition of high purity cobalt metal thin films', Inorganic Chemistry, vol. 55, no. 14, pp. 7141-7151. https://doi.org/10.1021/acs.inorgchem.6b01146, https://doi.org/10.1021/acs.inorgchem.6b01146 DOI: 10.1021/acs.inorgchem.6b01146 http://dx.doi.org/10.1021/acs.inorgchem.6b01146 Publication date: 2016 Document Version Peer reviewed version Link to publication This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see DOI: 10.1021/acs.inorgchem.6b01146. University of Bath Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 06. Oct. 2021 Table of Content Abstract and Graphic We report the synthesis and characterization of a family of eleven cobalt (I) metal precursors based around cyclopentadienyl and diene ligands. Low pressure metal-organic chemical vapor deposition (AP-MOCVD) was employed using the precursor cyclopentadienyl-cobalt(I)(isoprene) 1, to synthesis thin films of metallic cobalt on silicon substrates under an atmosphere (760 Torr) of hydrogen (H2) .
    [Show full text]
  • US 2004/0237384 A1 Orr (43) Pub
    US 2004O237384A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0237384 A1 Orr (43) Pub. Date: Dec. 2, 2004 (54) FUEL COMPOSITIONS EXHIBITING (52) U.S. Cl. ................. 44/314; 44/320; 44/358; 44/359; IMPROVED FUEL STABILITY 44/360; 44/444 (76) Inventor: William C. Orr, Denver, CO (US) Correspondence Address: (57)57 ABSTRACT HOGAN & HARTSON LLP ONE TABOR CENTER, SUITE 1500 A fuel composition of the present invention exhibits mini 1200 SEVENTEENTH ST mized hydrolysis and increased fuel Stability, even after DENVER, CO 80202 (US) extended storage at 65 F. for 6–9 months. The composition, which is preferably not strongly alkaline (3.0 to 10.5), is (21) Appl. No.: 10/722,063 more preferably weakly alkaline to mildly acidic (4.5 to 8.5) (22) Filed: Nov. 24, 2003 and most preferably slightly acidic (6.3 to 6.8), includes a e ars lower dialkyl carbonate, a combustion improving amount of Related U.S. Application Data at least one high heating combustible compound containing at least one element Selected from the group consisting of (63) Continuation-in-part of application No. 08/986,891, aluminum, boron, bromine, bismuth, beryllium, calcium, filed on Dec. 8, 1997, now Pat. No. 6,652,608. cesium, chromium, cobalt, copper, francium, gallium, ger manium, iodine, iron, indium, lithium, magnesium, manga Publication Classification nese, molybdenum, nickel, niobium, nitrogen, phosphorus, potassium, palladium, rubidium, Sodium, tin, Zinc, (51) Int. Cl." ........ C10L 1/12; C1OL 1/30; C1OL 1/28; praseodymium, rhenium, Silicon, Vanadium, or mixture, and C1OL 1/18 a hydrocarbon base fuel.
    [Show full text]
  • Relative Chalcogen Donor Properties in Transition Metal Complexes. Eugene D
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1971 Relative Chalcogen Donor Properties in Transition Metal Complexes. Eugene D. Schermer Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Schermer, Eugene D., "Relative Chalcogen Donor Properties in Transition Metal Complexes." (1971). LSU Historical Dissertations and Theses. 1949. https://digitalcommons.lsu.edu/gradschool_disstheses/1949 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. 71-20,621 SCHERMER, Eugene D., 1934- RELATIVE CHALCOGEN DONOR PROPERTIES IN TRANSITION METAL COMPLEXES. The Louisiana State University and Agricultural and Mechanical College, Ph.D., 1971 Chemistry, inorganic University Microfilms, A XEROXCompany, Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. RELATIVE CHALCOGEN DONOR PROPERTIES IN TRANSITION METAL COMPLEXES A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Eugene D. Schemer B.A., Eastern Washington State College, 1958 M.S., Oregon State University, 1Q62 January, 197! Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGEMENT The author wishes to express his sincere gratitude to Professor William H. Baddley, under whose direction this work was produced.
