A Survey of Myxomycetes from the Black Hills of South Dakota and the Bear Lodge Mountains of Wyoming

Total Page:16

File Type:pdf, Size:1020Kb

A Survey of Myxomycetes from the Black Hills of South Dakota and the Bear Lodge Mountains of Wyoming Proceedings of the South Dakota Academy of Science, Vol. 89 (2010) 45 A SURVEY OF MYXOMYCETES FROM THE BLACK HILLS OF SOUTH DAKOTA AND THE BEAR LODGE MOUNTAINS OF WYOMING A. Gabel1*, E. Ebbert2, M. Gabel1 and L. Zierer2 1Biology Department Black Hills State University 1200 University Spearfish, South Dakota 57799 2Deceased *[email protected] ABSTRACT Fruiting bodies of slime molds were collected intermittently from the field from 1990-2009. During the summers of 2007-2009 slime molds also were cultured in moist chambers from downed, decaying wood, dried deciduous leaf litter, and dried grass litter that was gathered three times each summer from four areas at each of the following six sites. Alabaugh Canyon and Boles/Redbird Canyons were dry, prairie/woodlands in Fall River and Custer Counties in the southern Black Hills. Pony Gulch and Spring Creek, in the central hills were moist, broad gulches in Pennington County, and the northern hills sites were Botany Bay and Grigg’s Gulch, narrow, moist canyons in Lawrence County. Contents of a total of 648 cultures were examined. Presence of a species in a culture was considered to be a collection and some cultures contained more than one species. Eighty-two species from both field and culture surveys were identified, and 62 are considered as new records for the Black Hills, and 61 for western South Dakota. Six hundred fifty-seven collections representing 65 spe- cies developed in culture included species from all orders of Myxomycetes. Only five species occurred at a relative abundance > 5% and 20 occurred only once. Four hundred eighty-three collections representing 54 species occurred on wood, 115 collections representing 29 species occurred on leaf litter, and 59 collections representing 10 species were on grass litter. Several species occurred on more than one substratum. The highest number, 178 collections and 39 species, oc- curred on substrata from the Boles/Redbird Canyon site, the southwest dry, open prairie/woodland. The lowest number, 74 collections and 19 species, occurred on substrata from Grigg’s Gulch, a northern, moist site with a high canopy cover. Fuligo megaspora was frequently collected from southern, dry sites. Keywords Black Hills, Fuligo megaspora, Myxomycetes, South Dakota 46 Proceedings of the South Dakota Academy of Science, Vol. 89 (2010) INTRODUCTION Plasmodial slime molds (Myxomycetes) are unique organisms with two distinctly different growth forms. The free-living, multinucleate plasmodium resembles an amoeboid-organism which feeds on bacteria and other microor- ganisms. When environmental conditions are appropriate, a reproductive phase develops and fruiting bodies that resemble fungi are formed which contain spores for dispersal and survival. In addition to spores, microcysts (encysted myxamoebae and swarm cells) and sclerotia (encysted plasmodia) serve as rest- ing stages and are capable of surviving unfavorable environmental conditions. Slime molds occur on a variety of substrata including the bark of living trees and woody vines, decayed logs on the ground, herbaceous plants and grasses, and litter of herbaceous plants and grasses. Herbivore dung and soils also support growth (Kilgore et al. 2009, Keller and Braun 1999, Martin et al. 1983, Martin and Alexopolous 1969). In the past slime molds were classified as fungi and studied by mycologists, but because of the amoeboid stage most taxonomists currently place them with the protists (Keller and Everhart 2010, Kilgore et al. 2009, Spiegel et al. 2004, Ing 1994, Frederick 1990) accommodating both the amoeboid stage and the fruiting bodies. Regardless of their confusing taxonomy, many myxomycete species are dis- tributed worldwide and more are reported as new regions are explored. Martin and Alexopolous (1969) reported species from North America, Central America, South America, Europe and Asia. More recently Chen (1999) reported species from China, Harkonen (1977) from Finland, Lado (1993) from the Mediter- ranean, Rojas and Stephenson (2007) from Costa Rica, Schnittler (2001) from Kazakhstan, Schnittler et al. (2006) from Germany, Stephenson (2009) from Ascension Island, Stephenson and Johnston (2001) from New Zealand, Stephen- son et al. (2000) from Russia, Greenland and Iceland, Stephenson et al. (2004) from Ecuador, and Tran et al. (2008) from Thailand. Worldwide approximately 1000 species have been described (Keller and Everhart 2010, Schnittler et al. 2006). Numerous surveys have been conducted in the United States of America. Alexopoulos (1965) and Alexopoulos and Henney (1971) reported collections from Texas. Ndiritu et al. (2009) and Tiffany and Knaphus (2001) reported collections from Big Bend National Park in Texas. Blackwell and Gilbertson (1980) and Evenson (1961) reported species from Arizona, Blackwell and Gilb- ertson (1984) from the Saguaro National Monument, Eliasson et al. (1988) from Arkansas, Graff (1928) from western Montana, Keller and Braun (1999) from Ohio, and Scarborough et al. (2009) from Missouri. Scarborough et al. (2009), Snell and Keller (2003), Snell et al. (2003), and Stephenson et al. (2001) report- ed slime molds from the Great Smoky Mountains National Park, Stephenson (1988) from Virginia, and Stephenson and Laursen (1993) from Alaska. Morris (1954) collected from mountainous areas of Wyoming, and Sturgis (1913) and Bethel and Sturgis (1907) collected from the mountainous areas of Colorado. Huffman et al. (2008) included the Myxomycetes in their field guide of fungi of the United States of America. Proceedings of the South Dakota Academy of Science, Vol. 89 (2010) 47 Little attention has been directed toward surveying the Great Plains in the mid-continental United States. This area as described by Kaul (1986) includes northwestern Texas, eastern New Mexico, western Oklahoma, eastern Colorado, Kansas, Nebraska, eastern Wyoming, South Dakota, eastern Montana and North Dakota. Keller and Schoknecht (1989) reported Fuligo megaspora from Colo- rado and northwestern Nebraska. Keller and Brooks (1971), Kramer (1956), Brooks (1941, 1942), and Schaffner (1904) collected in Kansas, and Seaver (1908) collected in North Dakota. Rollins (2007) initiated surveys in mid-con- tinental grasslands and has reported collections from the Thunder Basin National Grassland in Wyoming. Even fewer reports focus on the Black Hills in South Dakota and Bear Lodge Mountains in Wyoming. In 1898, Macbride published a list in the Proceedings of the Iowa Academy of Science of 30 species he collected during one August visit in the Black Hills of South Dakota. Later, Macbride (1922) listed an ad- ditional 3 species from the Black Hills, and 6 more species were located by staff in collections at the National Fungal Collection at Beltsville, Maryland. The Black Hills is a unique area where several biomes meet and overlap (Froiland 1990). The Nature Conservancy’s Ecoregions of the United States of America (1999) identifies the Black Hills as a unique ecoregion (Fig. 1). An- nual average precipitation for the Black Hills area from 1961-1990 was from less than 40 cm near the periphery to 60 cm in the Lead/Deadwood area (Trimarchi et al. 1998). The area is located along the western border of South Dakota and northeastern Wyoming, extending approximately 166 km north to south and 108 km east to west. It is approximately 480 km from the Rocky Mountains and even more isolated from the boreal and eastern deciduous forests. However, the flora includes representatives from each of these biomes, and the mid-continent grasslands. Geologically, it is an area characterized by an uplifted dome with a Precam- brian core. Some of the older rocks date to 2.5 billion years before the present. Several episodes of uplift and erosion have occurred, accompanied by sedimenta- tion. Near the end of the Cretaceous the last of the epicontinental seas retreated and more uplifts occurred extending as late as the Eocene. A final minor uplift occurred in the Pleistocene, producing essentially the modern appearance of the area (Froiland 1990). The primary goal of this survey was to extend our knowledge of the occurrence of plasmodial slime molds in the Black Hills of South Dakota and adjacent Wyo- ming, and western South Dakota, and to contribute to the ongoing world survey of Myxomycetes. The present survey includes specimens collected randomly and intermittently from the field for several years and specimens fruiting in culture on substrata that were collected from six selected sites in the Black Hills from 2007-2009. For the culture studies we hypothesized that more species and speci- mens would occur from wetter sites with higher canopy covers, and high plant species diversity/hectare in the northern hills compared to drier, more open sites with less plant species diversity/hectare in the southern hills (Gabel and Gabel 2007). We also hypothesized that more species and specimens would be recov- ered from woody substrata than on deciduous leaf and grass litter substrata. 48 Proceedings of the South Dakota Academy of Science, Vol. 89 (2010) METHODS Field Collections—From 1990-2009 fruiting bodies of plasmodial slime molds were collected intermittently and randomly from western South Dakota and adjacent eastern Wyoming. Specimens were air dried, placed in boxes with label information and placed in the fungal collection located in the Black Hills State University Herbarium (BHSC). Labels included: order, species, habitat, elevation, substrate, date collected, location (latitude/longitude or township, range and section), county, collection number, accession number, collector and identifier. Latitudes and longitudes are listed as the centroid for the site unless a reading was taken for a particular collection. Moist Chamber Cultures—The 6 sites in the Black Hills from which substrata were collected are described in Table 1 and located in Figure 1. Sites included 2 in the southern hills (Alabaugh Canyon and Boles/Redbird Canyons), 2 in the central hills (Pony Gulch and Spring Creek), and 2 in the northern hills (Botany Bay and Grigg’s Gulch). Downed, decaying wood, and dead deciduous leaf and grass litter retrieved from the ground were collected during the summers of 2007-2009.
Recommended publications
  • Protozoologica Special Issue: Protists in Soil Processes
    Acta Protozool. (2012) 51: 201–208 http://www.eko.uj.edu.pl/ap ActA doi:10.4467/16890027AP.12.016.0762 Protozoologica Special issue: Protists in Soil Processes Review paper Ecology of Soil Eumycetozoans Steven L. STEPHENSON1 and Alan FEEST2 1Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA; 2Institute of Advanced Studies, University of Bristol and Ecosulis ltd., Newton St Loe, Bath, United Kingdom Abstract. Eumycetozoans, commonly referred to as slime moulds, are common to abundant organisms in soils. Three groups of slime moulds (myxogastrids, dictyostelids and protostelids) are recognized, and the first two of these are among the most important bacterivores in the soil microhabitat. The purpose of this paper is first to provide a brief description of all three groups and then to review what is known about their distribution and ecology in soils. Key words: Amoebae, bacterivores, dictyostelids, myxogastrids, protostelids. INTRODUCTION that they are amoebozoans and not fungi (Bapteste et al. 2002, Yoon et al. 2008, Baudalf 2008). Three groups of slime moulds (myxogastrids, dic- One of the idiosyncratic branches of the eukary- tyostelids and protostelids) are recognized (Olive 1970, otic tree of life consists of an assemblage of amoe- 1975). Members of the three groups exhibit consider- boid protists referred to as the supergroup Amoebozoa able diversity in the type of aerial spore-bearing struc- (Fiore-Donno et al. 2010). The most diverse members tures produced, which can range from exceedingly of the Amoebozoa are the eumycetozoans, common- small examples (most protostelids) with only a single ly referred to as slime moulds. Since their discovery, spore to the very largest examples (certain myxogas- slime moulds have been variously classified as plants, trids) that contain many millions of spores.
    [Show full text]
  • Myxomycetes NMW 2012Orange, Updated KS 2017.Docx
    Myxomycete (Slime Mould) Collection Amgueddfa Cymru-National Museum Wales (NMW) Alan Orange (2012), updated by Katherine Slade (2017) Myxomycetes (true or plasmodial slime moulds) belong to the Eumycetozoa, within the Amoebozoa, a group of eukaryotes that are basal to a clade containing animals and fungi. Thus although they have traditionally been studied by mycologists they are distant from the true fungi. Arrangement & Nomenclature Slime Mould specimens in NMW are arranged in alphabetical order of the currently accepted name (as of 2012). Names used on specimen packets that are now synonyms are cross referenced in the list below. The collection currently contains 157 Myxomycete species. Specimens are mostly from Britain, with a few from other parts of Europe or from North America. The current standard work for identification of the British species is: Ing, B. 1999. The Myxomycetes of Britain and Ireland. An Identification Handbook. Slough: Richmond Publishing Co. Ltd. Nomenclature follows the online database of Slime Mould names at www.eumycetozoa.com (accessed 2012). This database is largely in line with Ing (1999). Preservation The feeding stage is a multinucleate motile mass known as a plasmodium. The fruiting stage is a dry, fungus-like structure containing abundant spores. Mature fruiting bodies of Myxomycetes can be collected and dried, and with few exceptions (such as Ceratiomyxa) they preserve well. Plasmodia cannot be preserved, but it is useful to record the colour if possible. Semi-mature fruiting bodies may continue to mature if collected with the substrate and kept in a cool moist chamber. Collected plasmodia are unlikely to fruit. Specimens are stored in boxes to prevent crushing; labels should not be allowed to touch the specimen.
    [Show full text]
  • The Occurrence of Myxomycetes on Different Decay Stages of Trunks of Picea Abies, Pinus Sylvestris and Betula Spp. in a Small Oldgrowth Forest in Southern Finland
    Karstenia 42: 13- 22, 2002 The occurrence of myxomycetes on different decay stages of trunks of Picea abies, Pinus sylvestris and Betula spp. in a small oldgrowth forest in southern Finland TARJA UKKOLA UKKOLA, T. 2002: The occurrence of myxomycetes on different decay stages of trunks of Picea abies, Pinus sylvestris and Betula spp. in a small oldgrowth forest in southern Finland. - Karstenia 42: 13- 22. Helsinki. ISSN 0453-3402. The occurrence of myxomycetes was studied on fallen trunks of Picea abies, Pinus sylvestris, and Betula spp. (B. pendula and B. pubescens) in a small oldgrowth forest in southern Finland in May 1998 - September 1999. The study site is located in Luukkaa Recreation Area, and was left in pristine state in 1966. The sample trunks were chosen to represent different stages of decomposition and checked every second or fourth > eek in all for 17 times. A total of 325 myxomycete specimens representing 44 taxa in 16 genera were observed. Four taxa, Comatricha pulchella var. fusca, Lycogala exiguum, Licea cf. pus ilia, and Physarum bethelii are new records to Finland. During the study, myxomycetes were most abundant on decomposing trunks of Betula spp. (123 specimens), especially on well-decayed trunks. The species diversity was about the same on all studied tree species: 27 taxa were recorded on P abies and P sylvestris, and 22 on Betula spp. The largest di ersity was on two pine trunks with fairly soft wood (a total of 19 taxa). The common myxomycetes, Ceratiomyxa fruticulosa and Lycogala epidendrum, represent generalists in this study, being abundant and present at nearly all decay stages of all studied tree species.
    [Show full text]
  • Slime Moulds
    Queen’s University Biological Station Species List: Slime Molds The current list has been compiled by Richard Aaron, a naturalist and educator from Toronto, who has been running the Fabulous Fall Fungi workshop at QUBS between 2009 and 2019. Dr. Ivy Schoepf, QUBS Research Coordinator, edited the list in 2020 to include full taxonomy and information regarding species’ status using resources from The Natural Heritage Information Centre (April 2018) and The IUCN Red List of Threatened Species (February 2018); iNaturalist and GBIF. Contact Ivy to report any errors, omissions and/or new sightings. Based on the aforementioned criteria we can expect to find a total of 33 species of slime molds (kingdom: Protozoa, phylum: Mycetozoa) present at QUBS. Species are Figure 1. One of the most commonly encountered reported using their full taxonomy; common slime mold at QUBS is the Dog Vomit Slime Mold (Fuligo septica). Slime molds are unique in the way name and status, based on whether the species is that they do not have cell walls. Unlike fungi, they of global or provincial concern (see Table 1 for also phagocytose their food before they digest it. details). All species are considered QUBS Photo courtesy of Mark Conboy. residents unless otherwise stated. Table 1. Status classification reported for the amphibians of QUBS. Global status based on IUCN Red List of Threatened Species rankings. Provincial status based on Ontario Natural Heritage Information Centre SRank. Global Status Provincial Status Extinct (EX) Presumed Extirpated (SX) Extinct in the
    [Show full text]
  • Slime Molds: Biology and Diversity
    Glime, J. M. 2019. Slime Molds: Biology and Diversity. Chapt. 3-1. In: Glime, J. M. Bryophyte Ecology. Volume 2. Bryological 3-1-1 Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 18 July 2020 and available at <https://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 3-1 SLIME MOLDS: BIOLOGY AND DIVERSITY TABLE OF CONTENTS What are Slime Molds? ....................................................................................................................................... 3-1-2 Identification Difficulties ...................................................................................................................................... 3-1- Reproduction and Colonization ........................................................................................................................... 3-1-5 General Life Cycle ....................................................................................................................................... 3-1-6 Seasonal Changes ......................................................................................................................................... 3-1-7 Environmental Stimuli ............................................................................................................................... 3-1-13 Light .................................................................................................................................................... 3-1-13 pH and Volatile Substances
    [Show full text]
  • Southeast Asian Myxomycetes. I. Thailand and Burma' DON R
    Southeast Asian Myxomycetes. I. Thailand and Burma' DON R. REYNOLDS2 and CONSTANTINE J. ALEXOPOULOS2 TROPICAL SOUTHEAST ASIA includes the Phillip­ Overeem, 1922 ; Penzig, 1898; Raciborski, 1884; pines, the Indo-Malay Archipelago and Penin­ Zollinger, 1844). Chip (1921) and Sanderson sula, