Cosmic Vision: Space Science for Europe 2015-2025 Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Michael Garcia Hubble Space Telescope Users Committee (STUC)
Hubble Space Telescope Users Committee (STUC) April 16, 2015 Michael Garcia HST Program Scientist [email protected] 1 Hubble Sees Supernova Split into Four Images by Cosmic Lens 2 NASA’s Hubble Observations suggest Underground Ocean on Jupiter’s Largest Moon Ganymede file:///Users/ file:///Users/ mrgarci2/Desktop/mrgarci2/Desktop/ hs-2015-09-a-hs-2015-09-a- web.jpg web.jpg 3 NASA’s Hubble detects Distortion of Circumstellar Disk by a Planet 4 The Exoplanet Travel Bureau 5 TESS Transiting Exoplanet Survey Satellite CURRENT STATUS: • Downselected April 2013. • Major partners: - PI and science lead: MIT - Project management: NASA GSFC - Instrument: Lincoln Laboratory - Spacecraft: Orbital Science Corp • Agency launch readiness date NLT June 2018 (working launch date August 2017). • High-Earth elliptical orbit (17 x 58.7 Earth radii). Standard Explorer (EX) Mission PI: G. Ricker (MIT) • Development progressing on plan. Mission: All-Sky photometric exoplanet - Systems Requirement Review (SRR) mapping mission. successfully completed on February Science goal: Search for transiting 12-13, 2014. exoplanets around the nearby, bright stars. Instruments: Four wide field of view (24x24 - Preliminary Design Review (PDR) degrees) CCD cameras with overlapping successfully completed Sept 9-12, 2014. field of view operating in the Visible-IR - Confirmation Review, for approval to enter spectrum (0.6-1 micron). implementation phase, successfully Operations: 3-year science mission after completed October 31, 2014. launch. - Mission CDR on track for August 2015 6 JWST Hardware Progress JWST remains on track for an October 2018 launch within its replan budget guidelines 7 WFIRST / AFTA Widefield Infrared Survey Telescope with Astrophysics Focused Telescope Assets Coronagraph Technology Milestones Widefield Detector Technology Milestones 1 Shaped Pupil mask fabricated with reflectivity of 7/21/14 1 Produce, test, and analyze 2 candidate 7/31/14 -4 10 and 20 µm pixel size. -
CZ-Space Day Intro
16.7.2010 ESA TECHNOLOGY → PROGRAMMES AND STRATEGY Czech Space Technology Day - GSTP July 2010 CONTENTS • The European Space Agency -ESA • Space Technology • ESA’s Technology Programmes • Doing business with ESA • ESA’s Long Term Plan 2 1 16.7.2010 → THE EUROPEAN SPACE AGENCY PURPOSE OF ESA “To provide for and promote, for exclusively peaceful purposes, cooperation among European states in space research and technology and their space applications. ” - Article 2 of ESA Convention 4 2 16.7.2010 ESA FACTS AND FIGURES • Over 30 years of experience • 18 Member States • Five establishments, about 2000 staff • 3.7 billion Euro budget (2010) • Over 60 satellites designed, tested and operated in flight • 17 scientific satellites in operation • Five types of launcher developed • Over 190 launches 5 18 MEMBER STATES Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Norway, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. Canada takes part in some programmes under a Cooperation Agreement. Hungary, Romania, Poland, Slovenia, and Estonia are European Cooperating States. Cyprus and Latvia have signed Cooperation Agreements with ESA. 6 3 16.7.2010 ACTIVITIES ESA is one of the few space agencies in the world to combine responsibility in nearly all areas of space activity. • Space science • Navigation • Human spaceflight • Telecommunications • Exploration • Technology • Earth observation • Operations • Launchers 7 ESA PROGRAMMES All Member States participate (on In addition, -
Kaluza-Klein Gravity, Concentrating on the General Rel- Ativity, Rather Than Particle Physics Side of the Subject
