(Revised 5-17-2004).Qxd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kaluza-Klein Gravity, Concentrating on the General Rel- Ativity, Rather Than Particle Physics Side of the Subject
Kaluza-Klein Gravity J. M. Overduin Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, British Columbia, Canada, V8W 3P6 and P. S. Wesson Department of Physics, University of Waterloo, Ontario, Canada N2L 3G1 and Gravity Probe-B, Hansen Physics Laboratories, Stanford University, Stanford, California, U.S.A. 94305 Abstract We review higher-dimensional unified theories from the general relativity, rather than the particle physics side. Three distinct approaches to the subject are identi- fied and contrasted: compactified, projective and noncompactified. We discuss the cosmological and astrophysical implications of extra dimensions, and conclude that none of the three approaches can be ruled out on observational grounds at the present time. arXiv:gr-qc/9805018v1 7 May 1998 Preprint submitted to Elsevier Preprint 3 February 2008 1 Introduction Kaluza’s [1] achievement was to show that five-dimensional general relativity contains both Einstein’s four-dimensional theory of gravity and Maxwell’s the- ory of electromagnetism. He however imposed a somewhat artificial restriction (the cylinder condition) on the coordinates, essentially barring the fifth one a priori from making a direct appearance in the laws of physics. Klein’s [2] con- tribution was to make this restriction less artificial by suggesting a plausible physical basis for it in compactification of the fifth dimension. This idea was enthusiastically received by unified-field theorists, and when the time came to include the strong and weak forces by extending Kaluza’s mechanism to higher dimensions, it was assumed that these too would be compact. This line of thinking has led through eleven-dimensional supergravity theories in the 1980s to the current favorite contenders for a possible “theory of everything,” ten-dimensional superstrings. -
SPACE RESEARCH in POLAND Report to COMMITTEE
SPACE RESEARCH IN POLAND Report to COMMITTEE ON SPACE RESEARCH (COSPAR) 2020 Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Report to COMMITTEE ON SPACE RESEARCH (COSPAR) ISBN 978-83-89439-04-8 First edition © Copyright by Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Warsaw, 2020 Editor: Iwona Stanisławska, Aneta Popowska Report to COSPAR 2020 1 SATELLITE GEODESY Space Research in Poland 3 1. SATELLITE GEODESY Compiled by Mariusz Figurski, Grzegorz Nykiel, Paweł Wielgosz, and Anna Krypiak-Gregorczyk Introduction This part of the Polish National Report concerns research on Satellite Geodesy performed in Poland from 2018 to 2020. The activity of the Polish institutions in the field of satellite geodesy and navigation are focused on the several main fields: • global and regional GPS and SLR measurements in the frame of International GNSS Service (IGS), International Laser Ranging Service (ILRS), International Earth Rotation and Reference Systems Service (IERS), European Reference Frame Permanent Network (EPN), • Polish geodetic permanent network – ASG-EUPOS, • modeling of ionosphere and troposphere, • practical utilization of satellite methods in local geodetic applications, • geodynamic study, • metrological control of Global Navigation Satellite System (GNSS) equipment, • use of gravimetric satellite missions, • application of GNSS in overland, maritime and air navigation, • multi-GNSS application in geodetic studies. Report -
What Is Gravity Probe B? a Quest for Experimental Truth the GP-B Flight
What is Gravity Probe B? than Gravity Probe B. It’s just a star, a telescope, and a spinning sphere.” However, it took the exceptional collaboration of Stanford, Gravity Probe B (GP-B) is a NASA physics mission to experimentally MSFC, Lockheed Martin and a host of others more than four decades investigate Einstein’s 1916 general theory of relativity—his theory of gravity. to develop the ultra-precise gyroscopes and the other cutting- GP-B uses four spherical gyroscopes and a telescope, housed in a satellite edge technologies necessary to carry out this “simple” experiment. orbiting 642 km (400 mi) above the Earth, to measure, with unprecedented accuracy, two extraordinary effects predicted by the general theory of rela- The GP-B Flight Mission & Data Analysis tivity: 1) the geodetic effect—the amount by which the Earth warps the local spacetime in which it resides; and 2) the frame-dragging effect—the amount On April 20, 2004 at 9:57:24 AM PDT, a crowd of over 2,000 current and by which the rotating Earth drags its local spacetime around with it. GP-B former GP-B team members and supporters watched and cheered as the tests these two effects by precisely measuring the precession (displacement) GP-B spacecraft lifted off from Vandenberg Air Force Base. That emotionally angles of the spin axes of the four gyros over the course of a year and com- overwhelming day, culminating with the extraordinary live video of paring these experimental results with predictions from Einstein’s theory. the spacecraft separating from the second stage booster meant, as GP-B Program Manager Gaylord Green put it, “that 10,000 things went right.” A Quest for Experimental Truth Once in orbit, the spacecraft first underwent a four-month Initialization The idea of testing general relativity with orbiting gyroscopes was sug- and Orbit Checkout (IOC), in which all systems and instruments were gested independently by two physicists, George Pugh and Leonard Schiff, initialized, tested, and optimized for the data collection to follow. -
SEER for Hardware's Cost Model for Future Orbital Concepts (“FAR OUT”)
Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com SEER for Hardware’s Cost Model for Future Orbital Concepts (“FAR OUT”) Lee Fischman ISPA/SCEA Industry Hills 2008 Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com Introduction A model for predicting the cost of long term unmanned orbital spacecraft (Far Out) has been developed at the request of AFRL. Far Out has been integrated into SEER for Hardware. This presentation discusses the Far Out project and resulting model. © 2008 Galorath Incorporated Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com Goals • Estimate space satellites in any earth orbit. Deep space exploration missions may be considered as data is available, or may be an area for further research in Phase 3. • Estimate concepts to be launched 10-20 years into the future. • Cost missions ranging from exploratory to strategic, with a specific range decided based on estimating reliability. The most reliable estimates are likely to be in the middle of this range. • Estimates will include hardware, software, systems engineering, and production. • Handle either government or commercial missions, either “one-of-a-kind” or constellations. • Be used in a “top-down” manner using relatively less specific mission resumes, similar to those available from sources such as the Earth Observation Portal or Janes Space Directory. © 2008 Galorath Incorporated Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com Challenge: Technology Change Over Time Evolution in bus technologies Evolution in payload technologies and performance 1. -
Highlights in Space 2010
International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no. -
A Test of General Relativity Using the LARES and LAGEOS Satellites And
A Test of General Relativity Using the LARES and LAGEOS Satellites and a GRACE Earth’s Gravity Model Measurement of Earth’s Dragging of Inertial Frames Ignazio Ciufolini∗1,2, Antonio Paolozzi2,3, Erricos C. Pavlis4, Rolf Koenig5, John Ries6, Vahe Gurzadyan7, Richard Matzner8, Roger Penrose9, Giampiero Sindoni10, Claudio Paris2,3, Harutyun Khachatryan7 and Sergey Mirzoyan7 1 Dip. Ingegneria dell’Innovazione, Universit`adel Salento, Lecce, Italy 2Museo della fisica e Centro studi e ricerche Enrico Fermi, Rome, Italy 3Scuola di Ingegneria Aerospaziale, Sapienza Universit`adi Roma, Italy 4Joint Center for Earth Systems Technology (JCET), University of Maryland, Baltimore County, USA 5Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany 6Center for Space Research, University of Texas at Austin, Austin, USA 7Center for Cosmology and Astrophysics, Alikhanian National Laboratory and Yerevan State University, Yerevan, Armenia 8Theory Center, University of Texas at Austin, Austin, USA 9Mathematical Institute, University of Oxford, Oxford, UK 10DIAEE, Sapienza Universit`adi Roma, Rome, Italy April 1, 2016 We present a test of General Relativity, the measurement of the Earth’s dragging of inertial frames. Our result is obtained using about 3.5 years of laser-ranged observations of the LARES, LAGEOS and LAGEOS 2 laser- ranged satellites together with the Earth’s gravity field model GGM05S pro- arXiv:1603.09674v1 [gr-qc] 29 Mar 2016 duced by the space geodesy mission GRACE. We measure µ = (0.994 ± 0.002) ± 0.05, where µ is the Earth’s dragging of inertial frames normalized to its General Relativity value, 0.002 is the 1-sigma formal error and 0.05 is the estimated systematic error mainly due to the uncertainties in the Earth’s gravity model GGM05S. -
+ Gravity Probe B
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Gravity Probe B Experiment “Testing Einstein’s Universe” Press Kit April 2004 2- Media Contacts Donald Savage Policy/Program Management 202/358-1547 Headquarters [email protected] Washington, D.C. Steve Roy Program Management/Science 256/544-6535 Marshall Space Flight Center steve.roy @msfc.nasa.gov Huntsville, AL Bob Kahn Science/Technology & Mission 650/723-2540 Stanford University Operations [email protected] Stanford, CA Tom Langenstein Science/Technology & Mission 650/725-4108 Stanford University Operations [email protected] Stanford, CA Buddy Nelson Space Vehicle & Payload 510/797-0349 Lockheed Martin [email protected] Palo Alto, CA George Diller Launch Operations 321/867-2468 Kennedy Space Center [email protected] Cape Canaveral, FL Contents GENERAL RELEASE & MEDIA SERVICES INFORMATION .............................5 GRAVITY PROBE B IN A NUTSHELL ................................................................9 GENERAL RELATIVITY — A BRIEF INTRODUCTION ....................................17 THE GP-B EXPERIMENT ..................................................................................27 THE SPACE VEHICLE.......................................................................................31 THE MISSION.....................................................................................................39 THE AMAZING TECHNOLOGY OF GP-B.........................................................49 SEVEN NEAR ZEROES.....................................................................................58 -
X-Band Transmission Evolution Towards DVB-S2
X-band transmission evolution towards DVB-S2 for Small Satellites Miguel Angel Fernandez, Anis Latiri, Gabrielle Michaud – SYRLINKS Clément Dudal, Jean-Luc Issler – CNES SSC 2016 – LOGAN | August 10, 2016 Outline About Syrlinks Flight proven X-band transmitter DVB-S2 implementation High Data Rate Transmitter evolutions SYRLINKS – CNES Small Satellite Conference 2016 2 About Syrlinks Flight Proven X-band Transmitter DVB-S2 Implementation High Data Rate Transmitter Evolutions SYRLINKS – CNES Small Satellite Conference 2016 3 About Syrlinks… . Advanced and cost-effective radio-communication manufacturer . Focuses on advanced, compact, & high reliable radios, for harsh environments . Designs, develops of communication systems in radio navigation & geolocation . Partnership with CNES and ESA since 1997 (Rosetta) * * PARIS . 200 cumulated years in orbit, with 100% reliability RENNES . Pioneer in the use of qualified active COTS . Large space portfolio for LEO missions up to 10 years in orbit, especially based on CLASS 3 ECC-Q-ST-60C design SYRLINKS – CNES Small Satellite Conference 2016 4 2014: EWC30 & 29 CLASS 3 ECSS-Q- Some Milestones… ST-60-C Radios 2012: G-SPHERE-S 2013: EWC27 & 31 GNSS Receiver Nano Radios 2010: EWC22/24/28 2010: EWC20 X Band HDR TM L Band Transmitter 2011: GREAT2 (ESA) GaN Reliability And Technology Transfer initiative 1997: EWC15 2004-2013: EWC15 S Band “ISL” S Band TT&C MYRIADE: CNES/ AIRBUS D&S/ TAS MYRIADE Evolutions ADS/CNES/TAS platform 2004: Rosetta/Philae. Demeter, Essaim (4), PROBA-V: 2013 2013: SARAL Microscope: -
