Biogeografía De Aislamientos Del Género Bacteriano Methylobacterium , Asociados a Las C a C T Á C E a S Cylindropuntia Spp

Total Page:16

File Type:pdf, Size:1020Kb

Biogeografía De Aislamientos Del Género Bacteriano Methylobacterium , Asociados a Las C a C T Á C E a S Cylindropuntia Spp Benemérita Universidad Autónoma D e P u e b l a Instituto de Ciencias Biogeografía de aislamientos del género bacteriano Methylobacterium , asociados a las c a c t á c e a s Cylindropuntia spp . T e s i s que para obtener el título de Maestría en Ciencias (Microbiología) P r e s e n t a Q.F.B. Mary Jose Salas Limón Director de tesis: D.C. Luis Ernesto Fuentes Ramírez Coasesora de tesis: D.C. María del Rocío Bustillos Cristales D i c i e m b r e 2020 1 Agradecimientos Al Consejo Nacional de Ciencia y Tecnología (CONACYT) por el otorgamiento de la beca nacional de manutención a nivel Maestría. Se agradece a la Vicerrectoría de Investigación y Estudios de Posgrado por el apoyo otorgado para la conclusión de esta tesis dentro del Programa IV. Investigación y Posgrado. Apoyar a los programas de posgrado para lograr su incorporación al Padrón Nacional de Calidad. Indicador establecido en el Plan de Desarrollo Institucional 2017-2021. A la Benemérita Universidad Autónoma de Puebla y el Instituto de Ciencias por ser parte de mi formación académica y apoyar mi proyecto. Al D.C. Luis Ernesto Fuentes Ramírez y la D.C. María del Rocío Bustillos Cristales por todo su apoyo, paciencia, enseñanza, por permitirme ser parte de su equipo de trabajo. A mi comité tutoral, D.C. Ricardo Carreño López, D.C. Miguel Castañeda Lucio, D.C. José Antonio Munive Hernández, por ser parte importante de mi formación académica. Gracias por todos sus comentarios y apoyo, un verdadero honor el aprender de ustedes. A la D.C. Verónica Quintero Hernández y la D.C. Vianey Marín Cevada, por sus revisiones a este trabajo. A mis compañeros de generación, Alma, Dulce, Enrique, Gaby, Giselle, María, Mónica, Uriel y Vero, por todos los buenos momentos juntos. A mis compañeros de laboratorio, Roberto, Rigel, Sandy, Bere, por su apoyo y enseñanzas. 2 Dedicatoria Para mi familia: Sergio, Josefina y Marylu, gracias a ustedes y para ustedes. Y para quien me hace sentir siempre como en casa, Oscar. 3 Índice Resumen ................................................................................................................................................. 6 Introducción ............................................................................................................................................. 8 1. Cactaceae ................................................................................................................................... 8 2. Reserva de la Biosfera Tehuacán-Cuicatlán .............................................................................. 8 3. Cylindropuntia ............................................................................................................................. 9 4. Comunidades microbianas asociadas a cactáceas .................................................................. 10 5. Metilotrofia ................................................................................................................................. 11 5.1. Metabolismo metilotrófico bacteriano................................................................................ 12 5.2. Oxidación del metanol ....................................................................................................... 12 6. Methylobacterium ...................................................................................................................... 14 7. Biogeografía Bacteriana De Plantas ......................................................................................... 15 8. Fingerprinting genómico ............................................................................................................ 15 8.1. BOX-PCR .......................................................................................................................... 16 Antecedentes ........................................................................................................................................ 17 Justificación ........................................................................................................................................... 18 Hipótesis................................................................................................................................................ 18 Objetivo general .................................................................................................................................... 18 Objetivos específicos ........................................................................................................................ 18 Materiales y métodos ............................................................................................................................ 19 1. Muestreo ................................................................................................................................... 19 2. Aislamiento ................................................................................................................................ 21 3. PCR en colonia ......................................................................................................................... 21 4. Extracción de ADN .................................................................................................................... 22 5. Amplificación de la región de ADN que codifica la subunidad 16S rRNA ................................ 22 6. Análisis de fragmentos de restricción de la amplificación del gen 16S rRNA (ARDRA) .......... 22 7. Secuenciación de ADN ............................................................................................................. 23 8. Análisis de secuencia ................................................................................................................ 23 9. Variabilidad genética ................................................................................................................. 23 Resultados y discusión de resultados ................................................................................................... 24 1. Aislamientos metilotróficos de la filosfera y endosfera de Cylindropuntia sp. .......................... 24 2. Caracterización genética ........................................................................................................... 26 3. Análisis de huellas genómicas BOX-PCR ................................................................................ 40 4. Methylobacterium sp. asociado a Cylindropuntia sp. ............................................................... 42 Conclusiones ......................................................................................................................................... 46 Perspectivas .......................................................................................................................................... 46 Referencias ........................................................................................................................................... 47 Anexos .................................................................................................................................................. 54 4 Índice de figuras Figura 1. Ubicación de la Reserva de la Biosfera Tehuacán-Cuicatlán ................................................. 9 Figura 2. Esquema general del metabolismo metilotrófico bacteriano. ................................................ 13 Figura 3. Localización de sitios de muestreo. ....................................................................................... 19 Figura 4. Cactáceas muestreadas. ....................................................................................................... 20 Figura 5. Morfología colonial en medio sólido MMS de cepas aisladas de Cylindropuntia sp. ............ 24 Figura 6. Aislamientos epifitos y endófitos por morfotipo de cactácea. ................................................ 25 Figura 7. Preferencia de los aislamientos por cofactor empleado ........................................................ 25 Figura 8. Conjunto de resultados obtenidos por PCR en colonia del gen 16S rRNA .......................... 29 Figura 9. Fragmentos de restricción obtenidos a partir del uso de la enzima de restricción CfoI en amplificados 16s rRNA .......................................................................................................................... 32 Figura 10. Análisis de fragmentos de restricción obtenidos a partir del uso de la enzima de restricción HinfI en amplificados de 16S rRNA. ..................................................................................................... 34 Figura 11. Árbol filogenético basado en las secuencias del gen 16S rRNA de 28 aislados. .............. 39 Figura 12. Análisis BOX-PCR de 30 aislados de Cylindropuntia sp. .................................................... 41 Figura 13. Aislamientos epifitos y endófitos de Methylobacterium sp. confirmados y presuntivos aislados de Cylindropuntia sp., organizados por morfotipo. ................................................................. 43 Índice de tablas Tabla 1. Caracterización genética de 40 aislamientos de filosfera y endosfera de Cylindropuntia sp. 38 Tabla 2. Aislamientos caracterizados por secuenciación del gen 16S rRNA, agrupados por morfotipo y compartimento aislado. ...................................................................................................................... 45 5 Resumen El género bacteriano Methylobacterium se encuentra distribuido en una amplia variedad de ambientes. Un ambiente
Recommended publications
  • Pfc5813.Pdf (9.887Mb)
    UNIVERSIDAD POLITÉCNICA DE CARTAGENA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AGRONÓMICA DEPARTAMENTO DE PRODUCCIÓN VEGETAL INGENIERO AGRÓNOMO PROYECTO FIN DE CARRERA: “AISLAMIENTO E IDENTIFICACIÓN DE LOS RIZOBIOS ASOCIADOS A LOS NÓDULOS DE ASTRAGALUS NITIDIFLORUS”. Realizado por: Noelia Real Giménez Dirigido por: María José Vicente Colomer Francisco José Segura Carreras Cartagena, Julio de 2014. ÍNDICE GENERAL 1. Introducción…………………………………………………….…………………………………………………1 1.1. Astragalus nitidiflorus………………………………..…………………………………………………2 1.1.1. Encuadre taxonómico……………………………….…..………………………………………………2 1.1.2. El origen de Astragalus nitidiflorus………………………………………………………………..4 1.1.3. Descripción de la especie………..…………………………………………………………………….5 1.1.4. Biología…………………………………………………………………………………………………………7 1.1.4.1. Ciclo vegetativo………………….……………………………………………………………………7 1.1.4.2. Fenología de la floración……………………………………………………………………….9 1.1.4.3. Sistema de reproducción……………………………………………………………………….10 1.1.4.4. Dispersión de los frutos…………………………………….…………………………………..11 1.1.4.5. Nodulación con Rhizobium…………………………………………………………………….12 1.1.4.6. Diversidad genética……………………………………………………………………………....13 1.1.5. Ecología………………………………………………………………………………………………..…….14 1.1.6. Corología y tamaño poblacional……………………………………………………..…………..15 1.1.7. Protección…………………………………………………………………………………………………..18 1.1.8. Amenazas……………………………………………………………………………………………………19 1.1.8.1. Factores bióticos…………………………………………………………………………………..19 1.1.8.2. Factores abióticos………………………………………………………………………………….20 1.1.8.3. Factores antrópicos………………..…………………………………………………………….21
    [Show full text]
  • Isolation and Identification of Microvirga Thermotolerans HR1, A
    microorganisms Article Isolation and Identification of Microvirga thermotolerans HR1, a Novel Thermo-Tolerant Bacterium, and Comparative Genomics among Microvirga Species Jiang Li 1,2, Ruyu Gao 2, Yun Chen 2, Dong Xue 2, Jiahui Han 2, Jin Wang 1,2, Qilin Dai 1, Min Lin 2, Xiubin Ke 2,* and Wei Zhang 2,* 1 School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; [email protected] (J.L.); [email protected] (J.W.); [email protected] (Q.D.) 2 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; [email protected] (R.G.); [email protected] (Y.C.); [email protected] (D.X.); [email protected] (J.H.); [email protected] (M.L.) * Correspondence: [email protected] (X.K.); [email protected] (W.Z.) Received: 27 November 2019; Accepted: 9 January 2020; Published: 10 January 2020 Abstract: Members of the Microvirga genus are metabolically versatile and widely distributed in Nature. However, knowledge of the bacteria that belong to this genus is currently limited to biochemical characteristics. Herein, a novel thermo-tolerant bacterium named Microvirga thermotolerans HR1 was isolated and identified. Based on the 16S rRNA gene sequence analysis, the strain HR1 belonged to the genus Microvirga and was highly similar to Microvirga sp. 17 mud 1-3. The strain could grow at temperatures ranging from 15 to 50 ◦C with a growth optimum at 40 ◦C. It exhibited tolerance to pH range of 6.0–8.0 and salt concentrations up to 0.5% (w/v). It contained ubiquinone 10 as the predominant quinone and added group 8 as the main fatty acids.
    [Show full text]
  • Diversion and Phylogenetic Relatedness of Filterable Bacteria from Norwegian Tap and Bottled Waters
    Diversion and phylogenetic relatedness of filterable bacteria from Norwegian tap and bottled waters Short title: Filterable bacteria in Norwegian tap and bottled waters Colin Charnock*, Ralf Xue Hagen, Theresa Ngoc-Thu Nguyen, Linh Thuy Vo Department of Life Sciences and Health, Oslo Metropolitan University, NO-0130, Oslo, Norway *Corresponding author. E-mail address: [email protected]. ABSTRACT Numerous articles have documented the existence of filterable bacteria. Where filtration is the chosen method of sterilization for medicinal or media components, these bacteria will by definition render products non-sterile. They may further represent a health hazard to the end user. A wide-range of bacterial genera were found in bottled and tap water filtrates from 0.2 µm filters, including genera housing opportunistic pathogens (e.g. Methylobacterium) and endospore formers (Paenibacillus). Two municipal tap water isolates were only distantly related to named species. One of these grew on agar, and could potentially provide hitherto unharvested useful biological products. The other grew only in water, and failed to produce colonies on media targeting either heterotrophs or autotrophs. The present study is one of very few looking at filterable bacteria in bottled waters intended for human consumption and the first identifying the filterable portion. It extends the range of known habitats of filterable bacteria and provides data on two new or novel species. Key words │bottled water, filterable bacteria, new species ©IWA Publishing 2019. The definitive peer-reviewed and edited version of this article is published in J Water Health (2019) 17 (2): 295-307 https://doi.org/10.2166/wh.2019.284 and is available at www.iwapublishing.com.
    [Show full text]
  • Research Article Antimicrobial and Antioxidant Properties of a Bacterial
    Hindawi International Journal of Microbiology Volume 2020, Article ID 9483670, 11 pages https://doi.org/10.1155/2020/9483670 Research Article Antimicrobial and Antioxidant Properties of a Bacterial Endophyte, Methylobacterium radiotolerans MAMP 4754, Isolated from Combretum erythrophyllum Seeds Mampolelo M. Photolo ,1 Vuyo Mavumengwana ,2 Lungile Sitole ,1 and Matsobane G. Tlou 3 1Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Campus, Johannesburg, South Africa 2DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa 3Department of Biochemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, South Africa Correspondence should be addressed to Matsobane G. Tlou; [email protected] Received 17 September 2019; Accepted 21 December 2019; Published 25 February 2020 Academic Editor: Karl Drlica Copyright © 2020 Mampolelo M. Photolo et al. -is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. -is study reports on the isolation and identification of Methylobacterium radiotolerans MAMP 4754 from the seeds of the medicinal plant, Combretum
    [Show full text]
  • C1 Compounds Shape the Microbial Community of an Abandoned Century-Old Oil
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.278820; this version posted September 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. C1 compounds shape the microbial community of an abandoned century-old oil exploration well. 1 Diego Rojas-Gätjens1, Paola Fuentes-Schweizer2,3, Keilor Rojas-Jimenez,4, Danilo Pérez-Pantoja5, Roberto 2 Avendaño1, Randall Alpízar6, Carolina Coronado-Ruíz1 & Max Chavarría1,3,7* 3 4 1Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200 San José 5 (Costa Rica). 2Centro de Investigación en electroquímica y Energía química (CELEQ), Universidad de 6 Costa Rica, 11501-2060 San José (Costa Rica). 3Escuela de Química, Universidad de Costa Rica, 11501- 7 2060 San José (Costa Rica). 4Escuela de Biología, Universidad de Costa Rica, 11501-2060 San José 8 (Costa Rica). 5Programa Institucional de Fomento a la Investigación, Desarrollo, e Innovación (PIDi), 9 Universidad Tecnológica Metropolitana, Santiago (Chile). 6Hidro Ambiente Consultores, 202, San José 10 (Costa Rica), 7Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11 11501-2060 San José (Costa Rica). 12 Keywords: Methylotrophic bacteria, Methylobacillus, Methylococcus, Methylorubrum, Hydrocarbons, 13 Oil well, Methane, Cahuita National Park 14 *Correspondence to: Max Chavarría 15 Escuela de Química & Centro de Investigaciones en Productos Naturales (CIPRONA) 16 Universidad de Costa Rica 17 Sede Central, San Pedro de Montes de Oca 18 San José, 11501-2060, Costa Rica 19 Phone (+506) 2511 8520. Fax (+506) 2253 5020 20 E-mail: [email protected] 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.278820; this version posted September 2, 2020.
    [Show full text]
  • Characterization of Bacterial Communities Associated
    www.nature.com/scientificreports OPEN Characterization of bacterial communities associated with blood‑fed and starved tropical bed bugs, Cimex hemipterus (F.) (Hemiptera): a high throughput metabarcoding analysis Li Lim & Abdul Hafz Ab Majid* With the development of new metagenomic techniques, the microbial community structure of common bed bugs, Cimex lectularius, is well‑studied, while information regarding the constituents of the bacterial communities associated with tropical bed bugs, Cimex hemipterus, is lacking. In this study, the bacteria communities in the blood‑fed and starved tropical bed bugs were analysed and characterized by amplifying the v3‑v4 hypervariable region of the 16S rRNA gene region, followed by MiSeq Illumina sequencing. Across all samples, Proteobacteria made up more than 99% of the microbial community. An alpha‑proteobacterium Wolbachia and gamma‑proteobacterium, including Dickeya chrysanthemi and Pseudomonas, were the dominant OTUs at the genus level. Although the dominant OTUs of bacterial communities of blood‑fed and starved bed bugs were the same, bacterial genera present in lower numbers were varied. The bacteria load in starved bed bugs was also higher than blood‑fed bed bugs. Cimex hemipterus Fabricus (Hemiptera), also known as tropical bed bugs, is an obligate blood-feeding insect throughout their entire developmental cycle, has made a recent resurgence probably due to increased worldwide travel, climate change, and resistance to insecticides1–3. Distribution of tropical bed bugs is inclined to tropical regions, and infestation usually occurs in human dwellings such as dormitories and hotels 1,2. Bed bugs are a nuisance pest to humans as people that are bitten by this insect may experience allergic reactions, iron defciency, and secondary bacterial infection from bite sores4,5.
    [Show full text]
  • Endophytic Bacteria Associated to Sharpshooters (Hemiptera: Cicadellidae), Insect Vectors of Xylella Fastidiosa Subsp
    atholog P y & nt a M l i P c r Journal of f o o Gai et al. J Plant Pathol Microbiol 2011, 2:3 b l i a o l n DOI: 10.4172/2157-7471.1000109 o r g u y o J Plant Pathology & Microbiology ISSN: 2157-7471 Research Article Open Access Endophytic Bacteria Associated to Sharpshooters (Hemiptera: Cicadellidae), Insect Vectors of Xylella fastidiosa subsp. pauca Cláudia Santos Gai1, Francisco Dini-Andreote1, Fernando Dini Andreote1, João Roberto Spotti Lopes2, Welington Luiz Araújo3, Thomas Albert Miller4, João Lúcio Azevedo1 and Paulo Teixeira Lacava5* 1Department of Genetics, Escola Superior de Agricultura “Luiz de Queiroz”, University of São Paulo, Piracicaba, SP, Brazil 2Department of Entomology, Plant Pathology and Zoology, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, SP, Brazil 3Núcleo Integrado de Biotecnologia, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil 4Department of Entomology, University of California Riverside, Riverside, CA, USA 5Institute of Natural Sciences, Federal University of Alfenas, Alfenas, MG, Brazil Abstract Xylella fastidiosa subsp. pauca causes citrus variegated chlorosis (CVC) disease in Brazil, resulting in significant production losses in the citrus industry.X. fastidiosa subsp. pauca is mainly transmitted by three species of sharpshooters (Hemiptera: Cicadellidae) in Brazil; Dilobopterus costalimai (Young), Acrogonia citrina Marucci & Cavichioli and Oncometopia facialis (Signoret). We identified bacterial communities associated with the heads of surface-sterilized insect vectors of X. fastidiosa subsp. pauca that were collected from CVC affected citrus groves in Brazil. Bacteria were isolated and analyzed by amplified ribosomal DNA restriction analysis (ARDRA) and sequencing, revealing the presence, among the most abundant genera, of the well-known citrus endophytes Methylobacterium spp.
    [Show full text]
  • Characterization of Methylobacterium Strains Isolated from the Phyllosphere and Description of Methylobacterium Longum Sp
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Antonie van Leeuwenhoek (2012) 101:169–183 DOI 10.1007/s10482-011-9650-6 ORIGINAL PAPER Characterization of Methylobacterium strains isolated from the phyllosphere and description of Methylobacterium longum sp. nov Claudia Knief • Vanina Dengler • Paul L. E. Bodelier • Julia A. Vorholt Received: 18 June 2011 / Accepted: 24 September 2011 / Published online: 11 October 2011 Ó Springer Science+Business Media B.V. 2011 Abstract Methylobacterium strains are abundantly acids and sugars, while others could only metabolize a found in the phyllosphere of plants. Morphological, restricted number of organic acids. The strains that physiological and chemotaxonomical properties of 12 were most distinct from existing type strains based on previously isolated strains were analyzed in order to 16S rRNA gene sequence analysis were selected for obtain a more detailed overview of the characteristics DNA–DNA hybridization experiments to analyze of phyllosphere colonizing Methylobacterium strains. whether they are sufficiently different at the genomic All strains showed the typical properties of the genus level from existing type strains to justify their classi- Methylobacterium, including pink pigmentation, fac- fication as new species. This resulted in the delineation ultative methylotrophy, a fatty acid profile dominated of strain 440 and its description as Methylobacterium by C18:1 x7c, and a high G?C content of 65 mol % or longum sp. nov. strain 440 (=DSM 23933T = CECT more. However, some strains showed only weak 7806T). A main characteristic of this species is the growth on methanol and pigmentation varied from formation of relatively long rods compared to other pale pink to red.
    [Show full text]
  • Research Collection
    Research Collection Doctoral Thesis Development and application of molecular tools to investigate microbial alkaline phosphatase genes in soil Author(s): Ragot, Sabine A. Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010630685 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO.23284 DEVELOPMENT AND APPLICATION OF MOLECULAR TOOLS TO INVESTIGATE MICROBIAL ALKALINE PHOSPHATASE GENES IN SOIL A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by SABINE ANNE RAGOT Master of Science UZH in Biology born on 25.02.1987 citizen of Fribourg, FR accepted on the recommendation of Prof. Dr. Emmanuel Frossard, examiner PD Dr. Else Katrin Bünemann-König, co-examiner Prof. Dr. Michael Kertesz, co-examiner Dr. Claude Plassard, co-examiner 2016 Sabine Anne Ragot: Development and application of molecular tools to investigate microbial alkaline phosphatase genes in soil, c 2016 ⃝ ABSTRACT Phosphatase enzymes play an important role in soil phosphorus cycling by hydrolyzing organic phosphorus to orthophosphate, which can be taken up by plants and microorgan- isms. PhoD and PhoX alkaline phosphatases and AcpA acid phosphatase are produced by microorganisms in response to phosphorus limitation in the environment. In this thesis, the current knowledge of the prevalence of phoD and phoX in the environment and of their taxonomic distribution was assessed, and new molecular tools were developed to target the phoD and phoX alkaline phosphatase genes in soil microorganisms.
    [Show full text]
  • 1 Supplementary Figures 1 2 Fine-Scale Adaptations To
    1 SUPPLEMENTARY FIGURES 2 3 FINE-SCALE ADAPTATIONS TO ENVIRONMENTAL VARIATION AND GROWTH 4 STRATEGIES DRIVE PHYLLOSPHERE METHYLOBACTERIUM DIVERSITY. 5 6 Jean-Baptiste Leducq1,2,3, Émilie Seyer-Lamontagne1, Domitille Condrain-Morel2, Geneviève 7 Bourret2, David Sneddon3, James A. Foster3, Christopher J. Marx3, Jack M. Sullivan3, B. Jesse 8 Shapiro1,4 & Steven W. Kembel2 9 10 1 - Université de Montréal 11 2 - Université du Québec à Montréal 12 3 – University of Idaho 13 4 – McGill University 14 1 15 Figure S1 - Validation of Methylobacterium group A subdivisions in nine clades. Distribution 16 of pairwise nucleotide similarity (PS) within and among Methylobacterium clades and 17 Microvirga (outgroup) estimated from the complete rpoB nucleotide sequence (4064 bp). PS was 18 calculated in MEGA7 (1, 2) from aligned nucleotide sequences as PS = 1-pdistance. 19 2 A1 A2 A3 A4 A5 A6 Within clades A9 B C Within Methylobacterium among A1−A9 between A and B between A and C between B and C within Microvirga between Methylobacterium and Microvirga 0.75 0.80 0.85 0.90 0.95 1.00 PS 20 Figure S2 - ASV rarefaction on diversity assessed by 16s barcoding in 46 phyllosphere 21 samples, 1 positive control (METH community) and 1 negative controls. a) Diversity in 22 METH community (positive control) and rare ASVs threshold definition. The METH community 23 consisted in mixed genomic DNAs from 18 Methylobacterium isolates representative of diversity 24 isolated in SBL and MSH in 2017 and 2018 (Table S6; Table S10), one Escherichia coli strain 25 and one Sphingomonas sp. isolate from MSH in 2017 (isolate DNA022; Table S6), also probably 26 contaminated with Thermotoga sp.
    [Show full text]
  • Microvirga Massiliensis
    Microvirga massiliensis sp nov., the human commensal with the largest genome Aurelia Caputo, Jean-Christophe Lagier, Said Azza, Catherine Robert, Donia Mouelhi, Pierre-Edouard Fournier, Didier Raoult To cite this version: Aurelia Caputo, Jean-Christophe Lagier, Said Azza, Catherine Robert, Donia Mouelhi, et al.. Mi- crovirga massiliensis sp nov., the human commensal with the largest genome. MicrobiologyOpen, Wiley, 2016, 5 (2), pp.307-322. 10.1002/mbo3.329. hal-01459554 HAL Id: hal-01459554 https://hal.archives-ouvertes.fr/hal-01459554 Submitted on 10 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License ORIGINAL RESEARCH Microvirga massiliensis sp. nov., the human commensal with the largest genome Aurélia Caputo1, Jean-Christophe Lagier1, Saïd Azza1, Catherine Robert1, Donia Mouelhi1, Pierre-Edouard Fournier1 & Didier Raoult1,2 1Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, CNRS, UMR 7278 – IRD 198, Faculté de médecine, Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France 2Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia Keywords Abstract Culturomics, large genome, Microvirga T massiliensis, taxonogenomics Microvirga massiliensis sp.
    [Show full text]
  • Antimicrobial and Antioxidant Properties of a Bacterial Endophyte, Methylobacterium Radiotolerans MAMP 4754, Isolated from Combretum Erythrophyllum Seeds
    Hindawi International Journal of Microbiology Volume 2020, Article ID 9483670, 11 pages https://doi.org/10.1155/2020/9483670 Research Article Antimicrobial and Antioxidant Properties of a Bacterial Endophyte, Methylobacterium radiotolerans MAMP 4754, Isolated from Combretum erythrophyllum Seeds Mampolelo M. Photolo ,1 Vuyo Mavumengwana ,2 Lungile Sitole ,1 and Matsobane G. Tlou 3 1Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Campus, Johannesburg, South Africa 2DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa 3Department of Biochemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, South Africa Correspondence should be addressed to Matsobane G. Tlou; [email protected] Received 17 September 2019; Accepted 21 December 2019; Published 25 February 2020 Academic Editor: Karl Drlica Copyright © 2020 Mampolelo M. Photolo et al. -is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. -is study reports on the isolation and identification of Methylobacterium radiotolerans MAMP 4754 from the seeds of the medicinal plant, Combretum
    [Show full text]