Sevin Ready to Use 32Oz
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bees in Urban Landscapes: an Investigation of Habitat Utilization By
Bees in urban landscapes: An investigation of habitat utilization By Victoria Agatha Wojcik A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, & Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Joe R. McBride, Chair Professor Gregory S. Biging Professor Louise A. Mozingo Fall 2009 Bees in urban landscapes: An investigation of habitat utilization © 2009 by Victoria Agatha Wojcik ABSTRACT Bees in urban landscapes: An investigation of habitat utilization by Victoria Agatha Wojcik Doctor of Philosophy in Environmental Science, Policy, & Management University of California, Berkeley Professor Joe R. McBride, Chair Bees are one of the key groups of anthophilies that make use of the floral resources present within urban landscapes. The ecological patterns of bees in cities are under further investigation in this dissertation work in an effort to build knowledge capacity that can be applied to management and conservation. Seasonal occurrence patterns are common among bees and their floral resources in wildland habitats. To investigate the nature of these phenological interactions in cities, bee visitation to a constructed floral resource base in Berkeley, California was monitored in the first year of garden development. The constructed habitat was used by nearly one-third of the locally known bee species. Bees visiting this urban resource displayed distinct patterns of seasonality paralleling those of wildland bees, with some species exhibiting extended seasons. Differential bee visitation patterns are common between individual floral resources. The effective monitoring of bee populations requires an understanding of this variability. To investigate the patterns and trends in urban resource usage, the foraging of the community of bees visiting Tecoma stans resources in three tropical dry forest cities in Costa Rica was studied. -
Minimum Dietary Diversity for Women a Guide to Measurement
FANTA III FOOD AND NUTRITION TECHNICAL A SSISTANCE Minimum Dietary Diversity for Women A Guide to Measurement Minimum Dietary Diversity for Women A Guide to Measurement Published by the Food and Agriculture Organization of the United Nations and USAID’s Food and Nutrition Technical Assistance III Project (FANTA), managed by FHI 360 Rome, 2016 Recommended citation: FAO and FHI 360. 2016. Minimum Dietary Diversity for Women: A Guide for Measurement. Rome: FAO. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO), or of FANTA/FHI 360 concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO, or FHI 360 in preference to others of a similar nature that are not mentioned. Additional funding for this publication was made possible by the generous support of the American people through the support of the Office of Health, Infectious Diseases, and Nutrition, Bureau for Global Health, U.S. Agency for International Development (USAID), under terms of Cooperative Agreement AID-OAA-A-12-00005 through the Food and Nutrition Technical Assistance III Project (FANTA), managed by FHI 360. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO, FHI 360, UC Davis, USAID or the U.S. -
Genetic Dissection of Azuki Bean Weevil (Callosobruchus Chinensis L.) Resistance in Moth Bean (Vigna Aconitifolia [Jaqc.] Maréchal)
G C A T T A C G G C A T genes Article Genetic Dissection of Azuki Bean Weevil (Callosobruchus chinensis L.) Resistance in Moth Bean (Vigna aconitifolia [Jaqc.] Maréchal) Prakit Somta 1,2,3,* , Achara Jomsangawong 4, Chutintorn Yundaeng 1, Xingxing Yuan 1, Jingbin Chen 1 , Norihiko Tomooka 5 and Xin Chen 1,* 1 Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; [email protected] (C.Y.); [email protected] (X.Y.); [email protected] (J.C.) 2 Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand 3 Center for Agricultural Biotechnology (AG-BIO/PEDRO-CHE), Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand 4 Program in Plant Breeding, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; [email protected] 5 Genetic Resources Center, Gene Bank, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan; [email protected] * Correspondence: [email protected] (P.S.); [email protected] (X.C.) Received: 3 September 2018; Accepted: 12 November 2018; Published: 15 November 2018 Abstract: The azuki bean weevil (Callosobruchus chinensis L.) is an insect pest responsible for serious postharvest seed loss in leguminous crops. In this study, we performed quantitative trait locus (QTL) mapping of seed resistance to C. chinensis in moth bean (Vigna aconitifolia [Jaqc.] Maréchal). An F2 population of 188 plants developed by crossing resistant accession ‘TN67’ (wild type from India; male parent) and susceptible accession ‘IPCMO056’ (cultivated type from India; female parent) was used for mapping. -
Composition of Foods Raw, Processed, Prepared USDA National Nutrient Database for Standard Reference, Release 24
