Biodiversity, Community Dynamics, and Novel Foraging Behaviors of a Rich Native Bee Fauna Across Habitats at Pinnacles National Park, California

Total Page:16

File Type:pdf, Size:1020Kb

Biodiversity, Community Dynamics, and Novel Foraging Behaviors of a Rich Native Bee Fauna Across Habitats at Pinnacles National Park, California Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2016 Biodiversity, Community Dynamics, and Novel Foraging Behaviors of a Rich Native Bee Fauna Across Habitats at Pinnacles National Park, California Joan M. Meiners Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biology Commons Recommended Citation Meiners, Joan M., "Biodiversity, Community Dynamics, and Novel Foraging Behaviors of a Rich Native Bee Fauna Across Habitats at Pinnacles National Park, California" (2016). All Graduate Theses and Dissertations. 4877. https://digitalcommons.usu.edu/etd/4877 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. BIODIVERSITY, COMMUNITY DYNAMICS, AND NOVEL FORAGING BEHAVIORS OF A RICH NATIVE BEE FAUNA ACROSS HABITATS AT PINNACLES NATIONAL PARK, CALIFORNIA by Joan M. Meiners A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Ecology Approved: ______________________ ____________________ Dr. Edward W. Evans Dr. Terry L. Griswold Major Professor Committee Member ______________________ ____________________ Dr.Eugene W. Schupp Dr. Mark R. McLellan Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2016 ii Copyright © Joan M. Meiners 2016 All Rights Reserved iii ABSTRACT BIODIVERSITY, COMMUNITY DYNAMICS, AND NOVEL FORAGING BEHAVIORS OF A RICH NATIVE BEE FAUNA ACROSS HABITATS AT PINNACLES NATIONAL PARK, CALIFORNIA by Joan M. Meiners Utah State University, 2016 Major Professor: Dr. Edward W. Evans Department: Biology Wild, native bees (Hymenoptera: Apoidea) provide pollination services valued at nearly $3 billion to U.S. agriculture annually, and are the primary pollinators maintaining plant communities in natural landscapes, an ecosystem service of incalculable worth. Global concern over widespread honeybee declines has spurred research to save that single species, while knowledge of the health and habitat requirements of 20,000 native bee species worldwide lags behind. Understanding dynamics and habitat associations of pristine native bee communities may help inform conservation priorities and restoration goals to ensure the widespread longevity of native bees. We surveyed the bee and plant communities over two flowering seasons and across four distinct habitat types (Alluvial, Live Oak Woodland, Blue Oak Woodland, and Grassland) at Pinnacles National Park, a protected biodiversity hotspot, and a pristine, heterogeneous environment. We collected 52,853 bee specimens over 308 collector days, and increased the species inventory to 479, iv from the previous 398 recorded as of the late 1990s. This statistic ranks Pinnacles as likely the most densely diverse area for native bees currently known. Spatially, no relationship between habitat type and bee abundance or richness was observed. Bee species composition in Alluvial habitats, however, was more unique and showed lower dispersal, suggesting this habitat may serve as a nesting refugia for a core community of resident species. Temporally, we evaluated potential resilience of solitary bees to anticipated disruptions in bloom availability via novel, community-wide foraging on honeydew sugars produced by scale insects. We observed 56 native bee species using honeydew sugars during the early season low bloom, and determined that they locate this resource without visual cues. Overall, these findings suggest that native bee communities at Pinnacles National Park may be buffered against temporal resource shifts and may benefit from protection of the Alluvial habitat type. The patterns observed here should be evaluated in other locations to determine their value towards forecasting and managing widespread risks to native bees. (143 pages) v PUBLIC ABSTRACT BIODIVERSITY, COMMUNITY DYNAMICS, AND NOVEL FORAGING BEHAVIORS OF A RICH NATIVE BEE FAUNA ACROSS HABITATS AT PINNACLES NATIONAL PARK, CALIFORNIA Joan M. Meiners Global concern about honeybee declines has spurred feverish research about the status and protection of this single species, yet our understanding of the ecology and issues impacting thousands of species of native bees lags behind. Pinnacles National Park, America's newest, near Salinas, California, is currently the most densely biodiverse area for native bees known on the planet. Recent work by researchers at Utah State University and the USDA-ARS has documented 479 species of native bees in only 42 square miles of this park. During two years of field studies and 308 collector