The FKBP51 Glucocorticoid Receptor Co-Chaperone: Regulation, Function, and Implications in Health and Disease

Total Page:16

File Type:pdf, Size:1020Kb

The FKBP51 Glucocorticoid Receptor Co-Chaperone: Regulation, Function, and Implications in Health and Disease International Journal of Molecular Sciences Review The FKBP51 Glucocorticoid Receptor Co-Chaperone: Regulation, Function, and Implications in Health and Disease Gabriel R. Fries 1,*, Nils C. Gassen 2 and Theo Rein 2,* ID 1 Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA 2 Department of Translational Science in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany; [email protected] * Correspondence: [email protected] (G.R.F.); [email protected] (T.R.); Tel.: +1-713-486-2653 (G.R.F.); +49-89-3062-2531 (T.R.) Received: 30 October 2017; Accepted: 29 November 2017; Published: 5 December 2017 Abstract: Among the chaperones and co-chaperones regulating the glucocorticoid receptor (GR), FK506 binding protein (FKBP) 51 is the most intensely investigated across different disciplines. This review provides an update on the role of the different co-chaperones of Hsp70 and Hsp90 in the regulation of GR function. The development leading to the focus on FKBP51 is outlined. Further, a survey of the vast literature on the mechanism and function of FKBP51 is provided. This includes its structure and biochemical function, its regulation on different levels—transcription, post-transcription, and post-translation—and its function in signaling pathways. The evidence portraying FKBP51 as a scaffolding protein organizing protein complexes rather than a chaperone contributing to the folding of individual proteins is collated. Finally, FKBP51’s involvement in physiology and disease is outlined, and the promising efforts in developing drugs targeting FKBP51 are discussed. Keywords: chaperone; glucocorticoid receptor; FKBP51; FKBP5; signaling pathway; drug 1. Introduction The original discovery of FK506 binding protein (FKBP) 51 was described more than 25 years ago alongside the analysis of steroid receptor complex components [1]. Accordingly, steroid receptors (SRs) and the glucocorticoid receptor (GR) in particular served as the main experimental systems for the initial investigations of FKBP51’s function and mechanism [2–5], while additional functions of FKBP51 emerged soon afterward [6]. Scientists in several laboratories characterized FKBP51 as a strong inhibitor of GR function [7–10]. Since GR is a crucial part of the stress hormone axis, also known as HPA (hypothalamus–pituitary–adrenals) axis, and since increasing evidence became available for dysregulated GR in stress-related diseases, such as depression [11], the finding of FKBP51 as an inhibitor of GR inspired a genotype association study on depression [12]. This study discovered that polymorphisms of the FKBP51-encoding gene FKBP5 were associated with stress hormone axis reactivity and response to antidepressants [12] and amplified interest in FKBP51 research worldwide (see Figure1 for a summary of the number of FKBP51-publications per year since 1990), along with the discovery of several additional functions of FKBP51 [6]. Given the importance of GR in the initial characterization of FKBP51, we will first provide an update of the contribution of chaperones and co-chaperones to GR function (Section2), with a focus on FKBP51 and a brief introduction into its structure and biochemical function (Section3). This is Int. J. Mol. Sci. 2017, 18, 2614; doi:10.3390/ijms18122614 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2017, 18, 2614 2 of 31 Int. J. Mol. Sci. 2017, 18, 2614 2 of 30 followedfollowed byby aa surveysurvey ofof thethe literatureliterature onon regulationregulation andand functionfunction ofof FKBP51FKBP51 (Sections(Sections4 4 and and5 )5) and and on on drugdrug developmentdevelopment effortsefforts (Section(Section6 6)) and and by by concluding concluding remarks remarks (Section (Section7). 