Was Einstein Right? Nils Andersson 1905 Special Relativity
Was Einstein right? Nils Andersson 1905 Special Relativity Speed of light is constant, the same for all observers. - Moving clocks run slow - Moving rods appear short - Energy and mass are equivalent... Kyllo/shutterstock Image: Everett Historical/Robert Illustration: Ollie Dean 2015 “Matter tells space how to curve and space tells matter how to move.” John Wheeler Image: Paul Fleet/shutterstock 1907 Gravity; Equivalence principle - moves mass No difference between - bends light acceleration and - warps time gravity. - makes waves - creates black holes 1915 - explains the cosmos General Relativity Gravity is geometry. How do we know this Spacetime is curved. is right? Gravity moves mass 1915: Einstein revolves a long-standing problem mercury concerning the motion of Mercury. The missing 43 arcseconds per century in the perihelion precession is explained by relativity. Image: Albert Einstein archives Gravity bends light Image: Illustrated London News 1919 1919: Predicted light bending tested during solar eclipse, but only at the 30% level... 1955 Unfinished calculations and unanswered questionsLRG 3-757 i) Precision measurements of space and time Image: HST/NASA ii) New telescopes lead to a revolution inImage: Image:astronomy Karen ESA/NASA Teramura iii) Better understanding of the theory Image: Ralph Morse/Getty images 1960 A violent universe 1963: The discovery of quasars opens a window to a very different universe. Cygnus A [NRAO] Crab nebula [NASA] Crab pulsar [Chandra/NASA] Artist’s impression [NASA] Stars run out of fuel and explode in supernovae. Gravity moves mass 1974: PSR B1913+16 Bla2011: Mercury blaha MESSENGER [NASA] 2011: Precision tracking of Mercury provides much tighter constraint. -
Index of Astronomia Nova
Index of Astronomia Nova Index of Astronomia Nova. M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS, 883 DOI 10.1007/978-3-319-03416-4, © Springer International Publishing Switzerland 2014 Bibliography Books are classified in sections according to the main themes covered in this work, and arranged chronologically within each section. General Mechanics and Geodesy 1. H. Goldstein. Classical Mechanics, Addison-Wesley, Cambridge, Mass., 1956 2. L. Landau & E. Lifchitz. Mechanics (Course of Theoretical Physics),Vol.1, Mir, Moscow, 1966, Butterworth–Heinemann 3rd edn., 1976 3. W.M. Kaula. Theory of Satellite Geodesy, Blaisdell Publ., Waltham, Mass., 1966 4. J.-J. Levallois. G´eod´esie g´en´erale, Vols. 1, 2, 3, Eyrolles, Paris, 1969, 1970 5. J.-J. Levallois & J. Kovalevsky. G´eod´esie g´en´erale,Vol.4:G´eod´esie spatiale, Eyrolles, Paris, 1970 6. G. Bomford. Geodesy, 4th edn., Clarendon Press, Oxford, 1980 7. J.-C. Husson, A. Cazenave, J.-F. Minster (Eds.). Internal Geophysics and Space, CNES/Cepadues-Editions, Toulouse, 1985 8. V.I. Arnold. Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics (60), Springer-Verlag, Berlin, 1989 9. W. Torge. Geodesy, Walter de Gruyter, Berlin, 1991 10. G. Seeber. Satellite Geodesy, Walter de Gruyter, Berlin, 1993 11. E.W. Grafarend, F.W. Krumm, V.S. Schwarze (Eds.). Geodesy: The Challenge of the 3rd Millennium, Springer, Berlin, 2003 12. H. Stephani. Relativity: An Introduction to Special and General Relativity,Cam- bridge University Press, Cambridge, 2004 13. G. Schubert (Ed.). Treatise on Geodephysics,Vol.3:Geodesy, Elsevier, Oxford, 2007 14. D.D. McCarthy, P.K. -