days, we assembled data on 52,853 bee specimens to determine natural patterns in thriving bee communities and how they relate to climate and habitat variables. We found that the ‘alluvial’ habitat type, low in elevation and dominated by woody shrubs and sparse grass, had a unique composition of bee species that may depend on their local resources more than bees in ‘woodland’ and ‘grassland’ habitat types. We also evaluated novel, early- season foraging behaviors of 56 native bee species locating scale insect honeydew sugars without visual aid of flowers or color. Overall, these findings suggest that native bees at Pinnacles National Park may be resilient to temporal bloom shifts, but may be negatively affected by loss of ‘alluvial’ habitat. If similar patterns are found in other locations, these results may have widespread value in guiding native bee conservation priorities. vi DEDICATION For Barbara Kingsolver (beauty), Alice Sebold (guts), and David Quamman (humor), and for Marilyn Meiners, who would have actually read this. RIP Sylvester vii FRONTISPIECE Photo Credits (from top to bottom, left to right): Joan Meiners (1,5,8,10,11), Pete Lamptery (2,9,12), and Therese Lamperty (3,4,6,7). viii ACKNOWLEDGMENTS I would like to thank my committee (Ted Evans, Terry Griswold, and Geno Schupp) and funders (NPS, USDA-PIRU) for dedicating time and funds to exploring the bee diversity at Pinnacles National Park, for their trust in me to conquer this task, and for their patience with my intellectual and global wanderings along the way. I especially appreciate Terry’s energetic curiosity, Ted’s warmth, and Geno’s biting humor. Paul Johnson, wildlife biologist at Pinnacles, deserves a lot of credit for facilitating this project, both as a guide and steward of Pinnacles’ nature, and through his generosity in managing housing, personnel, and burrito logistics. Pinnacles’ Natural Resources cabin is full of fun people who enhanced both my science and my experience. I am extremely fortunate that Therese Lamperty was hired to help me in the field my first year, and very grateful that she elected to return for a second year of grueling, hot, underpaid, mountain-lion-infested field work. I consider it one of the best outcomes of this project that she remains a good friend, and still decided to pursue ecology in her own graduate studies. I will always think fondly of our lunchtime, heat-coma field naps. I am indebted to Harold Ikerd and Skyler Burrows for helping me wade through 50,000 bee specimens and a foreign database, and to Jordan Frank for his meticulous lab work. Nancy Huntly, Al Savitzky, Kami McNeil, Glenda Yenni, and Susan Durham all improved my project and/or university experience. I appreciate Dr. Yael Mandelik for hosting me in her lab for a semester adventure in Israel. Finally, thank you to Morgan for believing, Suzanne for cheering, my bike racing teammates for balance, my family and Laila for taking care of each other, and Jereme for always picking me up when I crash. Joan M. Meiners ix CONTENTS Page ABSTRACT……………………………………………………………………………. iii PUBLIC ABSTRACT………………………………………………………….……….. v DEDICATION………………………………………………………………….………. vi FRONTISPIECE……………………………………………………………………….. vii ACKNOWLEDGMENTS………………………………………………………..……. viii LIST OF TABLES………………………………………………………..……………... xi LIST OF FIGURES……………………………………………………….……………. xii CHAPTERS: 1. INTRODUCTION………………………………………………..……… 1 Context and Importance…………………………..……................ 1 State of Knowledge…………………………………..……...…… 2 Research Objectives………………………………….....………... 5 References…………………………………………..……………. 8 2. LANDSCAPE-SCALE HABITAT TYPES AS PREDICTORS OF NATIVE BEE DIVERSITY AND COMMUNITY DYNAMICS IN A SEMI-PRISTINE ECOSYSTEM………………….. 14 Abstract…………………………………………………………. 14 Introduction……………………………………………………... 15 Materials & Methods…………………………………………… 18 Study Site……………………………………………….. 18 Field Methods…………………………………………... 23 Specimens & Data Management………………..………. 26 Statistical Analyses………………………………...…… 27 Results………………………………………………………….. 29 Biodiversity………………………….…………………. 29 Community Dynamics………………………………….. 37 The Role of Habitat Type………………………………. 42 Geography and Floral Resources………………. 42 Bee Abundance…………………………………. 45 x Bee Richness……………………………………. 47 Bee Diversity…………………………………… 50 Bee Community Composition………………….. 52 Temporal Variables in Species Composition…… 56 Dominant Bee Species………………………….. 58 Influence of Habitat Type vs. Geography………. 61 Discussion………………………………………………………. 66 Biodiversity………………………….………………….. 66 Community Dynamics…………………………...……... 68 The Role of Habitat Type……………………………..... 70 References………………………………………………………. 76 Appendices…………………………………………………….... 81 Appendix A. Field Methods Supplementary Material….