7). FigureFigure 1.1. Number of publications on FKBP51 perper year since 1990.1990. The numbers are based onon a Pubmed searchsearch thatthat includedincluded FKBP5,FKBP5, FKBP51,FKBP51, FKBP54,FKBP54, FKBPFKBP 5,5, FKBPFKBP 51,51, andand FKBPFKBP 54.54. The initial publications describeddescribed FKBP51FKBP51 asas immunophilinimmunophilin p54.p54. ForFor 2017,2017, citationscitations werewere retrievedretrieved OctoberOctober 3030 ofof thisthis year.year. 2.2. Glucocorticoid ReceptorReceptor Co-Chaperones,Co-Chaperones, FocusFocus onon FKBP51FKBP51 TheThe glucocorticoidglucocorticoid receptor (GR) belongs to the large superfamilysuperfamily of nuclear receptors (NRs), whichwhich typicallytypically actact asas transcriptionaltranscriptional regulatorsregulators inin aa ligand-dependentligand-dependent mannermanner [[13–15].13–15]. TheyThey shareshare aa commoncommon structurestructure that that became became apparent apparent already already before before any any of theirof their genomic genomic sequence sequence was was known known [16]: an[16]: N-terminal an N-terminal activator activator domain, domain, a central a DNAcentral binding DNA domain,binding domain, and a C-terminal and a C-terminal activatordomain activator 2, whichdomain is also2, which the domain is also the of ligand domain binding of ligand [17]. binding NRs are [17]. grouped NRs intoare grouped seven subfamilies, into seven NR0-6, subfamilies, based onNR0-6, their based homology on their [18 ].homology GR, designated [18]. GR, as designated NR3C1, belongs as NR3C1, to the belongs NR3 subfamily, to the NR3 which subfamily, encompasses which allencompasses steroid hormone all steroid receptors. hormone receptors. GRGR isis functionally functionally involved involved in ain broad a broad spectrum spectrum of physiological of physiological processes, processes, including including the immune, the cardiovascular,immune, cardiovascular, reproductive, reproductive, nervous, and nervous, metabolic and system metabolic [19]. system This vast [19]. range This of vast physiological range of functionsphysiological requires functions intricate requires control intricate of its activity control [20of]. its In activity addition [20]. to molecularIn addition chaperones to molecular and co-chaperones,chaperones and which co-chaperones, predominantly which are predominantly known as regulators are known of folding as andregulators conformation of folding of GR and in theconformation cytosol, there of GR is a in vast the array cytosol, of cofactorsthere is a thatvast determine array of cofactors GR’s activity that determine as a transcription GR’s activity factor as on a thetranscription chromatin. factor These on are the not chromatin. the subject These of this are survey, not the excellent subject of reviews this survey, have been excellent published reviews [20 have–22]. been published [20–22]. 2.1. Complexity of GR Regulating Chaperones and Co-Chaperones 2.1. Complexity of GR Regulating Chaperones and Co-Chaperones The first confirmed chaperone found associated with SRs was heat shock protein (Hsp) 90 [4,23,24]. Hsp90The is afirst highly confirmed abundant chaperone protein found in eukaryotic associated cells with making SRs was up 1–2%heat shock of the protein cytosolic (Hsp) protein 90 [4,23,24]. content underHsp90 non-stressis a highly conditionsabundant protein and up in to eukaryotic 5% under ce stresslls making conditions up 1–2% [25], of now the cytosolic known as protein a key foldingcontent andunder assembly non-stress platform conditions involved and up in to numerous 5% under cellularstress conditions processes [25], [26 now–28]. known The discovery as a key folding of the core and componentsassembly platform of the GR-chaperoneinvolved in numerous heterocomplex cellula andr processes their step-wise, [26–28]. ATP-dependent The discovery assembly of the core has beencomponents described of inthe several GR-chaperone reviews [ 2heterocomplex,4,5]. Briefly, in an vitrod theirreconstitution step-wise, experimentsATP-dependent revealed assembly that fivehas chaperonesbeen described and in co-chaperones several reviews suffice [2,4,5]. to fold Briefly, GR to in a vitro conformation reconstitu withtion highexperiments affinity hormonerevealed that binding five competence:chaperones and Hsp40, co-chaperones Hsp70, hop, suffice Hsp90, to andfold p23GR [to2, 29a conformation]. The basic maturation with high stepaffinity is thought hormone to binding involve thecompetence: initial recognition Hsp40, Hsp70, of GR hop, by Hsp40,Hsp90, and which p23 leads [2,29] to. The association basic maturation with ATP-bound step is thought Hsp70 to [involve30–32]. Inthe the initial next recognition step, Hsp70-Hsp90 of GR by organizing Hsp40, which protein lead (hop)s to promotesassociation the with transfer ATP-bound of the partially Hsp70 folded[30–32]. GR In tothe the next Hsp90-based step, Hsp70-Hsp90 folding platform;organizing hop protein leaves (hop) the folding promotes complex the transfer at later of stages. the partially Hsp90 folded primarily GR actsto the on Hsp90-based the hormone folding binding platform domain; hop and leaves keeps the it folding in a hormone complex binding at later competentstages. Hsp90 state. primarily P23 is aacts cofactor on the of hormone Hsp90 that binding keeps domain Hsp90 inand the keeps ATP-bound it in a hormone state, thus binding promoting competent receptor state. binding P23 is of a Hsp90cofactor [33 of]. Hsp90 More recently,that keeps the Hsp90 coordinated in the ATP-boun action of thed state, Hsp70- thus and promoting Hsp90-based receptor cycles binding in the of folding Hsp90 and[33]. maturationMore recently, of GR the has coordinated