    [Show full text]
  • XXI. Syntheses of Etheno-Bridged Ansa-Titanocene Derivatives by The
    207 ansa-Metallocene derivatives XXI *. Syntheses of etheno-bridged ansa-titanocene derivatives by the McMurry reaction Peter Burger and Hans H. Brintzinger * Fakultiit fur Chemie, Universitiit Konstanz, Postfach 5560, W-7750 Konstanz (Germany) Abstract Novel olefin-linked biscylopentadienylligands have been prepared by McMurry coupling reactions of benzoyl- and acetyl-cyclopentadienyl sodium. Reactions of the disodium salts with TiC1 4 or TiCl 3 • 3THF afford the alkene-bridged ansa-titanocene dichlorides. 13C-NMR shifts of the bridge carbon atoms do not indicate any interaction between the olefin 'IT-system and the metal. Introduction Chiral ansa-metallocenes of Group IV metals (of current interest as Ziegler-Natta catalysts for stereospecific a-olefin polymerisation [2-5]) with various types of interannular bridges X (a-f) (Fig. 1) have been synthesized. ansa-Metallocenes with long and flexible bridges, i.e. a and d, possess low stereorigidity. Increased distances between the bridge-head carbon atoms due to steric requirements of the bridge-atoms give rise to larger centroid-metal-centroid angles than in the corresponding un­ bridged metallocenes [4,8,9]. Dimethylsilyl- (c) and methylene- (f) linked biscyclo­ pentadienyl metal dichlorides, on the other hand, are very stereorigid but rather strained [4,6,7,14,15]. The geometry of ethano-bridged metallocenes (e) is almost identical to that of their unbridged congeners. The cyclopentadienyl (Cp) rings are staggered owing to an inclination of the C-C bond of the ethano bridge relative to the CI-M-Cl bisector plane. This gives rise to two enantiomeric forms, l) and A, both of which have been characterized by X-ray crystallographic studies [13,16,17].
    [Show full text]
  • Organometallic Chemistry
    Advances in ORGANOMETALLIC CHEMISTRY EDITED BY F. G. A. STONE ROBERT WEST DEPARTMENT OF INORGANIC CHEMISTRY DEPARTMENT OF CHEMISTRY SCHOOL OF CHEMISTRY UNIVERSITY OF WISCONSIN THE UNIVERSITY MADISON, WISCONSIN BRISTOL, ENGLAND VOLUME 2 I964 ACADEMIC PRESS New York London COPYRIGHT@ 1964, BY ACADEMICPRESS INC. ALL RIGHTS RESERVED. NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM, BY PHOTOSTAT, MICROFILM, OR ANY OTHER MEANS, WITHOUT WRITTEN PERMISSION FROM THE PUBLISHERS. ACADEMIC PRESS INC. 111 Fifth Avenue, New York, New York 10003 United Kingdom Ediiion published by ACADEMIC PRESS INC. (LONDON) LTD. Berkeley Square House, London W.1 LIBRARYOF CONGRESSCATALOG CARD NUMBER: 64-16030 PRINTED IN THE UNITED STATES OF AMERICA List of Contributors Numbers in parenthesis indicate the pages on which the authors’ contributions begin. JOHN BIRMINGHAM(365), Arapahoe Chemicals, Inc., Boulder, Colorado E. DE BOER(1 15), KoninklqkelShell-Laboratorium,Amsterdam, Holland M. L. H. GREEN(325), Inorganic Chemistry Laboratory, University of Oxford, Oxford, England R. B. KING(157), Mellon Institute, Pittsburgh, Pennsylvania R. KOSTER(257), Max-Planck Institut fur Kohlenforschung, Mulheiml Ruhr, Germany P. L. I. NAGY*(325), Inorganic Chemistry Laboratory, University of Oxford, Oxford, England G. N. SCHRAUZER(l), Institut fur Anorganische Chemie der Universitat Munchen, Munich, Germany H. A. SKINNER(49), Chemistry Department, University of Manchester, Manchester, England * Deceased Some Advances in the Organometallic Chemistry of Nickel G . N. SCHRAUZER lnstitut fur Anorganische Chernie der Universitat Munchen. Munich. Germany I . Introduction ................. 2 I1 . Catalytic Reactions with Nickel Carbonyl ........ 3 A . Carbonylation of Alkynes ............ 3 B . Carbonylation of Olefins ............ 6 C . Carbonylation of Allylic Compounds ......... 6 D .