Recommended publications
  • The Conservation and Ecology of Native Bees and Other Pollinators
    The conservation and ecology of native bees and other pollinators Colleen Smith [email protected] Rutgers University New Brunswick, New Jersey Outline • Overview of pollination and bee biodiversity • My research on forest bees at Rutgers University • What you can do to support native bees • Bee ID! Outline • Overview of pollination and bee biodiversity • My research on forest bees at Rutgers University • What you can do to support native bees • Bee ID! Pollination: Transfer of pollen grains from anther to stigma ~ 87% of all flowering plants Ollerton et al. 2011 Oikos >2/3 crop species use animal- mediated pollination Klein et al. 2006 J. Applied Ecology Bees Native bees are important pollinators for many crops globally Garibaldi et al 2013 Science 3 bee life history strategies Solitary Social Parasitic • 77% of bee species • 10% of bee • 13% of bee species species 3 bee life history strategies Solitary Social Parasitic • 77% of bee species • 10% of bee • 13% of bee species species Bee life histories: solitary The vast majority of bees! Andrena erigeniae Colletes inaequalis Augochlora pura Pupa Adult bee Egg winter spring fall summer Pre-pupa Pupa Adult bee Egg winter spring fall summer Pre-pupa Pupa Adult bee Only 2 to 3 weeks of a solitary bees’ life! Egg winter spring fall summer Pre-pupa Pupa Adult bee Egg winter spring fall summer Pre-pupa How a solitary bee spends most of its life 3 bee life history strategies Solitary Social Parasitic • 77% of bee species • 10% of bee • 13% of bee species species Cuckoo bees Nomada bee 3 bee life history strategies Solitary Social Parasitic • 77% of bee species • 10% of bee • 13% of bee species species Bombus, Lasioglossum, Halictus Bombus impatiens Lasioglossum spp.
    [Show full text]
  • Bees in Urban Landscapes: an Investigation of Habitat Utilization By
    Bees in urban landscapes: An investigation of habitat utilization By Victoria Agatha Wojcik A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, & Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Joe R. McBride, Chair Professor Gregory S. Biging Professor Louise A. Mozingo Fall 2009 Bees in urban landscapes: An investigation of habitat utilization © 2009 by Victoria Agatha Wojcik ABSTRACT Bees in urban landscapes: An investigation of habitat utilization by Victoria Agatha Wojcik Doctor of Philosophy in Environmental Science, Policy, & Management University of California, Berkeley Professor Joe R. McBride, Chair Bees are one of the key groups of anthophilies that make use of the floral resources present within urban landscapes. The ecological patterns of bees in cities are under further investigation in this dissertation work in an effort to build knowledge capacity that can be applied to management and conservation. Seasonal occurrence patterns are common among bees and their floral resources in wildland habitats. To investigate the nature of these phenological interactions in cities, bee visitation to a constructed floral resource base in Berkeley, California was monitored in the first year of garden development. The constructed habitat was used by nearly one-third of the locally known bee species. Bees visiting this urban resource displayed distinct patterns of seasonality paralleling those of wildland bees, with some species exhibiting extended seasons. Differential bee visitation patterns are common between individual floral resources. The effective monitoring of bee populations requires an understanding of this variability. To investigate the patterns and trends in urban resource usage, the foraging of the community of bees visiting Tecoma stans resources in three tropical dry forest cities in Costa Rica was studied.
