Nickel and Its Alloys

Total Page:16

File Type:pdf, Size:1020Kb

Nickel and Its Alloys National Bureau of Standards Library, E-01 Admin. Bldg. IHW 9 1 50CO NBS MONOGRAPH 106 Nickel and Its Alloys U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS The National Bureau of Standards^ provides measurement and technical information services essential to the efficiency and effectiveness of the work of the Nation's scientists and engineers. The Bureau serves also as a focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To accomplish this mission, the Bureau is organized into three institutes covering broad program areas of research and services: THE INSTITUTE FOR BASIC STANDARDS . provides the central basis within the United States for a complete and consistent system of physical measurements, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. This Institute comprises a series of divisions, each serving a classical subject matter area: —Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic Physics—Physical Chemistry—Radiation Physics—Laboratory Astrophysics^—Radio Standards Laboratory,^ which includes Radio Standards Physics and Radio Standards Engineering—Office of Standard Refer- ence Data. THE INSTITUTE FOR MATERIALS RESEARCH . conducts materials research and provides associated materials services including mainly reference materials and data on the properties of ma- terials. Beyond its direct interest to the Nation's scientists and engineers, this Institute yields services which are essential to the advancement of technology in industry and commerce. This Institute is or- ganized primarily by technical fields: —Analytical Chemistry—Metallurgy—Reactor Radiations—Polymers—Inorganic Materials—Cry- ogenics'—Office of Standard Reference Materials. THE INSTITUTE FOR APPLIED TECHNOLOGY . provides technical services to promote the use of available technology and to facilitate technological innovation in industry and government. The principal elements of this Institute are: —-Building Research—Electronic Instrumentation—Technical Analysis—Center for Computer Sci- ences and Technology—Textile and Apparel Technology Center—Office of Weights and Measures —Office of Engineering Standards Services—Office of Invention and Innovation—Office of Vehicle Systems Research—Clearinghouse for Federal Scientific and Technical Information^—Materials Evaluation Laboratory—NBS/GSA Testing Laboratory. 1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D. C, 20234. - Located at Boulder, Colorado, 80302. 3 Located at 5285 Port Royal Road, Springfield, Virginia 2215L UNITED STATES DEPARTMENT OF COMMERCE . C. R. Smith, Secretary NATIONAL BUREAU OF STANDARDS • A. V. Astin, Director Nickel and Its Alloys Samuel J. Rosenberg Institute for Materials Research National Bureau of Standards Washington, D.C. 20234 National Bureau of Standards Monograph 106 Issued May, 1968 (Supersedes NBS Circular 592) For sale by the Superintendent of Documents, U.S. Governme nt Printing Office Washington, D.C., 20402 - Price $1.25 Foreword Publications by the National Bureau of Standards include a series of Monographs (previously desig- nated as Circulars), each of which represents a compilation and critical review of available information on a particular subject. Metallurgical Circulars, each dealing with a particular metal and its alloys, have been prominent in this series. Circular 100, entitled "Nickel and its Alloys," authored by P. D. Merica, was published in 1921 when expansion and growth of the nickel industry were becoming noticeable. A second edition (revised by E. C. Groesbeck) was issued in 1924. At the close of World War II the subject was again reviewed and Circular 485, written by M. R. Meyerson, was published in 1950. However, much information about the strategic ele- ment, nickel, had been developed during World War II but was not yet available for publication in Circular 485. The phenomenal expansion of the North American nickel industry since 1950, the release of some of the previously restricted information, the development of new theories of alloying and heat treatment, and the development of new alloys to meet industrial requirements of ever-increasing severity made it desir- able again to revise the Nickel Circular. That revision. Circular 592, was written by J. G. Thompson and published in 1958. During the relatively few years since the publication of the last nickel circular, development of nickel alloys and