    [Show full text]
  • Inorganic-Synthesis28.Pdf
    REAGENTS FOR TRANSITION METAL COMPLEX AND ORGANOMETALLIC SYNTHESES INORGANIC SYNTHESES Volume 28 .................... .......................... Board of Directors JOHN P. FACKLER, JR. Texas A & M University BODIE E. DOUGLAS University of Pittsburgh DARYLE H. BUSCH University of Kansas JAY H. WORRELL University of South Florida HERBERT D. KAESZ University of Calijornia, Los Angeles ALVIN P. GINSBERG AT&T Bell Laboratories Future Volumes 29 RUSSELL N. GRIMES University of Virginia 30 LEONARD V. INTERRANTE Rensselaer Polytechnic Institute and DONALD MURPHY AT&T Bell Laboratories 31 ALAN H. COWLEY University of Texas 32 MARCETTA Y. DARENSBOURG Texas A & M University International Associates MARTIN A. BENNETT Australian National University, Canberra FAUSTO CALDERAZZO University of Piso E. 0. FISCHER Technical University, Munich JACK LEWIS Cadridge University LAMBERTO MALATESTA University of Milan RENE POILBLANC University of Toulouse HERBERT W. ROESKY University of Gottingen F. G. A. STONE University of Bristol AKIO YAMAMOTO Tokyo Institute of Technology, Yokohama Editor-in-Chief ROBERT J. ANGELIC1 Department of Chemistry lowa State University .--_.... ooooooooooooooooooooooooooooooooooooooaoaooaooo REAGENTS FOR TRANSITION METAL COMPLEX AND ORGANOMETALLIC SYNTHESES INORGANIC SYNTHESES Volume 28 A WILEY-INTERSCIENCE PUBLICATION John Wiley & Sons, Inc. NEW YORK / CHICHESTER / BRISBANE / TORONTO / SINGAPORE In recognition of the importance of preserving what has been written, it is a policy of John Wiley & Sons, Inc. to have books of enduring value published in the United States printed on acid-free paper, and we exert our best efforts to that end. Published by John Wiley & Sons, Inc Copyright (0 1990 Inorganic Syntheses, Inc. All rights reserved. Published simultaneously in Canada. Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
    [Show full text]
  • Download (2MB)
    https://theses.gla.ac.uk/ Theses Digitisation: https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ This is a digitised version of the original print thesis. Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] ORGANOMSTALLIG DERIVATIVES OF TITANIUM A thesis presented for the Degree of Master of Science in the University of Glasgow by Chandubhai Chunibhai Patel Chemistry Department, The Royal College of Science and Technology, Glasgow* September, 1965* ProQuest Number: 10984228 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10984228 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC.
    [Show full text]
  • SOME STUDIES on CYCLOPENTADIFNYL and CARBONYL COMPLEXES of TRANSITION METALS. a Thesis Submitted by JON ARMISTICE Mccleverty, B
    SOME STUDIES ON CYCLOPENTADIFNYL AND CARBONYL COMPLEXES OF TRANSITION METALS. A Thesis submitted by JON ARMISTICE McCLEVERTY, B.Sc. for the Degree of Doctor of Philosophy of the University of London. Royal College of Science. May 1963. This Thesis I dedicate to DIANNE. Her love and understanding is a continual inspiration. kit CHAPTER II ic-CYCLOPENTADIENYL METAL HYDRIDES THE DI-n-CYCLOPENTADIENYL HYDRIDES OF TANTALUM MOLYBDENUM. AND TUNGSTEN. The hydride complexes are prepared in high yields by the inter- action of the anhydrous metal chlorides (Noel" 1C16, or TaC15) with a solution of sodium cyclopentadienide in tetrahydrofuran containing an excess of sodium borohydride. Without addition of borohydride to the sodium cyclopentadienide solution only low yields of the hydrides can be obtained since the hydriue ion required must come from the solvent or from traces of excess of cyclopentadiene or cyclopentene present in the reaction mixture. The tantalum hydride, (n-C5H5)2TaH3, is a white crystalline compound which is sensitive to air; the molybdenum and tungsten hydrides, (n-05H5)2MH2, form yellow crystals, the former being more sensitive to air than the latter, which can be handled briefly in air. The tantalum compound is sparingly soluble in light petroleum but it is moderately soluble in benzene; the other hydrides are soluble in light petroleum as well as in other common solvents. Solutions of all three compounds decompose rapidly wren exposed to air. The compounds are soluble in halogenated solvents and in carbon disulphide but react with them quite rapidly, the order of reactivity being Ta Mo ACKNOWLEDGMENTS I would like to express my deep gratitude to Professor G.
