United States Patent (10) Patent N0.: US 7,282,706 B2 Russell Et A]
Total Page:16
File Type:pdf, Size:1020Kb
US007282706B2 (12) United States Patent (10) Patent N0.: US 7,282,706 B2 Russell et a]. (45) Date of Patent: Oct. 16, 2007 (54) ADVANCED OPTICS FOR RAPIDLY 5,090,795 A * 2/1992 O’Meara et a1. .......... .. 359/240 PATTERNED LASER PROFILES IN 5,251,222 A * 10/1993 Hester et a1. ............... .. 372/26 ANALYTICAL SPECTROMETRY 5,254,626 A * 10/1993 Penco et a1. .............. .. 525/166 6,020,988 A * 2/2000 Deliwala et a1. .. 359/276 (75) Inventors: David H. Russell, College Station, TX 6,734,421 B2* 5/2004 Holle et a1. ............... .. 250/287 (US); John A. McLean, Bryan, TX 6,804,410 B2 * 10/2004 Lennon et a1. ............ .. 382/274 (US) 6,818,889 B1* 11/2004 Sheehan et a1. .......... .. 250/288 6,828,574 B1* 12/2004 Allen .................. .. 250/492.24 (73) Assignee: The Texas A&M University System, 6,894,292 B2* 5/2005 Gil et a1. ............... .. 250/4922 College SIaIIOH, TX (Us) 6,995,840 B2 * 2/2006 Hagler ..................... .. 356/310 7,170,052 B2 1/2007 Furutani et a1. (*) Notice? 31111160110 any disclaimer, thetelm Ofthis 2001/0019401 A1* 9/2001 Irie et a1. .................... .. 355/53 Patent is extended Or adjusted under 35 2002/0154272 A1* 10/2002 Shevlin 351/237 U-S-C- 154(1)) by 290 days- 2002/0155483 A1* 10/2002 Holle et a1. .................. .. 435/6 ' 2003/0063366 A1* 4/2003 Hunt ........................ .. 359/279 (21) APPl- N°~~ 11/056,852 2003/0086062 A1* 5/2003 Shevlin .................... .. 351/210 (22) Filed: Feb. 11, 2005 (65) Prior Publication Data (Commued) US 2005/0242277 A1 Nov. 3, 2005 OTHER PUBLICATIONS _ _ Arcturus “PiXCell lle Laser Capture Microdissection (LCM) Sys Related U's' Apphcatlon Data tem”, Dec. 13,2003, <http://WWW.arcturcom.researchiportal/prod (60) Provisional application No. 60/544,098, ?led on Feb. ucts/plxenimam'hnm' 12’ 2004' (Continued) ( 51 Int. Cl. Primary ExamineriRobert Kim G21K 5/10 (2006.01) Assistant ExamineriBemard SouW H01J 37/08 (2006.01) (74) Attorney, Agent, or F irmiFulbright & JaWorski LLP G21G 5/00 (2006.01) (52) US. Cl. ................. .. 250/288; 250/492.1; 250/425; (57) ABSTRACT 250/503.1; 250/505.1; 250/493.1; 250/492.22; 372/26; 372/2901; 372/29'014; 372/92; 372/99; The present invention is directed to a novel arrangement of 372/101; 372/103; 359/237; 359/240;3 59/291_ 359/290;3 5 9/292 optical. devices. for the rap1d. patterning. of laser pro?les used _ _ _ ’ for desorption and/or ionization sources in analytical mass (58) Field of ~Classi?cation Search .............. ..: 250/288 Spectrometry‘ Speci?cally’ the new Optical arrangement prO_ See apphcanon ?le for Complete Search hlstory' Vides for a user-de?ned laser pattern at the sample target that (56) References Cited can be quickly changed (on a microsecond timescale) to di?cerent dimensions (or shapes) for subsequent laser ?rings. US. PATENT DOCUMENTS 4,566,935 A * 1/1986 Hornbeck .................. .. 