Functional Metagenomics of Bark Microbial Communities from Avocado Trees (Persea Americana Mill.) Reveals Potential for Bacteria
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diversion and Phylogenetic Relatedness of Filterable Bacteria from Norwegian Tap and Bottled Waters
Diversion and phylogenetic relatedness of filterable bacteria from Norwegian tap and bottled waters Short title: Filterable bacteria in Norwegian tap and bottled waters Colin Charnock*, Ralf Xue Hagen, Theresa Ngoc-Thu Nguyen, Linh Thuy Vo Department of Life Sciences and Health, Oslo Metropolitan University, NO-0130, Oslo, Norway *Corresponding author. E-mail address: [email protected]. ABSTRACT Numerous articles have documented the existence of filterable bacteria. Where filtration is the chosen method of sterilization for medicinal or media components, these bacteria will by definition render products non-sterile. They may further represent a health hazard to the end user. A wide-range of bacterial genera were found in bottled and tap water filtrates from 0.2 µm filters, including genera housing opportunistic pathogens (e.g. Methylobacterium) and endospore formers (Paenibacillus). Two municipal tap water isolates were only distantly related to named species. One of these grew on agar, and could potentially provide hitherto unharvested useful biological products. The other grew only in water, and failed to produce colonies on media targeting either heterotrophs or autotrophs. The present study is one of very few looking at filterable bacteria in bottled waters intended for human consumption and the first identifying the filterable portion. It extends the range of known habitats of filterable bacteria and provides data on two new or novel species. Key words │bottled water, filterable bacteria, new species ©IWA Publishing 2019. The definitive peer-reviewed and edited version of this article is published in J Water Health (2019) 17 (2): 295-307 https://doi.org/10.2166/wh.2019.284 and is available at www.iwapublishing.com. -
Research Article Antimicrobial and Antioxidant Properties of a Bacterial
Hindawi International Journal of Microbiology Volume 2020, Article ID 9483670, 11 pages https://doi.org/10.1155/2020/9483670 Research Article Antimicrobial and Antioxidant Properties of a Bacterial Endophyte, Methylobacterium radiotolerans MAMP 4754, Isolated from Combretum erythrophyllum Seeds Mampolelo M. Photolo ,1 Vuyo Mavumengwana ,2 Lungile Sitole ,1 and Matsobane G. Tlou 3 1Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Campus, Johannesburg, South Africa 2DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa 3Department of Biochemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, South Africa Correspondence should be addressed to Matsobane G. Tlou; [email protected] Received 17 September 2019; Accepted 21 December 2019; Published 25 February 2020 Academic Editor: Karl Drlica Copyright © 2020 Mampolelo M. Photolo et al. -is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. -is study reports on the isolation and identification of Methylobacterium radiotolerans MAMP 4754 from the seeds of the medicinal plant, Combretum -
C1 Compounds Shape the Microbial Community of an Abandoned Century-Old Oil
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.278820; this version posted September 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. C1 compounds shape the microbial community of an abandoned century-old oil exploration well. 1 Diego Rojas-Gätjens1, Paola Fuentes-Schweizer2,3, Keilor Rojas-Jimenez,4, Danilo Pérez-Pantoja5, Roberto 2 Avendaño1, Randall Alpízar6, Carolina Coronado-Ruíz1 & Max Chavarría1,3,7* 3 4 1Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200 San José 5 (Costa Rica). 2Centro de Investigación en electroquímica y Energía química (CELEQ), Universidad de 6 Costa Rica, 11501-2060 San José (Costa Rica). 3Escuela de Química, Universidad de Costa Rica, 11501- 7 2060 San José (Costa Rica). 4Escuela de Biología, Universidad de Costa Rica, 11501-2060 San José 8 (Costa Rica). 5Programa Institucional de Fomento a la Investigación, Desarrollo, e Innovación (PIDi), 9 Universidad Tecnológica Metropolitana, Santiago (Chile). 