Kaluza-Klein Gravity J. M. Overduin Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, British Columbia, Canada, V8W 3P6 and P. S. Wesson Department of Physics, University of Waterloo, Ontario, Canada N2L 3G1 and Gravity Probe-B, Hansen Physics Laboratories, Stanford University, Stanford, California, U.S.A. 94305 Abstract We review higher-dimensional unified theories from the general relativity, rather than the particle physics side. Three distinct approaches to the subject are identi- fied and contrasted: compactified, projective and noncompactified. We discuss the cosmological and astrophysical implications of extra dimensions, and conclude that none of the three approaches can be ruled out on observational grounds at the present time. arXiv:gr-qc/9805018v1 7 May 1998 Preprint submitted to Elsevier Preprint 3 February 2008 1 Introduction Kaluza’s [1] achievement was to show that five-dimensional general relativity contains both Einstein’s four-dimensional theory of gravity and Maxwell’s the- ory of electromagnetism. He however imposed a somewhat artificial restriction (the cylinder condition) on the coordinates, essentially barring the fifth one a priori from making a direct appearance in the laws of physics. Klein’s [2] con- tribution was to make this restriction less artificial by suggesting a plausible physical basis for it in compactification of the fifth dimension. This idea was enthusiastically received by unified-field theorists, and when the time came to include the strong and weak forces by extending Kaluza’s mechanism to higher dimensions, it was assumed that these too would be compact. This line of thinking has led through eleven-dimensional supergravity theories in the 1980s to the current favorite contenders for a possible “theory of everything,” ten-dimensional superstrings. -
Cosmic Vision 2015-2025
Space Science Cosmic Vision 2015-2025 Eight new mission proposals selected for ESA’s future scientific programme that proposed the mission. The space research com- The Science Mission Team defines a model payload munity’s long-term goals and ESA engineering teams for their research pro- undertake the technical grammes are to maintain assessment. The aim of the Assessment Phase is the present level of re- to define the mission to a search satellites in orbit sufficient level to show the around 2018 – 20 as scientific value and technical feasibility. well as working with and The main objectives evaluating possible new of the Definition Phase are missions. to establish the cost and implementation schedule In October, after a Space Science for the project. At the end Advisory Committee meeting (SSAC), of the definition phase, the candidate missions were selected for the Prime Contractor for further assessment and consideration for the Implementation Phase launch in 2017/2018. is selected. Competition That is the result of the Cosmic between potential Prime Contractors is necessary. It Vision 2015-2025’s Call for Proposals LISA (Laser Interferometer Space is also essential that the design and costing announced earlier this year. The response Antenna) moved from Cosmic Vision 2005- is based on the actual mission, i.e. with the was enormous and many interesting fields 2015. were represented in the proposals that selected PI (Principal Investigator) funded were presented. Fifty new proposals were instruments and selected new technologies, presented, twice the amount of proposals so that the competing contractors have compared to the previous ESA calls in a firm basis on which to make their Read more about the selected 1999. -
Presentation of Cosmic Vision 2015-2025 to Community
Cosmic Vision 2015 – 2025 ESA’s new long term plan for space science Missions in preparation Bepi-Colombo 2012 Lisa 2014 Corot Herschel-Planck (CNES-ESA) 2007 . 2006 JWST (NASA-ESA) Astro-F 2011 (Japan-ESA) 2006 Lisa- Venus Express Pathfinder 2009 Gaia Solar . 2005 Microscope 2011-12 Orbiter (CNES-ESA) 2015 2008 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Cosmic Vision process • Cosmic Vision 2015 –2025 process launched on 2 April 04 with call for Science themes • 1June 04: deadline for proposal submission • July 04: Analysis of responses by the ESA Science advisory bodies (AWG, SSWG, FPAG, SSAC) • 15-16 September 04: Workshop in Paris (~400 participants) • Nov 04: progress report to SPC • Spring 05: presentation of Cosmic Vision 2015-2025 to community • May 05: Endorsement of Cosmic Vision by SPC Grand themes 1. What are the conditions for life and planetary formation? 2. How does the Solar System work. 3. What are the fundamental laws of the Universe? 4. How did the Universe originate and what is it made of? 1. What are the conditions for life and planetary formation? 1.1 From gas and dust to stars and planets. 1.2 From exo-planets to bio-markers. 1.3 Life and habitability in the Solar System 2. How does the Solar System work ? 2.1 From the Sun to the edge of the Solar System 2.2 The building blocks of the Solar System, gaseous giants and their moons Solar System Roadmap (1) 2015-2025 Look at Small Scales! Understand Space plasmas EARTH MAGNETOSPHERIC SWARM, SOLAR POLAR ORBITER, HELIOPAUSE PROBE 2020 Go Outward! Explore the outer Solar System JUPITER & EUROPA PROBE Solar System Roadmap (2) 2015-2020 Look for Life! Everywhere in Solar System Mars rovers and sample return, Europa Probe 2020-2025 Seek Ground Truth! Land on NEOs, Moons, Planets,look below surface, return samples Jupiter and Europa Probe, NEO Sample Return 3. -