438/29 46 Claims, 4 Drawing Sheets 631111111161Optional Homogcniw mlc?r'gm', 7' , beam shaping lenses array(s) (eg 1024 x 768) .. W I, [n] 7 _ w ' Undesixed . ,n’ d PnmaryMALDIlaser beam ‘ 1 J . a?I ' ': pattcmchght l I ' ' variable a {m} Pattemedlight beamexpander ~- 4 Fiddobjective and collimation optics lens MALDI targctplale Ions to TOFMS — US 7,282,706 B2 Page 2 U.S. PATENT DOCUMENTS 2006/0071160 A1* 4/2006 Haase et al. .............. .. 250/288 2006/0186332 A1* 8/2006 Haase et al. .............. .. 250/288 2003/0149531 8/2003 Hubeit et a1. ................ .. 702/1 2004/0005633 1/2004 Vandekerckhove et al. OTHER PUBLICATIONS 2004/0021078 2/2004 Hagler ................ .. 250/339.13 Wei et 31., “Codes for Spectral-Amplitude-Coding Optical CDMA 2005/0053850 3/2005 Askebjer et al. ..... .. 430/5 Systems”, Journal of Lightwave Technology; Aug. 2002; 1284 2005/0181314 8/2005 Gil et a1. ........ .. 430/396 1291; vol. 20 (8). 2005/0236564 10/2005 Keller et al. 250/288 2005/0242277 11/2005 Russell et al. ............ .. 250/282 * cited by examiner U.S. Patent 0a. 16, 2007 Sheet 1 of4 US 7,282,706 B2 Position y (pm) 008 000m 000m008ooomco:82como A63nociomx .m2 0000000n0000030 0.0000030,00.0. DIOOOOOOOOOO00.000000. 08000000.IOOOOOOOOQOD 00.0.0.0. , 8303030ooognv?vaoogagilil. OQSOEOOOOOOIIOJJ'OJDJOQ Position y (pm) E3858%x .GEF U.S. Patent 0a. 16, 2007 Sheet 2 0f 4 US 7,282,706 B2 (A) cylindricalopuonai Homogcniw mw?r'gmr. ~ , beam shapmg lmses array(s) (eg' 1024 X 768) _, /I_/\_\ r’, [11] IE’; ‘ Undesired Primary MALDI n M '6 I pa?glzzed laser beam I ,5: , , 5/ l) — i l iI Ez ’,2 - E .EI: l E:2? [11 W M ‘ E E E’ _ variable E , Um I ,_ Pattemed light beamexpander ’ Field objective and collimation optic lens MAlDI ta yct late Ions to TOFMS — Q’ P (B) Intcnsuy. pm?le Intensity. pmflle. lmensity_ pro?le [1] [11] [iii] 7 Beam expander Homogenizer Irregular, beam and collimation optics army prof ile L G aussianprofile beam A vvvvvvvvvvvv v. ~Mm m r FIG. 2 U.S. Patent 0a. 16, 2007 Sheet 3 0f 4 US 7,282,706 B2 (A) MALDI Sample Stage l Target fibroblast cell Light patlem for Post-desoxption/xonimn'on desorption?oniza tion (13) Targeted normal stromal cells Light pattern for Post-desolpti OD/lOniZ??OIl desorption/50mm lion FIG. 3 U.S. Patent 0a. 16, 2007 Sheet 4 0f 4 US 7,282,706 B2 (A) Digital micromin'or Ion ?ight Path to TOFMS Charge-coupled an'ay (DMA) % device (CCD) .. \_ l / ., I Fleld. lens \_xi | \_ \. \\ : 3,.’‘ _, '1If | I,‘ Imagmg. lens 1 ‘ ,' . I / _/‘ / ! z :1| "!_I'I// w l I i Y i I i X . _ . _ . _ . _ . J MALDI target plate or Microarray (B) Tme sample dimensions DMA projection dimensions CCD imaging dimensions (90' viewing angle) (+30° oblique angle) (~30' oblique angle) ((3) ym Ion ?ight pathtoTOFMS you, \¢/’\ ‘l DMA Plane j L“ i L” i CCD Plane l 1 a 05 Field lens plane ; E Imaging lens plane . i . i i i ; hm km, 5 i ! i i ! i i E i i E i i ! i i f i i 5 i i ' i ! ! MALDI target plane ' ‘y “I ' |<—-—-—>I |<-———-—>l w Yam US 7,282,706 B2 1 2 ADVANCED OPTICS FOR RAPIDLY (LDI-TOFMS) by rastering the sample (via microposition PATTERNED LASER PROFILES IN ers) With respect to the laser spot (nitrogen laser, 337 nm) in ANALYTICAL SPECTROMETRY 95 um increments. In the late 1980s, the development of matrix assisted laser This application claims priority to US. Provisional Appli desorption/ionization (MALDI) provided