6Hidro Ambiente Consultores, 202, San José 10 (Costa Rica), 7Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11 11501-2060 San José (Costa Rica). 12 Keywords: Methylotrophic bacteria, Methylobacillus, Methylococcus, Methylorubrum, Hydrocarbons, 13 Oil well, Methane, Cahuita National Park 14 *Correspondence to: Max Chavarría 15 Escuela de Química & Centro de Investigaciones en Productos Naturales (CIPRONA) 16 Universidad de Costa Rica 17 Sede Central, San Pedro de Montes de Oca 18 San José, 11501-2060, Costa Rica 19 Phone (+506) 2511 8520. Fax (+506) 2253 5020 20 E-mail: [email protected] 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.278820; this version posted September 2, 2020. -
Antimicrobial and Antioxidant Properties of a Bacterial Endophyte, Methylobacterium Radiotolerans MAMP 4754, Isolated from Combretum Erythrophyllum Seeds
Hindawi International Journal of Microbiology Volume 2020, Article ID 9483670, 11 pages https://doi.org/10.1155/2020/9483670 Research Article Antimicrobial and Antioxidant Properties of a Bacterial Endophyte, Methylobacterium radiotolerans MAMP 4754, Isolated from Combretum erythrophyllum Seeds Mampolelo M. Photolo ,1 Vuyo Mavumengwana ,2 Lungile Sitole ,1 and Matsobane G. Tlou 3 1Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Campus, Johannesburg, South Africa 2DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa 3Department of Biochemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, South Africa Correspondence should be addressed to Matsobane G. Tlou; [email protected] Received 17 September 2019; Accepted 21 December 2019; Published 25 February 2020 Academic Editor: Karl Drlica Copyright © 2020 Mampolelo M. Photolo et al. -is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. -is study reports on the isolation and identification of Methylobacterium radiotolerans MAMP 4754 from the seeds of the medicinal plant, Combretum -
Designing and Engineering Methylorubrum Extorquens AM1 for Itaconic Acid Production
fmicb-10-01027 May 8, 2019 Time: 14:44 # 1 ORIGINAL RESEARCH published: 09 May 2019 doi: 10.3389/fmicb.2019.01027 Designing and Engineering Methylorubrum extorquens AM1 for Itaconic Acid Production Chee Kent Lim1, Juan C. Villada1, Annie Chalifour2†, Maria F. Duran1, Hongyuan Lu1† and Patrick K. H. Lee1* 1 School of Energy and Environment, City University of Hong Kong, Hong Kong, China, 2 Department of Chemistry, City Edited by: University of Hong Kong, Hong Kong, China Sabine Kleinsteuber, Helmholtz Centre for Environmental Research (UFZ), Germany Methylorubrum extorquens (formerly Methylobacterium extorquens) AM1 is a Reviewed by: methylotrophic bacterium with a versatile lifestyle. Various carbon sources including Volker Döring, acetate, succinate and methanol are utilized by M. extorquens AM1 with the latter Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), being a promising inexpensive substrate for use in the biotechnology industry. Itaconic France acid (ITA) is a high-value building block widely used in various industries. Given Norma Cecilia Martinez-Gomez, that no wildtype methylotrophic bacteria are able to utilize methanol to produce Michigan State University, United States ITA, we tested the potential of M. extorquens AM1 as an engineered host for this *Correspondence: purpose. In this study, we successfully engineered M. extorquens AM1 to express Patrick K. H. Lee a heterologous codon-optimized gene encoding cis-aconitic acid decarboxylase. The [email protected] engineered strain produced ITA using acetate, succinate and methanol as the carbon †Present address: Annie Chalifour, feedstock. The highest ITA titer in batch culture with methanol as the carbon source Swiss Federal Institute of Aquatic was 31.6 ± 5.5 mg/L, while the titer and productivity were 5.4 ± 0.2 mg/L and Science and Technology (EAWAG), 0.056 ± 0.002 mg/L/h, respectively, in a scaled-up fed-batch bioreactor under Überlandstrasse, Dübendorf, Switzerland 60% dissolved oxygen saturation. -
1 Supplementary Tables 1 2 Fine-Scale Adaptations To
1 SUPPLEMENTARY TABLES 2 3 FINE-SCALE ADAPTATIONS TO ENVIRONMENTAL VARIATION AND GROWTH 4 STRATEGIES DRIVE PHYLLOSPHERE METHYLOBACTERIUM DIVERSITY. 5 6 Jean-Baptiste Leducq1,2,3, Émilie Seyer-Lamontagne1, Domitille Condrain-Morel2, Geneviève 7 Bourret2, David Sneddon3, James A. Foster3, Christopher J. Marx3, Jack M. Sullivan3, B. Jesse 8 Shapiro1,4 & Steven W. Kembel2 9 10 1 - Université de Montréal 11 2 - Université du Québec à Montréal 12 3 – University of Idaho 13 4 – McGill University 14 1 15 Table S1 - List of reference Methylobacteriaceae genomes from which the complete rpoB 16 and sucA nucleotide sequences were available. Following information is shown: strain name, 17 given genus name (Methylorubrum considered as Methylobacterium in this study), given species 18 name (when available), biome where the strain was isolated from (when available; only indicated 19 for Methylobacterium), groups (B,C) or clade (A1-A9) assignation, and references or source 20 (NCBI bioproject) when unpublished. Complete and draft Methylobacteriaceae genomes publicly 21 available in September 2020, including 153 Methylobacteria, 30 Microvirga and 2 Enterovirga, 22 using blast of the rpoB complete sequence from the M. extorquens strain TK001 against NCBI 23 databases refseq_genomes and refseq_rna (1) available for Methylobacteriaceae 24 (Uncultured/environmental samples excluded) STRAIN Genus Species ENVIRONMENT Group/ Reference/source Clade BTF04 Methylobacterium sp. Water A1 (2) Gh-105 Methylobacterium gossipiicola Phyllosphere A1 (3) GV094 Methylobacterium sp. Rhizhosphere A1 https://www.ncbi.nlm.nih.gov/bioproject /443353 GV104 Methylobacterium sp. Rhizhosphere A1 https://www.ncbi.nlm.nih.gov/bioproject /443354 Leaf100 Methylobacterium sp. Phyllosphere A1 (4) Leaf102 Methylobacterium sp. Phyllosphere A1 (4) Leaf104 Methylobacterium sp. -
Potentials, Utilization, and Bioengineering of Plant Growth-Promoting Methylobacterium for Sustainable Agriculture
sustainability Review Potentials, Utilization, and Bioengineering of Plant Growth-Promoting Methylobacterium for Sustainable Agriculture Cong Zhang 1,†, Meng-Ying Wang 1,†, Naeem Khan 2 , Ling-Ling Tan 1,* and Song Yang 1,3,* 1 School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266000, China; [email protected] (C.Z.); [email protected] (M.-Y.W.) 2 Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; naeemkhan@ufl.edu 3 Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300000, China * Correspondence: [email protected] (L.-L.T.); [email protected] (S.Y.) † These authors equally contributed to this work. Abstract: Plant growth-promoting bacteria (PGPB) have great potential to provide economical and sustainable solutions to current agricultural challenges. The Methylobacteria which are frequently present in the phyllosphere can promote plant growth and development. The Methylobacterium genus is composed mostly of pink-pigmented facultative methylotrophic bacteria, utilizing organic one-carbon compounds as the sole carbon and energy source for growth. Methylobacterium spp. have been isolated from diverse environments, especially from the surface of plants, because they can oxidize and assimilate methanol released by plant leaves as a byproduct of pectin formation during cell wall synthesis. Members of the Methylobacterium genus are good candidates as PGPB Citation: Zhang, C.; Wang, M.-Y.; due to their positive impact on plant health and growth; they provide nutrients to plants, modulate Khan, N.; Tan, L.-L.; Yang, S. phytohormone levels, and protect plants against pathogens. In this paper, interactions between Potentials, Utilization, and Methylobacterium spp. -
Sierra Nevada Sweep: Metagenomic Measurements of Bioaerosols Vertically Distributed Across the Troposphere
www.nature.com/scientificreports OPEN Sierra Nevada sweep: metagenomic measurements of bioaerosols vertically distributed across the troposphere Crystal Jaing1*, James Thissen1, Michael Morrison1, Michael B. Dillon1, Samantha M. Waters2,7, Garrett T. Graham3, Nicholas A. Be1, Patrick Nicoll4, Sonali Verma5, Tristan Caro6 & David J. Smith7 To explore how airborne microbial patterns change with height above the Earth’s surface, we few NASA’s C-20A aircraft on two consecutive days in June 2018 along identical fight paths over the US Sierra Nevada mountain range at four diferent altitudes ranging from 10,000 ft to 40,000 ft. Bioaerosols were analyzed by metagenomic DNA sequencing and traditional culturing methods to characterize the composition and diversity of atmospheric samples compared to experimental controls. The relative abundance of taxa changed signifcantly at each altitude sampled, and the diversity profle shifted across the two sampling days, revealing a regional atmospheric microbiome that is dynamically changing. The most proportionally abundant microbial genera were Mycobacterium and Achromobacter at 10,000 ft; Stenotrophomonas and Achromobacter at 20,000 ft; Delftia and Pseudoperonospora at 30,000 ft; and Alcaligenes and Penicillium at 40,000 ft. Culture- based detections also identifed viable Bacillus zhangzhouensis, Bacillus pumilus, and Bacillus spp. in the upper troposphere. To estimate bioaerosol dispersal, we developed a human exposure likelihood model (7-day forecast) using general aerosol characteristics and measured meteorological conditions. By coupling metagenomics to a predictive atmospheric model, we aim to set the stage for feld campaigns that monitor global bioaerosol emissions and impacts. Aerosols (mostly desert dust, black carbon and ocean spray) regularly disperse across the Pacifc Ocean with springtime atmospheric winds – in fact, models suggest that as much as 64 Teragrams of Asian aerosols can be transported to North America annually 1. -
Филогенетическая И Биохимическая Характеристика 1-Аминоциклопропан-1-Карбоксилатдезаминаз И D-Цистеиндесульфогидраз У Представителей Рода Methylobacterium
Министерство образования и науки Федеральное государственное бюджетное образовательное учреждение высшего образования Пущинский государственный естественно-научный институт Федеральное государственное бюджетное учреждение науки Институт биохимии и физиологии микроорганизмов им. Г. К. Скрябина РАН На правах рукописи ЕКИМОВА ГАЛИНА АЛЕКСАНДРОВНА Филогенетическая и биохимическая характеристика 1-аминоциклопропан-1-карбоксилатдезаминаз и D-цистеиндесульфогидраз у представителей рода Methylobacterium (03.02.03 – Микробиология) Диссертация на соискание ученой степени кандидата биологических наук Научный руководитель д.б.н., в.н.с. Н. В. Доронина Пущино 2018 Оглавление ВВЕДЕНИЕ 4 ОБЗОР ЛИТЕРАТУРЫ 7 1. Влияние бактерий-фитосимбионтов на уровень фитогормонов 7 1.1 Синтез ауксинов 8 1.2 Синтез цитокининов 11 1.3 Синтез гиббереллинов 13 1.4 Снижение уровня «стрессового этилена» 15 1.5 Образование сероводорода 22 2. Особенности метаболизма аэробных метилотрофных бактерий 25 2.1 Пути окисления C1-соединений 26 2.2 Пути ассимиляции С1-соединений 27 2.3 Центральный метаболизм 29 3. Аэробные метилотрофные бактерии как фитосимбионты 30 3.1 Разнообразие, распространение и роль метилотрофных фитосимбионтов 30 3.2 Синтез фитогормонов аэробными метилотрофными бактериями 33 3.3 Влияние метилотрофных бактерий на уровень этилена 35 3.4 D-цистеиндесульфогидраза у метилотрофных бактерий 36 ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ 37 4. Материалы и методы 37 4.1 Объекты исследований 37 4.2 Условия культивирования 40 4.3 Основные молекулярно-генетические методы 40 4.3.1 Выделение геномной ДНК 40 4.3.2 Гидролиз ДНК эндонуклеазами рестрикции 41 4.3.3 Очистка фрагментов ДНК 41 4.3.4 Лигирование фрагментов ДНК 41 4.3.5 Получение компетентных клеток и их трансформация 42 4.3.6 Выделение плазмид из рекомбинантных клонов. 42 4.4 Конструирование и подбор праймеров для ПЦР-скрининга генов acdS и dcyD у представителей рода Methylobacterium 43 4.5 Полимеразная цепная реакция (ПЦР) 46 2 4.6 Секвенирование ДНК 46 4.7 Филогенетический анализ 46 4.8 Получение мутантов M. -
Biogeografía De Aislamientos Del Género Bacteriano Methylobacterium , Asociados a Las C a C T Á C E a S Cylindropuntia Spp
Benemérita Universidad Autónoma D e P u e b l a Instituto de Ciencias Biogeografía de aislamientos del género bacteriano Methylobacterium , asociados a las c a c t á c e a s Cylindropuntia spp . T e s i s que para obtener el título de Maestría en Ciencias (Microbiología) P r e s e n t a Q.F.B. Mary Jose Salas Limón Director de tesis: D.C. Luis Ernesto Fuentes Ramírez Coasesora de tesis: D.C. María del Rocío Bustillos Cristales D i c i e m b r e 2020 1 Agradecimientos Al Consejo Nacional de Ciencia y Tecnología (CONACYT) por el otorgamiento de la beca nacional de manutención a nivel Maestría. Se agradece a la Vicerrectoría de Investigación y Estudios de Posgrado por el apoyo otorgado para la conclusión de esta tesis dentro del Programa IV. Investigación y Posgrado. Apoyar a los programas de posgrado para lograr su incorporación al Padrón Nacional de Calidad. Indicador establecido en el Plan de Desarrollo Institucional 2017-2021. A la Benemérita Universidad Autónoma de Puebla y el Instituto de Ciencias por ser parte de mi formación académica y apoyar mi proyecto. Al D.C. Luis Ernesto Fuentes Ramírez y la D.C. María del Rocío Bustillos Cristales por todo su apoyo, paciencia, enseñanza, por permitirme ser parte de su equipo de trabajo. A mi comité tutoral, D.C. Ricardo Carreño López, D.C. Miguel Castañeda Lucio, D.C. José Antonio Munive Hernández, por ser parte importante de mi formación académica. Gracias por todos sus comentarios y apoyo, un verdadero honor el aprender de ustedes. -
Methylobacterium Ajmalii Sp. Nov., Isolated from the International Space Station
fmicb-12-639396 March 12, 2021 Time: 20:27 # 1 ORIGINAL RESEARCH published: 15 March 2021 doi: 10.3389/fmicb.2021.639396 Methylobacterium ajmalii sp. nov., Isolated From the International Space Station Swati Bijlani1, Nitin K. Singh2, V. V. Ramprasad Eedara3, Appa Rao Podile3, Christopher E. Mason4, Clay C. C. Wang1* and Kasthuri Venkateswaran2* 1 Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States, 2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States, 3 Department of Plant Science, School of Life Sciences, University of Hyderabad, Hyderabad, India, 4 WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States Four strains belonging to the family of Methylobacteriaceae were isolated from different locations on the International Space Station (ISS) across two consecutive flights. Of these, three were identified as Gram-negative, rod-shaped, catalase-positive, oxidase- positive, motile bacteria, designated as IF7SW-B2T, IIF1SW-B5, and IIF4SW-B5, whereas the fourth was identified as Methylorubrum rhodesianum. The sequence similarity of these three ISS strains, designated as IF7SW-B2T, IIF1SW-B5, and IIF4SW- Edited by: Brian P. Hedlund, B5, was <99.4% for 16S rRNA genes and <97.3% for gyrB gene, with the closest University of Nevada, Las Vegas, being Methylobacterium indicum SE2.11T. Furthermore, the multi-locus sequence United States analysis placed these three ISS strains in the same clade of M. indicum. The average Reviewed by: Jian-Yu Jiao, nucleotide identity (ANI) values of these three ISS strains were <93% and digital DNA- Sun Yat-sen University, China DNA hybridization (dDDH) values were <46.4% with any described Methylobacterium En-Min Zhou, species. -
Bringel Etal2019, Methylotroph
Methylotrophs and methylotroph populations for chloromethane degradation Françoise Bringel, Ludovic Besaury, Pierre Amato, Eileen Kröber, Steffen Kolb, Frank Keppler, Stéphane Vuilleumier, Thierry Nadalig To cite this version: Françoise Bringel, Ludovic Besaury, Pierre Amato, Eileen Kröber, Steffen Kolb, et al.. Methylotrophs and methylotroph populations for chloromethane degradation. Ludmila Chistoserdova. Methy- lotrophs and methylotroph communities, Caister Academic Press, pp.149-172, 2019, 978-1-912530- 19-9. 10.21775/cimb.033.149. hal-02350630 HAL Id: hal-02350630 https://hal.archives-ouvertes.fr/hal-02350630 Submitted on 6 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Methylotrophs and Methylotroph Populations for Chloromethane Degradation 8 Françoise Bringel1*, Ludovic Besaury2, Pierre Amato3, Eileen Kröber4, Steffen Kolb4, Frank Keppler5,6, Stéphane Vuilleumier1 and Thierry Nadalig1 1Université de Strasbourg UMR 7156 UNISTRA CNRS, Molecular Genetics, Genomics, Microbiology (GMGM), Strasbourg, France. 2Université de Reims Champagne-Ardenne, Chaire AFERE, INRA, FARE UMR A614, Reims, France. 3 Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, Clermont-Ferrand, France. 4Microbial Biogeochemistry, Research Area Landscape Functioning – Leibniz Centre for Agricultural Landscape Research – ZALF, Müncheberg, Germany. 5Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany. 6Heidelberg Center for the Environment HCE, Heidelberg University, Heidelberg, Germany.