    [Show full text]
  • Sensory and Cognitive Adaptations to Social Living in Insect Societies Tom Wenseleersa,1 and Jelle S
    COMMENTARY COMMENTARY Sensory and cognitive adaptations to social living in insect societies Tom Wenseleersa,1 and Jelle S. van Zwedena A key question in evolutionary biology is to explain the solitarily or form small annual colonies, depending upon causes and consequences of the so-called “major their environment (9). And one species, Lasioglossum transitions in evolution,” which resulted in the pro- marginatum, is even known to form large perennial euso- gressive evolution of cells, organisms, and animal so- cial colonies of over 400 workers (9). By comparing data cieties (1–3). Several studies, for example, have now from over 30 Halictine bees with contrasting levels of aimed to determine which suite of adaptive changes sociality, Wittwer et al. (7) now show that, as expected, occurred following the evolution of sociality in insects social sweat bee species invest more in sensorial machin- (4). In this context, a long-standing hypothesis is that ery linked to chemical communication, as measured by the evolution of the spectacular sociality seen in in- the density of their antennal sensillae, compared with sects, such as ants, bees, or wasps, should have gone species that secondarily reverted back to a solitary life- hand in hand with the evolution of more complex style. In fact, the same pattern even held for the socially chemical communication systems, to allow them to polymorphic species L. albipes if different populations coordinate their complex social behavior (5). Indeed, with contrasting levels of sociality were compared (Fig. whereas solitary insects are known to use pheromone 1, Inset). This finding suggests that the increased reliance signals mainly in the context of mate attraction and on chemical communication that comes with a social species-recognition, social insects use chemical sig- lifestyle indeed selects for fast, matching adaptations in nals in a wide variety of contexts: to communicate their sensory systems.
    [Show full text]
  • Classification of the Apidae (Hymenoptera)
    Utah State University DigitalCommons@USU Mi Bee Lab 9-21-1990 Classification of the Apidae (Hymenoptera) Charles D. Michener University of Kansas Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_mi Part of the Entomology Commons Recommended Citation Michener, Charles D., "Classification of the Apidae (Hymenoptera)" (1990). Mi. Paper 153. https://digitalcommons.usu.edu/bee_lab_mi/153 This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in Mi by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 4 WWvyvlrWryrXvW-WvWrW^^ I • • •_ ••^«_«).•>.• •.*.« THE UNIVERSITY OF KANSAS SCIENC5;^ULLETIN LIBRARY Vol. 54, No. 4, pp. 75-164 Sept. 21,1990 OCT 23 1990 HARVARD Classification of the Apidae^ (Hymenoptera) BY Charles D. Michener'^ Appendix: Trigona genalis Friese, a Hitherto Unplaced New Guinea Species BY Charles D. Michener and Shoichi F. Sakagami'^ CONTENTS Abstract 76 Introduction 76 Terminology and Materials 77 Analysis of Relationships among Apid Subfamilies 79 Key to the Subfamilies of Apidae 84 Subfamily Meliponinae 84 Description, 84; Larva, 85; Nest, 85; Social Behavior, 85; Distribution, 85 Relationships among Meliponine Genera 85 History, 85; Analysis, 86; Biogeography, 96; Behavior, 97; Labial palpi, 99; Wing venation, 99; Male genitalia, 102; Poison glands, 103; Chromosome numbers, 103; Convergence, 104; Classificatory questions, 104 Fossil Meliponinae 105 Meliponorytes,
    [Show full text]
  • Assembleias De Abelhas Sob a Perspectiva Funcional