Recommended publications
  • Compression of Large Sets of Sequence Data Reveals Fine Diversification of Functional Profiles in Multigene Families of Proteins
    Technical note Compression of Large Sets of Sequence Data Reveals Fine Diversification of Functional Profiles in Multigene Families of Proteins: A Study for Peptidyl-Prolyl cis/trans Isomerases (PPIase) Andrzej Galat Retired from: Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), CEA-Université Paris-Saclay, France; [email protected]; Tel.: +33-0164465072 Received: 21 December 2018; Accepted: 21 January 2019; Published: 11 February 2019 Abstract: In this technical note, we describe analyses of more than 15,000 sequences of FK506- binding proteins (FKBP) and cyclophilins, also known as peptidyl-prolyl cis/trans isomerases (PPIases). We have developed a novel way of displaying relative changes of amino acid (AA)- residues at a given sequence position by using heat-maps. This type of representation allows simultaneous estimation of conservation level in a given sequence position in the entire group of functionally-related paralogues (multigene family of proteins). We have also proposed that at least two FKBPs, namely FKBP36, encoded by the Fkbp6 gene and FKBP51, encoded by the Fkbp5 gene, can form dimers bound via a disulfide bridge in the nucleus. This type of dimer may have some crucial function in the regulation of some nuclear complexes at different stages of the cell cycle. Keywords: FKBP; cyclophilin; PPIase; heat-map; immunophilin 1 Introduction About 30 years ago, an exciting adventure began in finding some correlations between pharmacological activities of macrocyclic hydrophobic drugs, namely the cyclic peptide cyclosporine A (CsA), and two macrolides, namely FK506 and rapamycin, which have profound and clinically useful immunosuppressive effects, especially in organ transplantations and in combating some immune disorders.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Synthesis and Application of Light-Switchable Arylazopyrazole Rapamycin Analogs
    Organic & Biomolecular Chemistry Synthesis and Application of Light-Switchable Arylazopyrazole Rapamycin Analogs Journal: Organic & Biomolecular Chemistry Manuscript ID OB-COM-08-2019-001719.R1 Article Type: Communication Date Submitted by the 25-Aug-2019 Author: Complete List of Authors: Courtney, Taylor; University of Pittsburgh, Chemistry Horst, Trevor; University of Pittsburgh, Chemistry Hankinson, Chasity; University of Pittsburgh, Chemistry Deiters, Alexander; University of Pittsburgh, Chemistry Page 1 of 11 Organic & Biomolecular Chemistry Synthesis and Application of Light-Switchable Arylazopyrazole Rapamycin Analogs Taylor M. Courtney, Trevor J. Horst, Chasity P. Hankinson, and Alexander Deiters* Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States [email protected] Abstract: Rapamycin-induced dimerization of FKBP and FRB has been utilized as a tool for co-localizing two proteins of interest in numerous applications. Due to the tight binding interaction of rapamycin with FKBP and FRB, the ternary complex formation is essentially irreversible. Since biological processes occur in a highly dynamic fashion with cycles of protein association and dissociation to generate a cellular response, it is useful to have chemical tools that function in a similar manner. We have developed arylazopyrazole-modified rapamycin analogs which undergo a configurational change upon light exposure and we observed enhanced ternary complex formation for the cis-isomer over the trans-isomer for one of the analogs. Introduction: Chemical inducers of dimerization (CIDs) are prominent tools used by chemical biologists to place biological processes under conditional control.1-4 The most commonly utilized CID is rapamycin, a natural product that binds to FK506 binding protein (FKBP) with a 0.2 nM Kd.