steels has continued so that considerable information needed to be incorporated in a revised edi- tion, and much old data needed to be updated. This task was assigned to S. J. Rosenberg, formerly Chief of the Engineering Metallurgy Section, Metallurgy Division, Institute for Materials Research, of the National Bureau of Standards. The current revision, like the previous one, was sponsored by The International Nickel Company, In- corporated, and was written at the National Bureau of Standards under the Bureau's Research Associate plan. This revision represents a review of the literature through 1965 and includes some 1966 references. A. "V. ASTIN, Director Library of Congress Catalog Card Number: 67-62384 Trademarks A number of alloys discussed in this compilation are marketed under the following various trademarks: Trademark Owner ALUMEL Hoskins Manufacturing Company CARPENTER STAINLESS NO. 20 The Carpenter Steel Company CARPENTER 426 The Carpenter Steel Company CHROMEL Hoskins Manufacturing Company COBENIUM Wilbur B. Driver Company CONPERNIK Westinghouse Electric Corporation COR-TEN United States Steel Corporation CUFENLOY Phelps Dodge Corporation DISCALOY Westinghouse Electric Corporation DURANICKEL The International Nickel Company, Inc. DYNALLOY Alan Wood Steel Corporation DYNAVAR Precision Metals Division ELGILOY Elgin National Watch Company ELINVAR Hamilton Watch Company GEMINOL Driver-Harris Company HASTELLOY Union Carbide Corporation HI-STEEL Inland Steel Corporation HIPERNIK Westinghouse Electric Corporation HP Republic Steel Company HY-TUF Crucible Steel Company ILLIUM Stainless Foundry & Engineering Inc. INCOLOY The International Nickel Company, Inc. INCONEL The International Nickel Company, Inc. INVAR Soc. Anon, de Commentry-Fourchambault et Decaziville (Acieries d'Imphy) KANTHAL The Kanthal Corporation KOVAR Westinghouse Electric Corporation MAGARI-R Bethlehem Steel Corporation MANGANIN Driver-Harris Company MINOVAR The International Nickel Company, Inc. MONEL The International Nickel Company, Inc. MONIMAX Allegheny Ludlum Steel Corporation NICROTUNG Westinghouse Electric Corporation NIMOCAST The International Nickel Company, Inc. NIMONIC The International Nickel Company, Inc. NISILOY The International Nickel Company, Inc. NI-SPAN-C The International Nickel Company, Inc. PERMALLOY Allegheny Ludlum Steel Corporation PERMANICKEL The International Nickel Company, Inc. REFRACTALOY Westinghouse Electric Corporation RENE 41 Allvac Metals Corporation (Division of Teledyne) RODAR Wilbur B. Harris Company SD The International Nickel Company, Inc. SIMINEX Allegheny Ludlum Steel Corporation SEALMET Allegheny Ludlum Steel Corporation STAINLESS STEEL W United States Steel Corporation STAINLESS STEEL 17-4PH Armco Steel Corporation SUPERMALLOY Allegheny Ludlum Steel Corporation T-1 United States Steel Corporation TRI-TEN United States Steel Corporation TRW TRW, Inc. UDIMET Special Metals Corporation I UNITEMP Universal Cyclops Specialty Steel Division, Cyclops Corporation USS STRUX United States Steel Corporation WASPALLOY Pratt and Whitney Aircraft WELCON Japanese Steel Works, Ltd. WEL-TEN Yawata Iron & Steel Company, Ltd. YOLOY Youngstown Sheet & Tube Company iii 1 Contents Page Fag(| Foreword ii 2.5. Technology 5(1 Trademarks iii a. Melting and casting 5( 1. Introduction 1 b. Hot-forming (forging, rolling, extrusion) 5( 1.1. History 1 c. Cold-forming (drawing, shearing, punching, 1.2. Occurrence, minerals, ores 2 spinning) 5]' 1.3. Recovery of nickel from its ores 4 d. Welding, brazing, soldering 5] 1.4. Statistics of production and consumption 6 e. Annealing 5J 1.5. Available forms of nickel 6 f. Pickling 51 2. Nickel—Properties and uses 9 g. Machining 5< 2.1. Physical properties 9 h. Grinding, polishing, buffing 54 a. General 9 2.6. Metallography of nickel 5<. (1) Atomic number and weight—isotopes 9 a. Selection of specimens 5< (2) Nuclear properties 10 b. Preparation of specimens 5! (3) Crystal form and lattice constant 10 (1) Grinding 5i' (4) Density 10 (2) Rough polishing 5! (5) Miscellaneous physical properties 12 (3) Final polishing 51 b. Optical properties 12 (4) Electropolishing 51 c. Thermal properties 14 c. Etching 51 (1) Melting and boiling points; heat of fusion; 2.7. Uses of nickel 5(' vapor pressure 14 a. Coatings 51 (2) Specific heat and heat capacity 14 (1) Electroplating 51 (8) Thermal expansion 15 (2) Electroless plating 51 (4) Thermal conductivity 17 (3) Electroforming 51 (5) Thermionic properties 17 (4) Nickel cladding 6( (6) Recrystallization temperature 18 (5) Sprayed and vapor-deposited coatings 6: d. Electrical properties 19 b. Nickel powders 6: (1) Electrical resistivity 19 c. End uses of nickel and nickel-surfaced (2) Thermal electromotive force 21 materials 6: e. Magnetic properties 22 , Nonferrous alloys 6:
Recommended publications
  • The Relationship Between Microstructure and Magnetic Properties of Alnico Alloys
    The relationship between microstructure and magnetic properties of alnico alloys Citation for published version (APA): Vos, de, K. J. (1966). The relationship between microstructure and magnetic properties of alnico alloys. Technische Hogeschool Eindhoven. https://doi.org/10.6100/IR287613 DOI: 10.6100/IR287613 Document status and date: Published: 01/01/1966 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Aero-Flex Corporation 3147 Jupiter Park Circle Suite 2 Jupiter, Florida 33458 (561) 745-2534
    Aero-Flex Corporation 3147 Jupiter Park Circle Suite 2 Jupiter, Florida 33458 (561) 745-2534 QUALITY WITHOUT QUESTION Flexible Metal Hose Assemblies Corrugated Metal Hoses that we offer: Hose Master Hoses OmegaFlex Hoses Penflex Hoses ANNUFLEX 700 Series Abrasion Resistant Tubular Braid for 1SBX Braid for 700 Series Hose Annuflex 700 Series Series 300 Hose- Stainless Steel Bronze Braid T304 Bronzeflex 1100 Series Monel Braid Bronze Tubular Braid for Series 400 ChemKing™ Hose Series 400 Stainless Steel Hose Monel Tubular Braid for Series 500 Series 600 Stainless Steel Braid ChlorSafe™ Hose Series 600 Stainless Steel Hose Series 100 - Helical, Stainless Steel, Series 700 Stainless Steel and Extraflex 9000 Series Standard Pitch Hose Compressed Hose Formaflex 900 Series Series 300 - Annular, Stainless Steel, Series 740 Monel Hose Standard Pitch Hose Series 794 Bronze Hose Hydraflex 9400 Series Series 400 - Annular, Bronze, Standard Pitch Hose Series 800 High Pressure Braid Interflex Series 800 Stainless Steel Hose Series 500 - Annular, Monel, Standard Pitch Hose Series 900 High Pressure Braid Masterflex 500 Series Series 900 Stainless Steel Hose Series 800 - Annular, Stainless Steel, Pressureflex HP High Pressure Hose and Braid Series P3 Stainless Steel Braid PressureMax HP Series P3 Stainless Steel Hose Tubular Braid for Series 100 Hose - Stainless Steel T304, T321 and T316 Stainless Steel Braid for Series Tar and Asphalt 400 Helical Hose Tubular Braid for Series 300 Stainless Steel Standard Braid for Ultraflex Braided Braid for Series 300 Series 700 Hose 1/4 - 12 inch 304, 316, & 321 Stainless Steel Single or Double Braid Why Flex Hose? It is comparatively light weight, temperature resistance, has great pressure retention, and allows for variance in fit up and alignment.
    [Show full text]
  • Connor Final Highlighted
    Preliminary Development of a PPAM Actuated Pediatric Prosthetic Ankle Connor McNamara-Spackman A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science (Bioengineering) at the University of Otago, Dunedin, New Zealand. February 2021 Abstract The purpose of this research was to develop a preliminary design of a powered pediatric prosthetic ankle. Previous research identified the health risk of improper gait cycle and the lack of powered prosthetic ankle options for children. Costs for powered prosthetic ankles are too high (upwards of $5000 NZD), the sizes are too large and the weight is too significant for a child to benefit from. Current technologies for ankle joint actuation and materials for the prosthetic structure were evaluated and a conclusion of utilizing PPAMs was chosen due to their ability to generate the required 300 N of contraction force. CAD was used to model the structure of a prosthetic ankle and evaluate the FOS of the different material combinations while under static loading and fatigue simulations. HDPE and UHMWPE failed to withstand the simulations, while the aluminium alloy and stainless steel showed minimal faults from the simulations. MatLab was used to simulate the desired PPAM dimensions of 100 mm to determine the contraction force and contraction percentage that can be generated by the PPAM. The smallest PPAM found in research was 110 mm and showed promising results from their mathematical modeling. The overall height of the prosthetic was no greater than 110 mm and the membrane length of the PPAM was no greater than 100 mm, while successfully producing more than 300 N during contraction.