ACT-RPR-SPS-1110 Sps Europe Paper
62nd International Astronautical Congress, Cape Town, SA. Copyright ©2011 by the European Space Agency (ESA). Published by the IAF, with permission and released to the IAF to publish in all forms. IAC-11-C3.1.3 PROSPECTS FOR SPACE SOLAR POWER IN EUROPE Leopold Summerer European Space Agency, Advanced Concepts Team, The Netherlands, [email protected] Lionel Jacques European Space Agency, Advanced Concepts Team, The Netherlands, [email protected] In 2002, a phased, multi-year approach to space solar power has been published. Following this plan, several activities have matured the concept and technology further in the following years. Despite substantial advances in key technologies, space solar power remains still at the weak intersections between the space sector and the energy sector. In the 10 years since the development of the European SPS Programme Plan, both, the space and the energy sectors have undergone substantial changes and many key enabling technologies for space solar power have advanced significantly. The present paper attempts to take account of these changes in view to assess how they influence the prospect for space solar power work for Europe. Fresh Look Study as well as the work on a European I INTRODUCTION sail tower concept by Klimke and Seboldt [16], [17]. Based on these results, which re-confirmed the The concept of generating solar power in space and principal technical viability of space solar power transmitting it to Earth to contribute to terrestrial energy concepts, the focus of the first phase of the European systems has received period attention since P. Glaser SPS programme plan has been to enlarge the evaluation published the first engineering approach to it in 1968 scope of space solar power by including expertise from [1]. -
Cosmic Vision Space Science for Europe 2015-2035
Cosmic Vision Space Science for Europe 2015-2035 Athéna Coustenis LESIA, Observatoire de Paris-Meudon Chair du Solar System and Exploration Working Group de l’ESA Membre du Space Sciences Advisory Committee Cosmic Vision 2015 - 2025 Long-Term Plan of ESA’s Space Science Programme • Horizon 2000 (1984) o Cassini-Huygens, Herschel, Planck • Horizon 2000 Plus (1994/5) o Gaia, BepiColombo, JWST, LISA, Solar Orbiter • Cosmic Vision (2005) o What are the conditions for planet formation and the emergence of life? o How does the Solar System work? o What are the fundamental physical laws of the Universe? o How did the Universe originate and what is it made of? Folie Cosmic Vision 2015 - 2025 COSMIC VISION In 2005, a new programme was introduced to replace H2000+, for one more decade (until 2025) with the name Cosmic Vision (2015-2025). 4 Basics of the Science Programme Ø The Programme is Science-driven: both long-term science planning and mission calls are bottom-up processes, relying on broad community input and peer review. Ø The Programme is Mandatory: all member states contribute pro-rata to GDP providing budget stability, allowing long-term planning of its scientific goals and being the backbone of the Agency. 5 COSMIC VISION A bottom-up approach ESA Executive Science Programme Ø First “Call for DG, D/SRE Committee Missions” issued in 1st Q 2007. Advice Recommendations Ø Both L and M mission proposals solicited. Space Science Advisory Committee Ø More than 50 proposals received. Solar System and Exploration Astronomy Fundamental Physics -
What Is Gravity Probe B? a Quest for Experimental Truth the GP-B Flight
