Aluminum-Vanadium System D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Development of Filler Metals and Procedures for Vacuum Brazing Of
Development of Filler Metals and Procedures for Vacuum Brazing of Aluminum Several brazing filler metal compositions have been developed which offer significant improvements over existing compositions. They braze in vacuum at temperatures lower than normal flow temperatures and have equal or better flowability BY W. J. WERNER, G. M. SLAUGHTER AND F. B. GURTNER Introduction ry cleanliness levels under production vantages. As a single entity, it was This report documents work per conditions. The maximum allowable immediately more desirable from a formed toward the development of lag between cleaning and brazing was cleaning, assembling and material found to be 12 hours. handling standpoint. Metallurgically, new brazing filler metals for vacuum- 2 fluxless brazing (1 X 10~6 torr) C. S. Beuyukian developed tech the 4045 brazing filler metal with its certain aluminum alloys of interest to niques for vacuum or inert gas fluxless lower silicon content allowed greater the Army. The base metals under brazing of aluminum cold plates for latitude in processing parameters than consideration were alloys 6061, 2219, use in Apollo command modules. In did alloy No. 718. 7075 and 2024. Brazing filler metal this work, brazing filler metal No. 718 Finally, the workers at Aeronca, and No. 23 brazing sheet were evalu Inc. completed a study on inert gas flow temperatures needed for these 3 alloys encompass the temperature ated. Alloy No. 718 is nominally 88% brazing of aluminum in early 1967. range 900 to 1200F. Specifically, the aluminum, 12% silicon; No. 23 braz Their work was concerned with de contract called for the development of ing sheet is comprised of 6951 base velopment of high strength brazed alloys with flow temperatures of 950, alloy clad on one side with 4045 aluminum honeycomb structures 1000, and 1050F. -
Maec.19 70 (University of London) London
COMPLEX & INCREMENTAL STRESS CREEP OF A HIGH STRENGTH ALUMINIUM ALLOY AT ELEVATED TEMPERATURES (ALLOY: HIDUMINIUM RR58 SPECIFICATION DTD 731) by SURINDAR BAHADUR MATHUR Thesis presented in the Department of Mechanical Engineering for the Award of the Doctor of Philosphy in Mechanical Engineering of the University of London. Mechanical Engineering Department Imperial College of Science and Technology mAec.19 70 (University of London) London. ABSTRACT A theory for creep rates under complex and incremental stresses is deduced from experimental data concerning complex creep at elevated temperatures for the test material HIDUMINIUM RR 58 - Specification DID 731. The most important results are for tubular specimens tested at 150°C and 250°C under incremental loads. The analysis of results relates to steady state creep only. Modified relationships in stress equivalence and strain equivalence are proposed to account for thermal softening, polygonization, recrystallization and the resulting exaggerated flow in the direction of the applied shear. (The original equations are based on the hypothesis of Von Mises). A further relationship is suggested between the immediate total energy of distortion and the subsequent creep work rate. Results of the static tests and the results of the tests for creep behaviour under complex loading are presented and compared with the results of static torsion and simple incremental torsion creep tests on the basis of the proposed equations. An appendix describes the complex creep testing machine, furnace, extensometers -
Aluminum-Vanadium System Donald Joseph Kenney Iowa State College
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1953 Aluminum-vanadium system Donald Joseph Kenney Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Physical Chemistry Commons Recommended Citation Kenney, Donald Joseph, "Aluminum-vanadium system " (1953). Retrospective Theses and Dissertations. 13302. https://lib.dr.iastate.edu/rtd/13302 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. UMI mmMm-immim STSTEM BmaM S, Ktrmey A Mssertattioa aibaitted to the Sradttate Paeulty in fsKptial Fulfillffleat of the l®cpiir«a®ats tor the Degree of eocfoa or piiLosoFif Sabjecti aysiefil CheBdstry ^proved f Signature was redacted for privacy. In C2iarg®;!6f Ifejor Work Signature was redacted for privacy. Signature was redacted for privacy. Iowa State College 1953 UMI Number: DP12420 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. -
Microstructual and Thermal Analysis of Aluminum-Silicon and Magnesium-Aluminum Alloys Subjected to High Cooling Rates
University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2012 Microstructual and Thermal Analysis of Aluminum-Silicon and Magnesium-Aluminum Alloys Subjected to High Cooling Rates Paul Marchwica University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Marchwica, Paul, "Microstructual and Thermal Analysis of Aluminum-Silicon and Magnesium-Aluminum Alloys Subjected to High Cooling Rates" (2012). Electronic Theses and Dissertations. 5572. https://scholar.uwindsor.ca/etd/5572 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Microstructual and Thermal Analysis of AlSi and MgAl Alloys Subjected to High Cooling Rates By Paul C. Marchwica A Thesis Submitted to the Faculty of Graduate Studies through the Department of Mechanical, Automotive and Materials Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science at the University of Windsor Windsor, Ontario, Canada 2012 © 2012 P. -
Aluminum Alloy Weldability: Identification of Weld Solidification Cracking Mechanisms Through Novel Experimental Technique and Model Development
Dipl.-Ing. Nicolas Coniglio Aluminum Alloy Weldability: Identifi cation of Weld Solidifi cation Cracking Mechanisms through Novel Experimental Technique and Model Development BAM-Dissertationsreihe • Band 40 Berlin 2008 Die vorliegende Arbeit entstand an der BAM Bundesanstalt für Materialforschung und -prüfung. Impressum Aluminum Alloy Weldability: Identifi cation of Weld Solidifi cation Cracking Mechanisms through Novel Experimental Technique and Model Development 2008 Herausgeber: BAM Bundesanstalt für Materialforschung und -prüfung Unter den Eichen 87 12205 Berlin Telefon: +49 30 8104-0 Telefax: +49 30 8112029 E-Mail: [email protected] Internet: www.bam.de Copyright © 2008 by BAM Bundesanstalt für Materialforschung und -prüfung Layout: BAM-Arbeitsgruppe Z.64 ISSN 1613-4249 ISBN 978-3-9812354-3-2 Aluminum Alloy Weldability: Identification of Weld Solidification Cracking Mechanisms through Novel Experimental Technique and Model Development Dissertation zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) genehmigt durch die Fakultät für Maschinenbau der Otto-von-Guericke-Universität Madgeburg am 02.06.08 vorgelegte Dissertation von Dipl.-Ing. Nicolas Coniglio Thesis Committee: Prof. Dr.-Ing. A. Bertram Prof. Dr.-Ing. T. Böllinghaus Prof. C.E. Cross Prof. S. Marya Date of Examination: 23 October 2008 Abstract Abstract The objective of the present thesis is to make advancements in understanding solidification crack formation in aluminum welds, by investigating in particular the aluminum 6060/4043 system. Alloy 6060 is typical of a family of Al-Mg-Si extrusion alloys, which are considered weldable only when using an appropriate filler alloy such as 4043 (Al-5Si). The effect of 4043 filler dilution (i.e. weld metal silicon content) on cracking sensitivity and solidification path of Alloy 6060 welds are investigated. -
Toxicological Profile for Vanadium
VANADIUM 107 4. CHEMICAL AND PHYSICAL INFORMATION 4.1 CHEMICAL IDENTITY Vanadium is a naturally occurring element that appears in group 5(B5) of the periodic table (Lide 2008). Vanadium is widely distributed in the earth’s crust at an average concentration of 100 ppm nd (approximately 100 mg/kg), similar to that of zinc and nickel (Byerrum 1991). Vanadium is the 22 most abundant element in the earth’s crust (Baroch 2006). Vanadium is found in about 65 different minerals; carnotite, roscoelite, vanadinite, and patronite are important sources of this metal along with bravoite and davidite (Baroch 2006, Lide 2008). It is also found in phosphate rock and certain ores and is present in some crude oils as organic complexes (Lide 2008). Table 4-1 lists common synonyms and other pertinent identification information for vanadium and representative vanadium compounds. 4.2 PHYSICAL AND CHEMICAL PROPERTIES Vanadium is a gray metal with a body-centered cubic crystal system. It is a member of the first transition series. Because of its high melting point, it is referred to as a refractory metal (Baroch 2006). When highly pure, it is a bright white metal that is soft and ductile. It has good structural strength and a low- fission neutron cross section. Vanadium has good corrosion resistance to alkalis, sulfuric and hydrochloric acid, and salt water; however, the metal oxidizes readily above 660 °C (Lide 2008). The chemistry of vanadium compounds is related to the oxidation state of the vanadium (Woolery 2005). Vanadium has oxidation states of +2, +3, +4, and +5. When heated in air at different temperatures, it oxidizes to a brownish black trioxide, a blue black tetraoxide, or a reddish orange pentoxide. -
Effect of the Vanadium Addition on the Grain Size and Mechanical Properties of the Copper-Aluminium-Zinc Shape Memory Alloys K
EFFECT OF THE VANADIUM ADDITION ON THE GRAIN SIZE AND MECHANICAL PROPERTIES OF THE COPPER-ALUMINIUM-ZINC SHAPE MEMORY ALLOYS K. Enami, N. Takimoto, S. Nenno To cite this version: K. Enami, N. Takimoto, S. Nenno. EFFECT OF THE VANADIUM ADDITION ON THE GRAIN SIZE AND MECHANICAL PROPERTIES OF THE COPPER-ALUMINIUM-ZINC SHAPE MEMORY ALLOYS. Journal de Physique Colloques, 1982, 43 (C4), pp.C4-773-C4-778. 10.1051/jphyscol:19824126. jpa-00222109 HAL Id: jpa-00222109 https://hal.archives-ouvertes.fr/jpa-00222109 Submitted on 1 Jan 1982 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE Colloque C4, suppl&nent au no 12, Tome 43, dbcembre 1982 page C4-773 EFFECT OF THE VANADIUM ADDITION ON THE GRAIN SIZE AND MECHANICAL PROPERTIES OF THE COPPER-ALUMINIUM-ZINC SHAPE MEMORY ALLOYS K. Enami, N. Takimoto and S. Nenno Department of Materials Science and Engineering, Osaka University, Suita, Osaka, Japan (Revised text accepted 27 September 1982) Abstract. - The effects of vanadium addition on the 0-grain size, pseudo- elastic and shape memory behaviour and fracture mode of the copper-aluminium- zinc shape memory alloys with different vanadium contents were investigated. -
169 a NEW IRON/VANADIUM (FE/V) REDOX FLOW BATTERY Liyu Li
A NEW IRON/VANADIUM (FE/V) REDOX FLOW BATTERY Liyu Li, Wei Wang, Zimin Nie, Baowei Chen, Feng Chen, Qingtao Luo, Soowhan Kim, and Gary Z Yang Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA ABSTRACT A novel redox flow battery using Fe2+/Fe3+ and V2+/V3+ redox couples in chloride supporting electrolyte and in chloric/sulfuric mixed-acid supporting electrolyte was investigated for potential stationary energy storage applications. The iron/vanadium (Fe/V) redox flow cell using mixed reactant solutions operated within a voltage window of 0.5~1.35 volts with a nearly 100% utilization ratio and demonstrated stable cycling over 100 cycles with energy efficiency > 80% and almost no capacity fading. Stable performance was achieved in the temperature range between 0 °C and 50 °C. Unlike the iron/chromium (Fe/Cr) redox flow battery that operates at an elevated temperature of 65 °C, the necessity of external heat management is eliminated. The improved electrochemical performance makes the Fe/V redox flow battery a promising option as a stationary energy storage device to enable renewable integration and stabilization of the electric grid. Keywords: redox flow battery, hydrochloric acid, sulfuric acid, Fe/V, mixed acid, energy storage INTRODUCTION energy loss and significantly increases the overall operating cost [3]. Redox flow batteries (RFBs) are electrochemical devices that store electrical energy In our work, we proposed and investigated the in liquid electrolytes [1]. The energy conversion electrochemical performance of a new RFB that between chemical energy and electricity energy is employs a V2+/V 3+ solution anolyte and a Fe2+/Fe 3+ carried out as liquid electrolytes flow through cell solution catholyte or a mixed solution as both the stacks. -
Thermocouple Wire Alumel KN
Thermocouple wire Alumel®KN Alumel®KN - nickel-based alloy, alloyed with aluminum, silicon, manganese and cobalt. What is more, cobalt is present as impurity at nickel, and for ensuring the required value of Seebeck EMF his contents has to be within 0,6-1,0%. Alumel®KN is being used in pyrometry for production of compensating wires and also in the form of a negative thermoelectrode for production of thermocouples. Thermocouples with Alumel®KN is using for changing temperature up to 1000 °С. After Seebeck EMF stabilizing, it is possible to use thermocouple at temperature up to 1300°С. Classification MAIN DELIVERY CONDITIONS DIN 2.4122 Alumel®KN alloy is supplied in shape of strip or wire. Abbr. KN/KNX Alumel®KN wire, price of which depends on nickel and aluminum prices, is demanded in the industry at production of thermocouples and compensation Chemical composition, % wires. Ni+Co Fe C Mn Si P S Supplied together with alloy СгоmеІ®КР 91.5-95.15 ≤0.3 ≤0.1 1.8-2.7 0.85-1.5 ≤0.005 ≤0.010 Co Al Cu As Pb Mg Sb Wire 0.6-1.2 1.6-2.4 ≤0.25 ≤0.002 ≤0.002 ≤0.05 ≤0.002 Alumel®KN is supplied with diameters from 0,0254 to 8,0 mm. Wire Alumel®KN with sizes from 0,0254 mm to 0,51 mm can be supplied with insulated coating or PHYSICAL PROPERTIES 3 without it. Density, g/cm 8,67 Melting point, °С 1440 Strip TCLE, mm/m·°С (from 20° to 100°С) 18,0 Standard sizes of Alumel®KN strip are next: thickness Electrical resistance, μΩm 0,33 from 0.1 to 3.0 mm, width from 4 to 195 mm. -
Investigation of the Alkali-Metal Vanadium Oxide Xerogel Bronzes: &V205mh20 (A = K and Cs) Y.-J
1616 Chem. Mater. 1995, 7, 1616-1624 Investigation of the Alkali-Metal Vanadium Oxide Xerogel Bronzes: &V205mH20 (A = K and Cs) Y.-J. Liu,tl# J. A. Cowen,**#T. A. &plan,$>$D. C. DeGroot,l J. Schindler,l C. R. &nnewurf,l and M. G. Kanatzidis*stT§ Department of Chemistry, Michigan State University, East Lansing, Michigan 48824; Department of Physics, Michigan State University, East Lansing, Michigan 48824; Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824; and Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208 Received January 18, 1995. Revised Manuscript Received June 13, 1995@ The synthesis of bronze-like AXV205*nHz0xerogels (A = K and Cs, 0.05 x 0.6) and systematic characterization of their chemical, structural, spectroscopic magnetic, and charge- transport properties are reported. These materials were prepared by the reaction of V205-nHzO with various amounts of alkali iodide (KI and CSI) in acetone under Nz atmosphere for 3 days. X-ray diffraction and spectroscopic data indicate that the V2O5 framework in AZVz05*nH20maintains the pristine V205 xerogel structure. The increased V4+ (dl) concentration in the V205 framework causes the disappearance of EPR hyperfine structure and the increase of magnetic susceptibility and electrical conductivity. The optical diffuse reflectance spectra of these compounds show characteristic absorption bands due to inter-valence (V4+N5+)charge-transfer transitions. The magnetic behavior is best described as Curie- Weiss type coupled with temperature-independent paramagnetism (TIP). The Curie constant and EPR peak width of the &VsO~.nH20 materials show unusual behavior consistent with strong antiferromagnetic coupling of neighboring V4+centers. -
BNL-79513-2007-CP Standard Atomic Weights Tables 2007 Abridged To
BNL-79513-2007-CP Standard Atomic Weights Tables 2007 Abridged to Four and Five Significant Figures Norman E. Holden Energy Sciences & Technology Department National Nuclear Data Center Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 www.bnl.gov Prepared for the 44th IUPAC General Assembly, in Torino, Italy August 2007 Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author’s permission. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. -
The Elements.Pdf
A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.