    GABRIEL ANTÔNIO REZENDE DE PAULA ASSEMBLEIAS DE ABELHAS SOB A PERSPECTIVA FUNCIONAL Tese apresentada à Coordenação do programa de Pós- Graduação em Ciências Biológicas, Área de Concentração em Entomologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, como requisito parcial para obtenção do título de Doutor em Ciências Biológicas. CURITIBA 2014 i GABRIEL ANTÔNIO REZENDE DE PAULA ASSEMBLEIAS DE ABELHAS SOB A PERSPECTIVA FUNCIONAL Tese apresentada à Coordenação do programa de Pós- Graduação em Ciências Biológicas, Área de Concentração em Entomologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, como requisito parcial para obtenção do título de Doutor em Ciências Biológicas. Orientador: Prof. Dr. Gabriel A. R. Melo Coorientador: Prof. Dr. Maurício O. Moura CURITIBA 2014 ii iii “The love of complexity without reductionism makes art; the love of complexity with reductionism makes science.” Edward O. Wilson (“Consilience: The Unity of Knowledge”, 1998) iv APRESENTAÇÃO Prezado leitor, o estudo aqui apresentado não se estrutura no padrão vigente de tese. Antes de tudo, o mesmo compreende um relato do desenvolvimento de um raciocínio, o nascimento de uma ideia e o exercício que fundamentaram as hipóteses e teorias resultantes. Pelo intuito de compreender uma representação simbólica do pensamento, o mesmo não poderia estar organizado na usual estrutura fragmentada, pois o conjunto demonstrou-se fluido e intrincado. Buscou-se demonstrar as origens diversas de um saber que se entrelaçaram e ramificaram gerando novos caminhos. Esse registro tornou-se necessário e não haveria outro espaço para fazê-lo. Desse modo, pede-se ao leitor uma reserva em seu tempo, além de um convite à leitura e à interpretação.
    [Show full text]
  • Las Abejas Del Género Agapostemon (Hymenoptera: Halictidae) Del Estado De Nuevo León, México
    Revista Mexicana de Biodiversidad 83: 63-72, 2012 Las abejas del género Agapostemon (Hymenoptera: Halictidae) del estado de Nuevo León, México Bees of the genus Agapostemon (Hymenoptera: Halictidae) of the state of Nuevo León, Mexico Liliana Ramírez-Freire1 , Glafiro José Alanís-Flores1, Ricardo Ayala-Barajas2, Humberto Quiroz -Martínez1 y Carlos GerardoVelazco-Macías3 1Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Cd. Universitaria. Apartado postal 134-F, 66450 San Nicolás de los Garza, Nuevo León, México. 2Estación de Biología Chamela (Sede Colima) Instituto de Biología, Universidad Nacional Autónoma de México. Apartado postal 21, 48980 San Patricio, Jalisco, México. 3Parques y Vida Silvestre. Av. Alfonso Reyes norte s/n, interior del Parque Niños Héroes, lateral izquierda, acceso 3, 64290 Monterrey, Nuevo León, México. [email protected] Resumen. Se realizó un estudio faunístico de las abejas del género Agapostemon (Halictidae) en el estado de Nuevo León, México para conocer las especies presentes, su distribución, relación con la flora y tipos de vegetación del estado. La metodología se basó en la revisión de literatura y de bases de datos de colecciones entomológicas, y en muestreos en campo donde se utilizó red entomológica y platos trampa de colores amarillo, azul, rosa (tonos fluorescentes) y blanco. Sólo en 20 de los 35 muestreos que se realizaron se obtuvieron ejemplares del género. Se recolectaron 11 especies, 2 de las cuales son registros nuevos para el estado (A. nasutus y A. splendens). El 12.31% de los ejemplares se obtuvo mediante el uso de red y el 87.84% con los platos trampa; el color amarillo fue el preferido por las abejas.
    [Show full text]
  • Anthophila List
    Filename: cuic_bee_database.