    [Show full text]
  • Invar, Established a New Standard in the Way Precise Surveying Measurements Were Made, Both in Reliability and Accuracy
    I N VA R The Breakthrough for a Low Expansion Alloy he discovery of the low expansion alloy, Invar, established a new standard in the way precise surveying measurements were made, both in reliability and accuracy. It became the first successful attempt to produce a metal alloy exhibiting a nearly zero coefficient of thermal expansion. In 1889, James Riley of Glasgow, Scotland, brought before the Iron and Steel Institute his investigations into the making of an alloy through a series of tests which combined up to 49 percent nickel with iron. Seven years later, in 1896, Charles Edouard Guillaume, a Swiss-born metallurgist and employee with the International Bureau of Weights and Measures near Paris, began looking specifically for an alloy to be used for surveyors’ wires that would not noticeably change when exposed to temperature variations. While experimenting with nickel contents between 30 and 60 percent, Guillaume discovered the coefficient of expansion at room temperature was lowest when mixing a nickel content of 36 percent with 64 percent iron. Since his new alloy exhibited the least amount of thermal expansion, and because Guillaume considered it invariable, it quickly became known as “Invar”. In 1920, Guillaume was awarded the Nobel Prize in Physics for his discovery of Invar >> By Jerry Penry, PS Displayed with permission • The American Surveyor • Vol. 9 No. 10 • Copyright 2012 Cheves Media • www.Amerisurv.com The Sokkia BIS30 3-meter Invar bar code leveling staff in use during a high precision survey. Image courtesy of Sokkia Corporation. Displayed with permission • The American Surveyor • Vol. 9 No.
    [Show full text]
  • 70/30 Cupronickel
    70/30 cupronickel www.columbiametals.com CN107 / C71500 / CW354H / DEF STAN 02-780 [email protected] 70/30 is a copper nickel alloy noted for its excellent resistance to corrosion, erosion and pitting combined with a good strength, workability and weldability. It has enjoyed a long and successful history in the marine sector that has since extended to industries including offshore oil and gas, power generation, desalination and cooling plants. 70/30 cupronickel The most popular specifications covering this alloy are the CN107 and C71500 designations, although the Naval Engineering specifications DEF STAN 02-780 or NES 780 offer tighter controls on impurities and mechanical properties together with a mandatory impact value. 70/30 is best renowned for its excellent corrosion and erosion resistance, especially in marine environments. Its corrosion resistance is improved in higher velocity waters (up to 4.5m/s) and polluted seawater. It is also highly resistant to stress corrosion cracking and corrosion fatigue and has a high retention of mechanical properties from sub-zero temperatures to ~300oC. In the annealed condition, 70/30 offers moderate strength levels which enable it to be used in more demanding applications. In addition, it displays inherent resistance to biofouling. A protective oxide film forms naturally over the material during the initial period of use, creating an inhospitable surface that deters marine growth. 70/30 responds well to most fabrication processes and is readily hot and cold worked. It is also easily joined by soldering, brazing and a variety of welding methods. With good hot and cold formability and a malleability approaching that of copper, 70/30 does not harden rapidly, lending the material to drawing and spinning.
    [Show full text]
  • Alcotec Aluminum Technical Guide
    AlcoTec Aluminum Technical Guide Contents AlcoTec Aluminum Wire & Equipment Technical Guide Table of Contents AlcoTec Aluminum Wire & Equipment Technical Guide ......................................................................................................... 1 Table of Contents ................................................................................................................................................................ 1 Environmental Health and Safety ......................................................................................................................................... 3 Technical Services Heat Treatable & Non-Heat Treatable Base & Fillers ............................................................................................................. 6 Filler Alloys: Chemical Composition Limits & Physical Properties ......................................................................................... 7 Conversion Factors ............................................................................................................................................................ 7 Welded Joint Strength ......................................................................................................................................................... 8 Typical Tensile Properties - Groove Welds ............................................................................................................................ 9 Weld Profiles .....................................................................................................................................................................
    [Show full text]
  • Elemental Fluorine Product Information (Pdf)
    Elemental Fluorine Contents 1 Introduction ............................................................................................................... 4 2.1 Technical Application of Fluorine ............................................................................. 5 2.2 Electronic Application of Fluorine ........................................................................... 7 2.3 Fluorine On-Site Plant ............................................................................................ 8 3 Specifications ............................................................................................................ 9 4 Safety ...................................................................................................................... 10 4.1 Maintenance of the F2 system .............................................................................. 12 4.2 First Aid ................................................................................................................ 13 5.1 Chemical Properties ............................................................................................. 14 5.2 Physical Data ....................................................................................................... 15 6 Toxicity .................................................................................................................... 18 7 Shipping and Transport ........................................................................................... 20 8 Environment ...........................................................................................................
    [Show full text]
  • 1 the Volumetric Determination of Hydroxylamine
    VOLUMETRIC DETERMINATION OF HYDROXYLAMINE. I363 [CONTRIBUTION FROM THE CHEMICAL LABORATORYOF THE UNIVERSITY OF CALIFORNIA.1 THE VOLUMETRIC DETERMINATION OF HYDROXYLAMINE. BY WILLIAMC. BRAY,MIBUM E. SIMPSONAND ANNA A. MACKENZIE. Received July 17, 1919 In the present investigation 3 volumetric methods of determining hydroxylamine in aqueous solution have been studied : The titanous salt method,' in which the hydroxylamine is reduced by excess titanous salt in acid solution with exclusion of air, and the excess titrated with permanganate. 2NH20H + Ti2(S04)3 = (NH4)2S04 + 4TiOS04 + HzS04. (I) The ferric salt method,2 in which the hydroxylamine is oxidized in an acid solution by excess of a ferric salt, the mixture is boiled and the fer- rous salt formed titrated with permanganate. 2NH20H + 2Fe@04)3 = N2O + 4FeS04 + 2H2S04 + H20. (2) The iodine method,3 in which the hydroxylamine is oxidized by iodine in a neutral solution, e. g., in the presence of disodium phosphate. 2NH20H + 212 = N2O + 4HI + H2O (3) or 2NH20H + 213- = N20 + 61- + 4H+ + HzO. Our first experiments, with the iodine method, yielded irregular results which could not be interpreted until the concentration of the hydroxyl- amine solution was accurately determined. An examination of the literature showed a rather unsatisfactory state of affairs. The advocates of the ferric sulfate method furnish evidence that it is perfectly reliable, but Leuba4 gives detailed experimental data to prove the contrary, and Adams5 states that he could not obtain reproducible results with it. The investigators who have used the iodine method consider it to be fairly satisfactory, but some of them state that it is not very accurate, and Rupp and Maeder6 have recently concluded that correct results are obtained only by a compensation of errors.
    [Show full text]
  • Tribological Behaviours Influenced by Surface Coatings and Morphology
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 7-11-2015 Tribological Behaviours Influenced yb Surface Coatings and Morphology Guang Wang University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Wang, Guang, "Tribological Behaviours Influenced yb Surface Coatings and Morphology" (2015). Electronic Theses and Dissertations. 5305. https://scholar.uwindsor.ca/etd/5305 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Tribological Behaviours Influenced by Surface Coatings and Morphology By Guang Wang A thesis Submitted to the Faculty of Graduate Studies through the Department of Mechanical, Automotive & Materials Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science at the University of Windsor Windsor, Ontario, Canada 2015 ©2015 Guang Wang Tribological Behaviours Influenced by Surface Coatings and Morphology By Guang Wang APPROVED BY: Dr.
    [Show full text]
  • Development of Filler Metals and Procedures for Vacuum Brazing Of
    Development of Filler Metals and Procedures for Vacuum Brazing of Aluminum Several brazing filler metal compositions have been developed which offer significant improvements over existing compositions. They braze in vacuum at temperatures lower than normal flow temperatures and have equal or better flowability BY W. J. WERNER, G. M. SLAUGHTER AND F. B. GURTNER Introduction ry cleanliness levels under production vantages. As a single entity, it was This report documents work per­ conditions. The maximum allowable immediately more desirable from a formed toward the development of lag between cleaning and brazing was cleaning, assembling and material found to be 12 hours. handling standpoint. Metallurgically, new brazing filler metals for vacuum- 2 fluxless brazing (1 X 10~6 torr) C. S. Beuyukian developed tech­ the 4045 brazing filler metal with its certain aluminum alloys of interest to niques for vacuum or inert gas fluxless lower silicon content allowed greater the Army. The base metals under brazing of aluminum cold plates for latitude in processing parameters than consideration were alloys 6061, 2219, use in Apollo command modules. In did alloy No. 718. 7075 and 2024. Brazing filler metal this work, brazing filler metal No. 718 Finally, the workers at Aeronca, and No. 23 brazing sheet were evalu­ Inc. completed a study on inert gas flow temperatures needed for these 3 alloys encompass the temperature ated. Alloy No. 718 is nominally 88% brazing of aluminum in early 1967. range 900 to 1200F. Specifically, the aluminum, 12% silicon; No. 23 braz­ Their work was concerned with de­ contract called for the development of ing sheet is comprised of 6951 base velopment of high strength brazed alloys with flow temperatures of 950, alloy clad on one side with 4045 aluminum honeycomb structures 1000, and 1050F.
    [Show full text]
  • Maec.19 70 (University of London) London
    COMPLEX & INCREMENTAL STRESS CREEP OF A HIGH STRENGTH ALUMINIUM ALLOY AT ELEVATED TEMPERATURES (ALLOY: HIDUMINIUM RR58 SPECIFICATION DTD 731) by SURINDAR BAHADUR MATHUR Thesis presented in the Department of Mechanical Engineering for the Award of the Doctor of Philosphy in Mechanical Engineering of the University of London. Mechanical Engineering Department Imperial College of Science and Technology mAec.19 70 (University of London) London. ABSTRACT A theory for creep rates under complex and incremental stresses is deduced from experimental data concerning complex creep at elevated temperatures for the test material HIDUMINIUM RR 58 - Specification DID 731. The most important results are for tubular specimens tested at 150°C and 250°C under incremental loads. The analysis of results relates to steady state creep only. Modified relationships in stress equivalence and strain equivalence are proposed to account for thermal softening, polygonization, recrystallization and the resulting exaggerated flow in the direction of the applied shear. (The original equations are based on the hypothesis of Von Mises). A further relationship is suggested between the immediate total energy of distortion and the subsequent creep work rate. Results of the static tests and the results of the tests for creep behaviour under complex loading are presented and compared with the results of static torsion and simple incremental torsion creep tests on the basis of the proposed equations. An appendix describes the complex creep testing machine, furnace, extensometers
    [Show full text]
  • A Fundamental Evaluation of the Atmospheric Pre-Leaching Section of the Nickel-Copper Matte Treatment Process
    A FUNDAMENTAL EVALUATION OF THE ATMOSPHERIC PRE-LEACHING SECTION OF THE NICKEL-COPPER MATTE TREATMENT PROCESS by RODRICK MULENGA LAMYA Dissertation presented for the Degree of DOCTOR OF PHILOSOPHY (Extractive Metallurgical Engineering) in the Department of Process Engineering at the University of Stellenbosch, South Africa Promoter Prof. L. Lorenzen STELLENBOSCH March 2007 DECLARATION I the undersigned, hereby declare that the work contained in this dissertation is my own original work and that I have not previously in its entirety or in part submitted it at any university for a degree. Signature: ............................................... Date: ....................................................... Copyright © 2007 Stellenbosch University All rights reserved i SYNOPSIS Nickel-Copper sulphide ores are the most important Platinum Group Metal bearing ores. The South African deposits are exceptionally rich in the platinum group metals (PGMs) and production of the PGMs is the primary purpose of treating these ores. The methods used in the recovery of the PGMs from the nickel-copper ores generally consists of ore concentration by physical techniques, pyrometallurgical concentration and hydrometallurgical extraction of the base metals followed by the PGMs. Pyrometallurgical concentration produces Ni-Cu matte, which is treated by hydrometallurgical processes to recover the nickel, copper, cobalt and the precious metals. In this study, the leaching behaviour of a Ni–Cu matte in CuSO4–H2SO4 solution during the repulping (pre-leach) stage at Impala Platinum Refineries was studied. The repulping stage is basically a non–oxidative atmospheric leach stage, in which nickel, iron and cobalt are partially dissolved, while the copper is precipitated. To understand the nature of the leaching process during this stage of the base metal refining operation, the effects of variations in the key process variables such as temperature, stirring rate, particle size, pulp density, residence time, initial copper and acid concentrations were investigated.
    [Show full text]