Composition of Foods Raw, Processed, Prepared USDA National Nutrient Database for Standard Reference, Release 24 September 2011 U.S. Department of Agriculture Agricultural Research Service Beltsville Human Nutrition Research Center Nutrient Data Laboratory 10300 Baltimore Avenue Building 005, Room 107, BARC-West Beltsville, Maryland 20705 U.S. Department of Agriculture, Agricultural Research Service, USDA Nutrient Data Laboratory. 2011. USDA National Nutrient Database for Standard Reference, Release 24. USDA Nutrient Data Laboratory web site: http://www.ars.usda.gov/nutrientdata Mention of trade names, commercial products, or companies in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture over others not mentioned. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410, or call (800) 795- 3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Issued September 2011 i Contents Introduction .................................................................................................................................... -
Vigna Aconitifolia (Jacq.) Marechal. (Papilionaceae)
Journal of Pharmacognosy and Phytochemistry 2020; 9(1): 1153-1155 E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2020; 9(1): 1153-1155 Vigna aconitifolia (Jacq.) Marechal. Received: 20-11-2019 Accepted: 26-12-2019 (Papilionaceae): A review of medicinal uses, Phytochemistry and Pharmacology Anum Kaleem Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Anum Kaleem, Salman Ahmed and Muhammad Mohtasheemul Hassan University of Karachi, Karachi, Pakistan Abstract Vigna aconitifolia (Jacq.) Marechal. (Papilionaceae) is a medicinally important plant and is used for the Salman Ahmed treatment of different diseases specially in dermatological disorders. Alkaloids, phenols, flavonoids and Department of Pharmacognosy, phytic acid have been reported from this plant. Antioxidant, antidiabetic and hypocholesterolemic Faculty of Pharmacy and activities are also shown by Vigna aconitifolia. The present review is an attempt to compile all the Pharmaceutical Sciences, University of Karachi, Karachi, previous data on the basis of its medicinal uses, phytochemistry and pharmacology reported in the Pakistan previous articles. Muhammad Mohtasheemul Keywords: Vigna aconitifolia, medicinal uses, phytochemistry, pharmacology. Hassan Department of Pharmacognosy, Introduction Faculty of Pharmacy and Vigna aconitifolia L (Jacq) Marechal is a draught resistant legume, belonging to the Pharmaceutical Sciences, University of Karachi, Karachi, family Fabaceae, commonly grown in arid and semiarid regions of India. Vigna aconitifolia Pakistan (Jacq) -
Study on Seed Coat of Some Vigna Species Following Scanning Electron Microscopy (SEM)
International Journal of Scientific and Research Publications, Volume 5, Issue 9, September 2015 1 ISSN 2250-3153 Study on seed coat of some Vigna species following scanning electron microscopy (SEM) D. Nath and T. Dasgupta Department of Genetics and Plant Breeding, Institute of Agricultural Science, University of Calcutta Abstract- Variation in spermoderm features along with macro- Eighteen different genotypes of Vigna (Table-I) varying in seed morphological characters of eighteen wild and cultivated size, colour and texture were used as experimental materials for genotypes of Vigna were studied by scanning electron SEM study. The genotypes were collected from different places microscopy (SEM). On the basis of wax deposition, seed surface of India. The seeds were treated with glycerol : acetone (2:1) in type is grouped in four groups. It is observed that though there osmium tetraoxide. The treated seeds were dehydrated in an were differences in seed coat colour and seed size in the wild series of ethanol and coated with gold. Seed surface observation progenitors of Vigna but the pattern of wax deposition on the were taken through Scanning Electron Microscopy (Make: Carl seed coat is similar type. Zeiss, SBF-SEM SIGMA 3View) under different magnification at 20KV. Seed size, shape, colour, dry seed weight and seedcoat Index Terms- Mungbean, Scanning electron microscopy (SEM), types were observed for the genus Vigna subgenus Ceratotropis Seedcoat, Seedsurface, Spermoderm, Vigna, Wax deposition separately for each genotypes. I. INTRODUCTION III. RESULTS AND DISCUSSION he subgenus Ceratotropis of the genus Vigna comprises of - The macromorphological variability of seeds including size, T five important Asiatic pulses; mungbean (V. -
Soybean [Glycine Max (L.) Merrill] Embryogenic Cultures: the Role of Sucroseand Total Nitrogen Content on Proliferation
In Vitro Cell. De. Biol.-Plant 34:8-13. Jan.-March 1998 @ 1998 Societyfor In Vitro Biology 1071-2690/98 $05.00+0.00 SOYBEAN [GLYCINE MAX (L.) MERRILL] EMBRYOGENIC CULTURES: THE ROLE OF SUCROSEAND TOTAL NITROGEN CONTENT ON PROLIFERATION V. M. SAMOYLOV,'D. M. TUCKER,AND W. A. PARROTfl Department of Crop and Soil Scien£es,The University of Georgia, Athens, Georgia 30602- 7272 (Received25 July 1~7; accepted21 October1997; editorG. C. Phillips) SUMMARY To improve proliferation of soyh~an cultures in liquid medium, the effects of sucrose; total inorganic nitrogen; content of NO3-, NH.+, Ca2+, PO.3-, K+; NH.+/NO3- ratio; and medium osmotic pressure were studied using cv. Jack. Sucrose concentration, osmotic pressure, total nitrogen content, and ammonium to nitrate ratio were found to be the major factors controlling proliferation of soybean embryogenic cultures. Growth decreased linearly as sucrose concentration increased from 29.7 mM to 175.3 filM. A sucrose concentration of 29.2 filM, a nitrogen content of 34.9 mM at I to 4 ammonium to nitrate ratio were found to be optimal for the fastest prolif~ration of soybean embryogenic cultures. There was no significant effect on proliferation of cultures when concentrations of NH. +, Ca2+, PO.3-, and K + were tested in the range of 3.50 to 10.50, 1.02 to 3.06, 0.68 to 2.04, and 22.30 to 36.70 filM, respectively. The relative proliferation of embryogenic cultures of four soybean genotypes was evaluated in Finer and Nagasawa medium and in the new medium formulation. Despite genotype-specific differences in growth, the genotypes tested showed a biomass increase in the new formulation equal to 278, 269, 170, and 251 % for Chapman, F138, Jack, and Williams 82, respectively, relative to their growth on standard FN medium. -
Pollination in Neotropical Bees
Running title: Buzz-pollination in Neotropical bees Title for authors: C. A. Rosi-Denadai et al. Correspondence: Raul Narciso C. Guedes, Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil. Tel: +55 31 3899-4008; e-mail: [email protected] Original article Buzz-pollination in Neotropical bees: Genus-dependent frequencies and lack of optimal frequency for pollen release Conrado Augusto Rosi-Denadai1, Priscila Cássia Souza Araújo1, Lucio Antônio de Oliveira Campos2, Lirio Cosme Jr.1 and Raul Narciso Carvalho Guedes1 1Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570- 900, Brazil, 2Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil This is an Accepted Article that has been peer-reviewed and approved for publication in the Insect Science but has yet to undergo copy-editing and proof correction. Please cite this article as doi: 10.1111/1744-7917.12602. This article is protected by copyright. All rights reserved. Abstract Over 50 genera of bees release pollen from flower anthers using thoracic vibrations, a phenomenon known as buzz-pollination. The efficiency of this process is directly affected by the mechanical properties of the buzzes, namely the duration, amplitude and frequency. Nonetheless, although the effects of the former two properties are well described, the role of buzz frequency on pollen release remains unclear. Furthermore, nearly all of the existing studies describing vibrational properties of natural buzz-pollination are limited to bumblebees (Bombus) and carpenter bees (Xylocopa) constraining our current understanding of this behavior and its evolution. Therefore, we attempted to minimize this shortcoming by testing whether flower anthers exhibit optimal frequency for pollen release and whether bees tune their buzzes to match these (optimal) frequencies. -
Phytochemical Evaluation of Moth Bean (Vigna Aconitifolia L.) Seeds and Their Divergence
Hindawi Publishing Corporation Biochemistry Research International Volume 2016, Article ID 3136043, 6 pages http://dx.doi.org/10.1155/2016/3136043 Research Article Phytochemical Evaluation of Moth Bean (Vigna aconitifolia L.) Seeds and Their Divergence Neha Gupta,1 Nidhi Shrivastava,2 Pramod Kumar Singh,1 and Sameer S. Bhagyawant1 1 School of Studies in Biotechnology, Jiwaji University, Gwalior 474011, India 2Department of Bioscience & Biotechnology, Banasthali University, Banasthali 304022, India Correspondence should be addressed to Sameer S. Bhagyawant; [email protected] Received 27 November 2015; Revised 1 April 2016; Accepted 11 April 2016 Academic Editor: Tzi Bun Ng Copyright © 2016 Neha Gupta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In the present study, phytochemical contents of 25 moth bean (Vigna aconitifolia) seed accessions were evaluated. This includes protease inhibitors, phytic acid, radical scavenging activity, and tannins. The studies revealed significant variation in the contents of theses phytochemicals. Presence of photochemical composition was correlated with seed storage proteins like albumin and globulin. Qualitative identification of total seed storage protein abundance across two related moth bean accessions using two-dimensional gel electrophoresis (2D-GE) was performed. Over 20 individual protein fractions were distributed over the gel as a series of spots in two moth bean accessions. Seed proteome accumulated spots of high intensity over a broad range of pI values of 3–10 in a molecular weight range of 11–170 kDa. In both seed accessions maximum protein spots are seen in the pI range of 6–8. -
The Pollinators