    [Show full text]
  • Synthesis of the Metallocenes for the Production of Exotic High Energy Ion Beams
    Synthesis of the Metallocenes for the Production of Exotic High Energy Ion Beams Ntombizonke Yvonne Kheswa A thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the Department of Physics & Astronomy, University of the Western Cape, South Africa. Supervised by: Prof. J. N. Orce, Department of Physics & Astronomy University of the Western Cape Prof. S. Titinchi, Department of Chemistry, University of the Western Cape Dr. R. Thomae Accelerator and Engineering Department iThemba LABS March 2019 https://etd.uwc.ac.za DECLARATION I declare that Synthesis of the Metallocenes for the Production of Exotic High Energy Ion Beams is my own work, that it has not been submitted for any degree or examination in any other university, and that all the sources I have used or quoted have been indicated and acknowledged by complete references. Signed: Ntombizonke Kheswa Date: 1 March 2019 i https://etd.uwc.ac.za Synthesis of the Metallocenes for the Production of Exotic High Energy Ion Beams Department of Physics and Astronomy, University of the Western Cape, Private Bag X17, 7535 Bellville, South Africa. ABSTRACT The Subatomic Physics Department of iThemba Laboratory for Accelerated Based Sciences (iThemba LABS) conducts experiments that require a variety of particle beams in order to study nuclear properties (reaction, structure, etc.) of various nuclides. These particle beams are accelerated using the K-200 Separated Sector Cyclotron (SSC) and delivered to different physics experimental vaults. Prior to acceleration, the particle beam is first ionised using an Electron Resonance Ion Source (ECRIS). The main goal of this study is the production of exotic metallic beams of 60Ni8+ and 62Ni8+ using ECRIS4, which are required for the Coulomb excitation experiments approved by the Programme Advisory Committee (PAC) at iThemba LABS.
    [Show full text]
  • Rhodocenium Monocarboxylic Acid Hexafluoridophosphate and Its Derivatives: Synthesis, Spectroscopy, Structure, and Electrochemistry Markus Jochriem,[A] Larissa A
    EurJIC Full Paper European Journal of Inorganic Chemistry doi.org/10.1002/ejic.202000071 Metallocenes Rhodocenium Monocarboxylic Acid Hexafluoridophosphate and Its Derivatives: Synthesis, Spectroscopy, Structure, and Electrochemistry Markus Jochriem,[a] Larissa A. Casper,[b] Stefan Vanicek,[a,c] Dirk Petersen,[c] Holger Kopacka,[a] Klaus Wurst,[a] Thomas Müller,[d] Rainer F. Winter,*[b] and Benno Bildstein*[a] Abstract: As an extension of our continuing work in metalloce- are reported. Like the parent rhodocenium ion, all new deriva- nium chemistry, we report here on new functionalized rhodoce- tives undergo two chemically consecutive reductions at poten- nium salts. In contrast to isoelectronic cobaltocenium com- tials that depend on the respective ring substituent. The second pounds, rhodium as a 4d metal allows synthetic routes via pre- reduction competes with a rapid reaction of the corresponding functionalized cyclopentadienyl half-sandwich precursors, rhodocenes to their 18 VE dimers. Rate constants for this proc- thereby facilitating access to monofunctionalized rhodocenium ess range from 2 × 103 s–1 to 2.5 × 105 s–1 as estimated from salts containing substituents comprising methyl, trimethylsilyl, digital simulations of experimental voltammograms. Rhodoce- carboxylate and carboxylate ester as well as amide derivatives. nium carboxylic acid (8) constitutes a special case in that proton Synthetic aspects, scope and limitations, as well as spectro- instead of metal reduction is observed at Pt or Au electrodes. scopic (1H/13C-NMR,
    [Show full text]
  • Durham E-Theses
    Durham E-Theses Chemical and mass spectrometric studies on organogermanes Carrick, A. How to cite: Carrick, A. (1967) Chemical and mass spectrometric studies on organogermanes, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/9048/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk CHEMICAL and MASS SPECTROMETRIC STUDIES on ORGANOGERMANES A. CARRICK CHEMICAL AND MASS SPECTRQMETRIC STUDIES ON ORGANDGERMANES by A. CARRICK, B.Sc. Hatfield College A Thesis in candidature for the Degree of Doctor of Philosophy in the University of Durham, July,1967. for Patricia Plato The work described was carried out in the University of Durham between September 1964 and June 1967. It has not been submitted for any other degree and is the original work of the author except where acknowledged by reference. A portion of this work has been the subject of two publications with F.
    [Show full text]