    [Show full text]
  • First Observations on Nesting and Immatures of the Bee Genus Ancyla (Apoidea: Apidae: Apinae: Ancylaini)
    AMERICAN MUSEUM NOVITATES Number 3749, 24 pp. June 25, 2012 First Observations on Nesting and Immatures of the Bee Genus Ancyla (Apoidea: Apidae: Apinae: Ancylaini) JAKUB STRAKA1 AND JEROME G. RoZEN, JR.2 ABSTRACT Herein we present information on the nest architecture and nesting biology primarily of Ancyla asiatica Friese and, to a lesser extent, of A. anatolica Warncke, both found near Adana, Turkey. These two ground-nesting species visit Apiaceae for mating and larval provisions, with A. asiatica going to Daucus carota and A. anatolica, to Eryngium. The cocoon of A. asiatica is described in detail as are the mature oocytes of both species and the pre- and postdefecating larvae of A. asiatica. Each site was attacked by a separate, unnamed cleptoparasitic species of Ammobates (Nomadinae). The relationships of the Ancylaini to other apine tribes are discussed based on their mature larvae, and a revised tribal key to mature larvae of nonparasitic, noncor- biculate Apinae is presented. INTRODUCTION Of all tribes of nonparasitic Apidae, the natural history of the Ancylaini3 has been the least investigated. Until now, nothing has been recorded concerning the nests of any species, 1 Department of Zoology, Faculty of Science, Charles University in Prague, CZ-12844 Prague 2, Czech Republic. 2 Division of Invertebrate Zoology, American Museum of Natural History. 3 The spelling of tribe Ancylini Michener, 1944, has recently been emended to Ancylaini to remove hom- onymy with Ancylini Rafinsque, 1815 (Mollusca, Gastropoda) (Engel et al., 2010: ICZN Ruling (Opinion 2246-Case 3461). Copyright © American Museum of Natural History 2012 ISSN 0003-0082 2 AMERican MUSEUM NOVITATEs NO.
    [Show full text]
  • Decades of Native Bee Biodiversity Surveys at Pinnacles National Park Highlight the Importance of Monitoring Natural Areas Over Time
    Utah State University DigitalCommons@USU All PIRU Publications Pollinating Insects Research Unit 1-17-2019 Decades of Native Bee Biodiversity Surveys at Pinnacles National Park Highlight the Importance of Monitoring Natural Areas Over Time Joan M. Meiners University of Florida Terry L. Griswold Utah State University Olivia Messinger Carril Independent Researcher Follow this and additional works at: https://digitalcommons.usu.edu/piru_pubs Part of the Life Sciences Commons Recommended Citation Meiners JM, Griswold TL, Carril OM (2019) Decades of native bee biodiversity surveys at Pinnacles National Park highlight the importance of monitoring natural areas over time. PLoS ONE 14(1): e0207566. https://doi.org/10.1371/journal. pone.0207566 This Article is brought to you for free and open access by the Pollinating Insects Research Unit at DigitalCommons@USU. It has been accepted for inclusion in All PIRU Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. RESEARCH ARTICLE Decades of native bee biodiversity surveys at Pinnacles National Park highlight the importance of monitoring natural areas over time 1 2 3 Joan M. MeinersID *, Terry L. Griswold , Olivia Messinger Carril 1 School of Natural Resources and Environment, University of Florida, Gainesville, Florida, United States of a1111111111 America, 2 USDA-ARS Pollinating Insects Research Unit (PIRU), Utah State University, Logan, Utah, United States of America, 3 Independent Researcher, Santa Fe, New Mexico, United States of America a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 Abstract Thousands of species of bees are in global decline, yet research addressing the ecology OPEN ACCESS and status of these wild pollinators lags far behind work being done to address similar impacts on the managed honey bee.