    [Show full text]
  • Learning Protein Constitutive Motifs from Sequence Data Je´ Roˆ Me Tubiana, Simona Cocco, Re´ Mi Monasson*
    TOOLS AND RESOURCES Learning protein constitutive motifs from sequence data Je´ roˆ me Tubiana, Simona Cocco, Re´ mi Monasson* Laboratory of Physics of the Ecole Normale Supe´rieure, CNRS UMR 8023 & PSL Research, Paris, France Abstract Statistical analysis of evolutionary-related protein sequences provides information about their structure, function, and history. We show that Restricted Boltzmann Machines (RBM), designed to learn complex high-dimensional data and their statistical features, can efficiently model protein families from sequence information. We here apply RBM to 20 protein families, and present detailed results for two short protein domains (Kunitz and WW), one long chaperone protein (Hsp70), and synthetic lattice proteins for benchmarking. The features inferred by the RBM are biologically interpretable: they are related to structure (residue-residue tertiary contacts, extended secondary motifs (a-helixes and b-sheets) and intrinsically disordered regions), to function (activity and ligand specificity), or to phylogenetic identity. In addition, we use RBM to design new protein sequences with putative properties by composing and ’turning up’ or ’turning down’ the different modes at will. Our work therefore shows that RBM are versatile and practical tools that can be used to unveil and exploit the genotype–phenotype relationship for protein families. DOI: https://doi.org/10.7554/eLife.39397.001 Introduction In recent years, the sequencing of many organisms’ genomes has led to the collection of a huge number of protein sequences, which are catalogued in databases such as UniProt or PFAM Finn et al., 2014). Sequences that share a common ancestral origin, defining a family (Figure 1A), *For correspondence: are likely to code for proteins with similar functions and structures, providing a unique window into [email protected] the relationship between genotype (sequence content) and phenotype (biological features).
    [Show full text]
  • The Immunophilins, Fk506 Binding Protein and Cyclophilin, Are Discretely Localized in the Brain: Relationship to Calcineurin
    NeuroscienceVol. 62,NO. 2, pp. 569-580,1994 Elsevier Sctence Ltd Copyright 0 1994 IBRO Pergamon 0306-4522(94)E0182-4 Printed in Great Britain. All rights reserved 0306-4522194 $7.00 + 0.00 THE IMMUNOPHILINS, FK506 BINDING PROTEIN AND CYCLOPHILIN, ARE DISCRETELY LOCALIZED IN THE BRAIN: RELATIONSHIP TO CALCINEURIN T. M. DAWSON,*t J. P. STEINER,* W. E. LYONS,*11 M. FOTUHI,* M. BLUE? and S. H. SNYDER*f§l Departments of *Neuroscience, tNeurology, $Pharmacology and Molecular Sciences, and §Psychiatry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, U.S.A. (IDivision of Toxicological Science, Johns Hopkins University School of Hygiene and Public Health Abstract-The immunosuppressant drugs cyclosporin A and FK506 bind to small, predominantly soluble proteins cyclophilin and FK506 binding protein, respectively, to mediate their pharmacological actions. The immunosuppressant actions of these drugs occur through binding of cyclophilin-cyclosporinA and FK506 binding protein-FK506 complexes to the calcium-calmodulin-dependent protein phosphatase, calcineurin, inhibiting phosphatase activity, Utilizing immunohistcchemistry, in situ hybridization and autoradiography, we have localized protein and messenger RNA for FKS06 binding protein, cyclophilin and calcineurin. All three proteins and/or messages exhibit a heterogenous distribution through the brain and spinal cord, with the majority of the localizations being neuronal. We observe a striking co-localiz- ation of FK506 binding protein and calcineurin in most