MAY/JUNE 2019 • VOLUME 70 • NUMBER 5 The Pollinators They form irreplaceable strands in the intricate web of biodiversity and are critical indicators of the health – or decline – of our native habitats. They need our help. • The Audubon Club at San Diego City College Steps Up Big for Pollinators • Silverwood and Anstine-Audubon Are Remarkable Preserves for Pollinators • Three Common Pollinators and the Threats to Their Future San Diego Audubon Puts Down Roots at City College The Audubon Club has transformed thirsty, unfriendly grass and roses into thriving pollinator-friendly native plant gardens by Shari Hatch About three years ago, Professor As a tenured professor, Chaddock teaches several geography classes. Lisa Chaddock viewed the “grass She requires each student to engage in a community service project, and a few trees and roses” behind documented with a poster (including a map), an abstract her classroom at San Diego describing the project, a bibliography, and photos showing their City College and dreamed of volunteer work. Almost 200 volunteers are spread across San Diego transforming it into a paradise for serving our communities. pollinators, primarily butterflies and Chaddock is also the Vice President of San Diego Audubon and hummingbirds. She went to work recruiting enthusiastic students energetically promotes chapter involvement among her college to plant and tend budding native plant gardens in that same plaza students. The City College Audubon Club now boasts 72 student area behind her classroom. She also received a modest grant from members (and counting), with new chapters emerging at San Diego the California Audubon Society, which she used for rewarding two Mesa College and Grossmont College, with hopes of expanding to dedicated interns, who were assisted by students in the fledgling City Southwestern and other community colleges. -
Physiological and Biochemical Changes in Moth Bean (Vigna Aconitifolia L.) Under Cadmium Stress
Hindawi Publishing Corporation Journal of Botany Volume 2016, Article ID 6403938, 13 pages http://dx.doi.org/10.1155/2016/6403938 Research Article Physiological and Biochemical Changes in Moth Bean (Vigna aconitifolia L.) under Cadmium Stress Poornima D. Vijendra,1,2 Kavitha M. Huchappa,1 Roopa Lingappa,1 Giridhara Basappa,2 Sathisha G. Jayanna,3 and Vadlapudi Kumar1,2 1 Department of Biochemistry, Kuvempu University, P.G. Centre, Shivagangothri, Davangere, Karnataka 577002, India 2Department of Biochemistry, Davangere University, Shivagangothri, Davangere, Karnataka 577002, India 3Department of Biochemistry, Kuvempu University, Shankaraghatta, Shivamogga District, Karnataka 577451, India Correspondence should be addressed to Vadlapudi Kumar; [email protected] Received 8 October 2015; Revised 14 November 2015; Accepted 8 February 2016 Academic Editor: Bala Rathinasabapathi Copyright © 2016 Poornima D. Vijendra et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Moth bean (Vigna aconitifolia L.), a drought resistant legume, possesses high nutritional value. Cadmium (Cd) is a nonessential and the most toxic heavy metal in plants. The present study was to test the hypothesis of whether moth bean being a drought resistant legume can withstand the cadmium stress. Ten-day-old moth bean seedlings were subjected to cadmium stress and investigated for a period of 15 days every 3-day intervals. Cadmium quantification in moth bean tissues suggests root accumulation and translocation to aerial parts in a concentration dependent manner. Results of physiological and biochemical studies revealed that cadmium has affected the growth parameters like shoot and root lengths and tissue dry weights. -
BITING, STINGING and VENOMOUS PESTS: INSECTS (For Non-Insects Such As Scorpions and Spiders, See Page 23)
BITING, STINGING AND VENOMOUS PESTS: INSECTS (For non-insects such as scorpions and spiders, see page 23). Bees include a large number of insects that are included in different families under the order Hymenoptera. They are closely related to ants and wasps, and are common and important components of outdoor community environments. Bees have lapping-type mouthparts, which enable them to feed on nectar and pollen from flowers. Most bees are pollinators and are regarded as beneficial, but some are regarded as pests because of their Pollination by honey bees stings, or damage that they cause due to Photo: Padmanand Madhavan Nambiar nesting activities. NOTABLE SPECIES Common name(s): Bee, honey bee Scientific name, classification: Apis spp., Order: Hymenoptera, Family: Apidae. Distribution: Worldwide. The western honey bee A. mellifera is the most common species in North America. Description and ID characters: Adults are medium to large sized insects, less than ¼ to Western honey bee, Apis mellifera slightly over 1 inch in length. Sizes and Photo: Charles J. Sharp appearances vary with the species and the caste. Best identifying features: Robust black or dark brown bodies, covered with dense hair, mouthparts (proboscis) can be seen extending below the head, hind pair of wings are smaller than the front pair, hind legs are stout and equipped to gather pollen, and often have yellow pollen-balls attached to them. Pest status: Non-pest, although some are aggressive and can sting in defense. Damage/injury: Usually none, and are regarded as the most beneficial insects. Swarming colonies near homes and buildings may cause concern, but they often move on.