    [Show full text]
  • Hymenoptera, Apoidea)
    >lhetian JMfuseum ox4tates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 2 2 24 AUGUST I7, I 965 The Biology and Immature Stages of Melitturga clavicornis (Latreille) and of Sphecodes albilabris (Kirby) and the Recognition of the Oxaeidae at the Family Level (Hymenoptera, Apoidea) BYJEROME G. ROZEN, JR.' Michener (1944) divided the andrenid subfamily Panurginae into two tribes, the Panurgini and Melitturgini, with the latter containing the single Old World genus Melitturga. This genus was relegated to tribal status apparently on the grounds that the adults, unlike those of other panurgines, bear certain striking resemblances to the essentially Neo- tropical Oxaeinae of the same family. In 1951 Rozen showed that the male genitalia of Melitturga are unlike those of the Oxaeinae and are not only typical of those of the Panurginae in general but quite like those of the Camptopoeum-Panurgus-Panurginus-Epimethea complex within the sub- family. On the basis of this information, Michener (1954a) abandoned the idea that the genus Melitturga represents a distinct tribe of the Panur- ginae. Recently evidence in the form of the larva of Protoxaea gloriosa Fox (Rozen, 1965) suggested that the Oxaeinae were so unlike other Andreni- dae that they should be removed from the family unless some form inter- 1 Chairman and Associate Curator, Department of Entomology, the American Museum of Natural History. 2 AMERICAN MUSEUM NOVITATES NO. 2224 mediate between the two subfamilies is found. In spite of the structure of the male genitalia, Melitturga is the only known possible intermediary.
    [Show full text]
  • Effects of Invasive Plant Species on Native Bee Communities in the Southern Great Plains
    EFFECTS OF INVASIVE PLANT SPECIES ON NATIVE BEE COMMUNITIES IN THE SOUTHERN GREAT PLAINS By KAITLIN M. O’BRIEN Bachelor of Science in Rangeland Ecology & Management Texas A&M University College Station, Texas 2015 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 2017 EFFECTS OF INVASIVE PLANT SPECIES ON NATIVE BEE COMMUNITIES IN THE SOUTHERN GREAT PLAINS Thesis Approved: Dr. Kristen A. Baum Thesis Adviser Dr. Karen R. Hickman Dr. Dwayne Elmore ii ACKNOWLEDGEMENTS I would like to begin by thanking my advisor, Dr. Kristen Baum, for all of her guidance and expertise throughout this research project. She is an exemplary person to work with, and I am so grateful to have shared my graduate school experience with her. I would also like to recognize my committee members, Dr. Karen Hickman and Dr. Dwayne Elmore, both of whom provided valuable insight to this project. A huge thank you goes out to the Southern Plains Network of the National Park Service, specifically Robert Bennetts and Tomye Folts-Zettner. Without them, this project would not exist, and I am forever grateful to have been involved with their network and parks, both as a research student and summer crew member. A special thank you for Jonathin Horsely, who helped with plot selection, summer sampling, and getting my gear around. I would also like to thank the Baum Lab members, always offering their support and guidance as we navigated through graduate school. And lastly, I would like to thank my family, especially my fiancé Garrett, for believing in me and supporting me as I pursued my goals.
    [Show full text]
  • The Very Handy Bee Manual
    The Very Handy Manual: How to Catch and Identify Bees and Manage a Collection A Collective and Ongoing Effort by Those Who Love to Study Bees in North America Last Revised: October, 2010 This manual is a compilation of the wisdom and experience of many individuals, some of whom are directly acknowledged here and others not. We thank all of you. The bulk of the text was compiled by Sam Droege at the USGS Native Bee Inventory and Monitoring Lab over several years from 2004-2008. We regularly update the manual with new information, so, if you have a new technique, some additional ideas for sections, corrections or additions, we would like to hear from you. Please email those to Sam Droege ([email protected]). You can also email Sam if you are interested in joining the group’s discussion group on bee monitoring and identification. Many thanks to Dave and Janice Green, Tracy Zarrillo, and Liz Sellers for their many hours of editing this manual. "They've got this steamroller going, and they won't stop until there's nobody fishing. What are they going to do then, save some bees?" - Mike Russo (Massachusetts fisherman who has fished cod for 18 years, on environmentalists)-Provided by Matthew Shepherd Contents Where to Find Bees ...................................................................................................................................... 2 Nets ............................................................................................................................................................. 2 Netting Technique ......................................................................................................................................
    [Show full text]