What is Gravity Probe B? than Gravity Probe B. It’s just a star, a telescope, and a spinning sphere.” However, it took the exceptional collaboration of Stanford, Gravity Probe B (GP-B) is a NASA physics mission to experimentally MSFC, Lockheed Martin and a host of others more than four decades investigate Einstein’s 1916 general theory of relativity—his theory of gravity. to develop the ultra-precise gyroscopes and the other cutting- GP-B uses four spherical gyroscopes and a telescope, housed in a satellite edge technologies necessary to carry out this “simple” experiment. orbiting 642 km (400 mi) above the Earth, to measure, with unprecedented accuracy, two extraordinary effects predicted by the general theory of rela- The GP-B Flight Mission & Data Analysis tivity: 1) the geodetic effect—the amount by which the Earth warps the local spacetime in which it resides; and 2) the frame-dragging effect—the amount On April 20, 2004 at 9:57:24 AM PDT, a crowd of over 2,000 current and by which the rotating Earth drags its local spacetime around with it. GP-B former GP-B team members and supporters watched and cheered as the tests these two effects by precisely measuring the precession (displacement) GP-B spacecraft lifted off from Vandenberg Air Force Base. That emotionally angles of the spin axes of the four gyros over the course of a year and com- overwhelming day, culminating with the extraordinary live video of paring these experimental results with predictions from Einstein’s theory. the spacecraft separating from the second stage booster meant, as GP-B Program Manager Gaylord Green put it, “that 10,000 things went right.” A Quest for Experimental Truth Once in orbit, the spacecraft first underwent a four-month Initialization The idea of testing general relativity with orbiting gyroscopes was sug- and Orbit Checkout (IOC), in which all systems and instruments were gested independently by two physicists, George Pugh and Leonard Schiff, initialized, tested, and optimized for the data collection to follow. -
→ Space for Europe European Space Agency
number 153 | February 2013 bulletin → space for europe European Space Agency The European Space Agency was formed out of, and took over the rights and The ESA headquarters are in Paris. obligations of, the two earlier European space organisations – the European Space Research Organisation (ESRO) and the European Launcher Development The major establishments of ESA are: Organisation (ELDO). The Member States are Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the ESTEC, Noordwijk, Netherlands. Netherlands, Norway, Poland, Portugal, Romania, Spain, Sweden, Switzerland and the United Kingdom. Canada is a Cooperating State. ESOC, Darmstadt, Germany. In the words of its Convention: the purpose of the Agency shall be to provide for ESRIN, Frascati, Italy. and to promote, for exclusively peaceful purposes, cooperation among European States in space research and technology and their space applications, with a view ESAC, Madrid, Spain. to their being used for scientific purposes and for operational space applications systems: Chairman of the Council: D. Williams (to Dec 2012) → by elaborating and implementing a long-term European space policy, by recommending space objectives to the Member States, and by concerting the Director General: J.-J. Dordain policies of the Member States with respect to other national and international organisations and institutions; → by elaborating and implementing activities and programmes in the space field; → by coordinating the European space programme and national programmes, and by integrating the latter progressively and as completely as possible into the European space programme, in particular as regards the development of applications satellites; → by elaborating and implementing the industrial policy appropriate to its programme and by recommending a coherent industrial policy to the Member States. -
LISA, the Gravitational Wave Observatory
The ESA Science Programme Cosmic Vision 2015 – 25 Christian Erd Planetary Exploration Studies, Advanced Studies & Technology Preparations Division 04-10-2010 1 ESAESA spacespace sciencescience timelinetimeline JWSTJWST BepiColomboBepiColombo GaiaGaia LISALISA PathfinderPathfinder Proba-2Proba-2 PlanckPlanck HerschelHerschel CoRoTCoRoT HinodeHinode AkariAkari VenusVenus ExpressExpress SuzakuSuzaku RosettaRosetta DoubleDouble StarStar MarsMars ExpressExpress INTEGRALINTEGRAL ClusterCluster XMM-NewtonXMM-Newton CassiniCassini-H-Huygensuygens SOHOSOHO ImplementationImplementation HubbleHubble OperationalOperational 19901990 19941994 19981998 20022002 20062006 20102010 20142014 20182018 20222022 XMM-Newton • X-ray observatory, launched in Dec 1999 • Fully operational (lost 3 out of 44 X-ray CCD early in mission) • No