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Anti-Inflammatory Role of Curcumin in LPS Treated A549 Cells at Global Proteome Level and on Mycobacterial Infection
    Anti-inflammatory Role of Curcumin in LPS Treated A549 cells at Global Proteome level and on Mycobacterial infection. Suchita Singh1,+, Rakesh Arya2,3,+, Rhishikesh R Bargaje1, Mrinal Kumar Das2,4, Subia Akram2, Hossain Md. Faruquee2,5, Rajendra Kumar Behera3, Ranjan Kumar Nanda2,*, Anurag Agrawal1 1Center of Excellence for Translational Research in Asthma and Lung Disease, CSIR- Institute of Genomics and Integrative Biology, New Delhi, 110025, India. 2Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India. 3School of Life Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, Orissa, 768019, India. 4Department of Respiratory Sciences, #211, Maurice Shock Building, University of Leicester, LE1 9HN 5Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia- 7003, Bangladesh. +Contributed equally for this work. S-1 70 G1 S 60 G2/M 50 40 30 % of cells 20 10 0 CURI LPSI LPSCUR Figure S1: Effect of curcumin and/or LPS treatment on A549 cell viability A549 cells were treated with curcumin (10 µM) and/or LPS or 1 µg/ml for the indicated times and after fixation were stained with propidium iodide and Annexin V-FITC. The DNA contents were determined by flow cytometry to calculate percentage of cells present in each phase of the cell cycle (G1, S and G2/M) using Flowing analysis software. S-2 Figure S2: Total proteins identified in all the three experiments and their distribution betwee curcumin and/or LPS treated conditions. The proteins showing differential expressions (log2 fold change≥2) in these experiments were presented in the venn diagram and certain number of proteins are common in all three experiments.
    [Show full text]
  • Co-Chaperone Potentiation of Vitamin D Receptor-Mediated Transactivation
    81 Co-chaperone potentiation of vitamin D receptor-mediated transactivation: a role for Bcl2-associated athanogene-1 as an intracellular-binding protein for 1,25-dihydroxyvitamin D3 R F Chun, M Gacad, L Nguyen, M Hewison and J S Adams Division of Endocrinology, Diabetes and Metabolism, Burns and Allen Research Institute, Cedars-Sinai Medical Center, Room D-3088, 8700 Beverly Boulevard, Los Angeles, California 90048, USA (Requests for offprints should be addressed to M Hewison; Email: [email protected]) Abstract The constitutively expressed member of the heat shock protein-70 family (hsc70) is a chaperone with multiple functions in cellular homeostasis. Previously, we demonstrated the ability of hsc70 to bind 25-hydroxyvitamin D3 (25-OHD3) and 1,25- dihydroxyvitamin D3 (1,25(OH)2D3). Hsc70 also recruits and interacts with the co-chaperone Bcl2-associated athanogene (BAG)-1 via the ATP-binding domain that resides on hsc70. Competitive ligand-binding assays showed that, like hsc70, recombinant BAG-1 is able to bind 25-OHD3 (KdZ0.71G0.25 nM, BmaxZ69.9G16.1 fmoles/mg protein) and 1,25(OH)2D3 (KdZ0.16G0.07 nM, BmaxZ38.1G3.5 fmoles/mg protein; both nZ3 separate binding assays, P!0.001 for Kd and Bmax). To investigate the functional significance of this, we transiently overexpressed the S, M, and L variants of BAG-1 into human kidney HKC-8 cells stably transfected with a 1,25(OH)2D3-responsive 24-hydroxylase (CYP24) promoter–reporter construct. As HKC-8 cells also express the enzyme 1a-hydroxylase, both 25-OHD3 (200 nM) and 1,25(OH)2D3 (5 nM) were able to induce CYP24 promoter activity.
    [Show full text]
  • Polychlorinated Biphenyl Ligands of the Aryl Hydrocarbon Receptor Promote Adipocyte-Mediated Diabetes
    University of Kentucky UKnowledge Theses and Dissertations--Nutritional Sciences Nutritional Sciences 2013 POLYCHLORINATED BIPHENYL LIGANDS OF THE ARYL HYDROCARBON RECEPTOR PROMOTE ADIPOCYTE-MEDIATED DIABETES Nicki A. Baker University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Baker, Nicki A., "POLYCHLORINATED BIPHENYL LIGANDS OF THE ARYL HYDROCARBON RECEPTOR PROMOTE ADIPOCYTE-MEDIATED DIABETES" (2013). Theses and Dissertations--Nutritional Sciences. 7. https://uknowledge.uky.edu/nutrisci_etds/7 This Doctoral Dissertation is brought to you for free and open access by the Nutritional Sciences at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Nutritional Sciences by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained and attached hereto needed written permission statements(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine). I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless a preapproved embargo applies.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Supplementary Methods
    Supplementary methods Human lung tissues and tissue microarray (TMA) All human tissues were obtained from the Lung Cancer Specialized Program of Research Excellence (SPORE) Tissue Bank at the M.D. Anderson Cancer Center (Houston, TX). A collection of 26 lung adenocarcinomas and 24 non-tumoral paired tissues were snap-frozen and preserved in liquid nitrogen for total RNA extraction. For each tissue sample, the percentage of malignant tissue was calculated and the cellular composition of specimens was determined by histological examination (I.I.W.) following Hematoxylin-Eosin (H&E) staining. All malignant samples retained contained more than 50% tumor cells. Specimens resected from NSCLC stages I-IV patients who had no prior chemotherapy or radiotherapy were used for TMA analysis by immunohistochemistry. Patients who had smoked at least 100 cigarettes in their lifetime were defined as smokers. Samples were fixed in formalin, embedded in paraffin, stained with H&E, and reviewed by an experienced pathologist (I.I.W.). The 413 tissue specimens collected from 283 patients included 62 normal bronchial epithelia, 61 bronchial hyperplasias (Hyp), 15 squamous metaplasias (SqM), 9 squamous dysplasias (Dys), 26 carcinomas in situ (CIS), as well as 98 squamous cell carcinomas (SCC) and 141 adenocarcinomas. Normal bronchial epithelia, hyperplasia, squamous metaplasia, dysplasia, CIS, and SCC were considered to represent different steps in the development of SCCs. All tumors and lesions were classified according to the World Health Organization (WHO) 2004 criteria. The TMAs were prepared with a manual tissue arrayer (Advanced Tissue Arrayer ATA100, Chemicon International, Temecula, CA) using 1-mm-diameter cores in triplicate for tumors and 1.5 to 2-mm cores for normal epithelial and premalignant lesions.
    [Show full text]
  • Anti-Prostaglandin E Synthase (Cytosolic, FL) Antibody (ARG56466)
    Product datasheet [email protected] ARG56466 Package: 250 μl anti-Prostaglandin E Synthase (cytosolic, FL) antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes Prostaglandin E Synthase (cytosolic, FL) Tested Reactivity Hu, Ms Tested Application ICC/IF, WB Specificity This antibody does not react to Microsomal PGES-1 and Microsomal PGES-2. Host Rabbit Clonality Polyclonal Isotype IgG Target Name Prostaglandin E Synthase (cytosolic, FL) Antigen Species Human Immunogen Full length, Human recombinant Prostaglandin E Synthase (cytosolic, FL). Conjugation Un-conjugated Alternate Names EC 5.3.99.3; Progesterone receptor complex p23; TEBP; Hsp90 co-chaperone; P23; cPGES; Cytosolic prostaglandin E2 synthase; Prostaglandin E synthase 3; Telomerase-binding protein p23 Application Instructions Application table Application Dilution ICC/IF 1:20 (10 µg/ml) WB 1:200 (1 µg/ml) Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 19 kDa Properties Form Liquid Purification Affinity purification with immunogen. Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Database links GeneID: 10728 Human www.arigobio.com 1/2 GeneID: 56351 Mouse Swiss-port # Q15185 Human Swiss-port # Q9R0Q7 Mouse Gene Symbol PTGES3 Gene Full Name prostaglandin E synthase 3 (cytosolic) Function Cytosolic prostaglandin synthase that catalyzes the oxidoreduction of prostaglandin endoperoxide H2 (PGH2) to prostaglandin E2 (PGE2).
    [Show full text]