a means to gener cation Ser. No. 60/544,098, ?led on Feb. 12, 2004. ate6 gas-phase ions of large intact biomolecules (ca. 102 to 10 amu) from solid samples. (M. Karas, D. Bachmann, U. STATEMENT REGARDING FEDERALLY Bahr, F. Hillenkamp, Matrix-Assisted Ultraviolet Laser Des SPONSORED RESEARCH OR DEVELOPMENT orption of Non-Volatile Compounds, Int. J Mass Spectrom. Ion. Proc. 78, 53-68 (1987)). MALDI consists of incorpo This Work has been funded in Whole or in part by US. rating analyte molecules into the crystal lattice of a UV or government funding. The government may have certain IR absorbing matrix, Whereby matrix and analyte molecules rights in the invention. are desorbed and ioniZed upon irradiation of the sample at the appropriate matrix-absorbing Wavelength. Caprioli and coworkers have described imaging mass spectrometry of TECHNICAL FIELD peptides and proteins in thin (ca. 10-20 pm) tissue sections based on MALDI-TOFMS techniques (Caprioli US. Pat. The present invention relates generally to mass spectrom No. 5,808,300; incorporated by reference herein). In this etry, and more speci?cally to optically patterning laser method, a homogenous layer of matrix is applied to the pro?les for laser desorption and/or ioniZation of species for 20 tissue section and then a full mass spectrum is recorded at mass spectroscopic analysis. each spatial location by moving the sample relative to the MALDI laser. (R. M. Caprioli, T. B. Farmer, and J. Gile, BACKGROUND OF THE INVENTION Molecular Imaging of Biological Samples: LocaliZation of Peptides and Proteins Using MALDI-TOFMS,” Anal. It Was recogniZed in the early 1960s that by generating 25 Chem. 69, 4751-4760 (1997)). By using conventional opti ions in a spatially resolved region of a surface, one could cal arrangements (i.e., an apertured primary laser beam and obtain atomic or molecular Weight maps, or images (of ion ?eld lens, the ?nal shape of the laser beam at the sample mass-to-charge (m/Z)), based on the spatial distribution of target is de?ned by the slit function of the aperture and analyte and mass spectrometry detection. (R. Castaing and exhibits a spatial resolution limited by the di?fraction prop G. SlodZian, Microanalysis by Secondary Ionic Emission, J. 30 erties of the optics used (in practice, typically 10-20 pm for Microsc. 1, 395-410 (1962)). For many years, imaging mass typical ultraviolet operation). This can be described by spectrometry Was largely limited to secondary ion mass Equation 1: spectrometry (SIMS) Whereby secondary analyte ions are produced by impinging the surface With a focused beam (<1 d-rzzxmv/r (1) pm) of high-energy particles (e.g., keV Cs+or Ga+) (see M. 35 Where d is the diffraction limited focus diameter, 7» is the L. Pacholski and N. Winograd, Imaging With Mass Spec Wavelength, and NA is the numerical aperture of the lens. trometry, Chem. Rev. 99, 2977-3005 (1999)), or by using (See for example, D. Malacara and Z. Malacara, “Di?fraction laser microprobe mass spectrometry (LMMS) in Which UV in Optical Systems,” Chapter 9 in Handbook of Lens photons are used to provide direct ablation and photoion Design, Marcel Dekker Inc., NeW York (1994)).