significant loss of performances expected before 2018 • Ranked #1 at last extension review in 2008 (with HST & SOHO) • 320 refereed articles per year, with 38% in the top 10% most cited • Observing time over- subscribed by factor ~8 • 2,400 registered users • Largest X-ray catalogue (263,000 sources) • Best sensitivity in 0.2-12 keV range • Long uninterrupted obs. • Follow-up of SZ clusters 04-10-2010 3 INTEGRAL • γ-ray observatory, launched in Oct 2002 • Imager + Spectrograph (E/ΔE = 500) + X- ray monitor + Optical camera • Coded mask telescope → 12' resolution • 72 hours elliptical orbit → low background • P/L ~ nominal (lost 4 out 19 SPI detectors) • No serious degradation before 2016 • ~ 90 refereed articles per year • Obs -
SEER for Hardware's Cost Model for Future Orbital Concepts (“FAR OUT”)
Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com SEER for Hardware’s Cost Model for Future Orbital Concepts (“FAR OUT”) Lee Fischman ISPA/SCEA Industry Hills 2008 Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com Introduction A model for predicting the cost of long term unmanned orbital spacecraft (Far Out) has been developed at the request of AFRL. Far Out has been integrated into SEER for Hardware. This presentation discusses the Far Out project and resulting model. © 2008 Galorath Incorporated Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com Goals • Estimate space satellites in any earth orbit. Deep space exploration missions may be considered as data is available, or may be an area for further research in Phase 3. • Estimate concepts to be launched 10-20 years into the future. • Cost missions ranging from exploratory to strategic, with a specific range decided based on estimating reliability. The most reliable estimates are likely to be in the middle of this range. • Estimates will include hardware, software, systems engineering, and production. • Handle either government or commercial missions, either “one-of-a-kind” or constellations. • Be used in a “top-down” manner using relatively less specific mission resumes, similar to those available from sources such as the Earth Observation Portal or Janes Space Directory. © 2008 Galorath Incorporated Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com Challenge: Technology Change Over Time Evolution in bus technologies Evolution in payload technologies and performance 1. -
LISA and ESA's Cosmic Vision 2015-2025 Programme
LISA and ESA’s Cosmic Vision 2015-2025 Programme J. Clavel Head, Astrophysics Mission Division, Science Directorate of ESA 7th International LISA Symposium, Barcelona, 16-June-2008 Missions in preparation HeHerschel-rschel- Planck Planck BBeepipi-C-Cololombomboo 2008 CoroCorott 2008 20132013 (CNES-ESA)(CNES-ESA) Lisa-Pathfinder 20062006 Lisa-Pathfinder 20102010 Chandrayan GaiaGaia Chandrayan SolarSolar (ISRO-ESA) 20112011 (ISRO-ESA) JWSJWSTT OrbiterOrbiter 20082008 (NASA-ESA-CSA)(NASA-ESA-CSA)(ESA-NASA)(ESA-NASA) MicroscopeMicroscope 20132013 20152015 (CNES-ESA)(CNES-ESA) 20102010 20052005 20062006 20072007 20082008 20092009 20102010 20112011 20122012 20132013 20142014 20152015 20162016 20172017 7th International LISA Symposium, Barcelona, 16-June-2008 ESA’sESA’s newnew longlong termterm planplan forfor spacespace sciencescience 7th International LISA Symposium, Barcelona, 16-June-2008 Cosmic Vision 2015-2025 process • Call for Science Themes in Spring 2004 • Responses analysed by ESA’s advisory structure in July 2004 • Workshop with community in Paris in September 2004 (400 participants) • Spring 2005: the Cosmic Vision Plan was presented to the community • Plan should cover one decade, with 3 Calls for Missions planned 7th International LISA Symposium, Barcelona, 16-June-2008 Four “Grand Themes” identified 1. What are the conditions for life and planetary formation? 2. How does the Solar System work? 3. What are the fundamental laws of the Universe? 4. How did the Universe originate and what is it made of? 7th International LISA Symposium, Barcelona, 16-June-2008 Cosmic Vision process • First “Call for Missions” issued in 1st Q 2007 • 50 proposals received by June 2007 deadline • Selection process by advisory structure on behalf of scientific community during summer 2007 • Final recommendation from SSAC in October 2007 7th International LISA Symposium, Barcelona, 16-June-2008 The ESA program is chosen by the Scientific Community….