Large Volume Production of Lithium-Ion Battery Units for the Space Industry
Large Volume Production of Lithium-ion Battery Units for the Space Industry November 2015 David Curzon – Product Line Manager Kevin Schrantz - Director, Space & Medical Introduction Presenting • EnerSys’s solution to a developing market demand Challenge • High volume production for large satellite constellations Discuss • Meeting the market demands for Li-ion space batteries • Challenges to be considered • Solutions • Is this a healthy progression for the industry? EnerSys Proprietary © 2015 EnerSys. Export or re-export of information contained herein may be subject to restrictions and requirements of U.S. export laws and regulations and may require 2 advance authorization from the U.S. government. Industry Demand The emerging large constellation market is pushing for higher volume, lower cost batteries with demanding schedules. Questions the industry faces include what does this new demand mean, what will be the long term affects, what pressure will be passed onto suppliers, and will the risk tolerance change in proportion? If a higher risk tolerance is accepted for some missions, will the industry turn to commercially available products (such as commercial battery packs or batteries) qualified & characterized for space? As an industry, this market is asking all of us to look at methods for increasing throughput, design for manufacturability, modularity, and common systems. EnerSys Proprietary © 2015 EnerSys. Export or re-export of information contained herein may be subject to restrictions and requirements of U.S. export laws and regulations and may require 3 advance authorization from the U.S. government. Lithium-ion Battery Market Evolution Lithium-ion implementation has steadily grown Power consumption trending upwards - driving for higher performance, cells, batteries & modules Number of different applications has increased year on year Proba – Longest EMU – Manned Applications SDO – Interplanetary TerraSAR – Earth/Remote serving Li-ion in Science Support Sensing Space (14 yrs. -
Cosmic Vision: Space Science for Europe 2015-2025 Contents
COVER5 11/3/05 3:56 PM Page 1 BR-247 Cosmic Vision Space Science for Science Space 2015-2025 Europe Contact: ESA Publications Division c/o ESTEC, PO Box 299, 2200 AG Noordwijk, The Netherlands Tel. (31) 71 565 3400 - Fax (31) 71 565 5433 LAYOUT3 11/3/05 4:32 PM Page 1 BR-247 October 2005 Cosmic Vision Space Science for Europe 2015-2025 LAYOUT3 11/3/05 4:32 PM Page 2 Cover A fresco painted 1509-1511 by Raphael (1483-1520) in the Vatican (Stanza della Segnatura, Palazzi Pontifici) perhaps depicts the embodiment of Astronomy. (Copyright Photo SCALA, Florence) Replacing the original astronomical globe is Mars viewed by the High Resolution Stereo Camera (ESA/DLR/FU Berlin, G. Neukum) carried by the ESA Mars Express spacecraft, merging into an image (G. Hasinger, Astrophysikalisches Institute, Potsdam) of X-ray sources in the Lockman Hole made using the Newton X-ray Observatory spacecraft. Chapter divider Artist's impression of a quasar located in a primieval galaxy a few hundred million years after the Big Bang. (ESA/W. Freudling, ST-ECF/ESO) BR-247 ‘Cosmic Vision’ Prepared by: Giovanni Bignami, Peter Cargill, Bernard Schutz and Catherine Turon on behalf of the Science advisory structure of ESA, and by the Executive of the Science Directorate, supported by Nigel Calder Published by: ESA Publications Division, ESTEC, PO Box 299, 2200 AG Noordwijk,The Netherlands Editor/Design: Andrew Wilson Layout: Jules Perel Copyright: © 2005 European Space Agency ISSN: 0250-1589 ISBN: 92-9092-489-6 Price: EUR 10 Printed in The Netherlands LAYOUT3 11/3/05 4:32 PM Page 3 Cosmic Vision: Space Science for Europe 2015-2025 Contents Foreword 4 Executive Summary 6 Introduction:Why Space Science Needs Long-Term Planning 10 1.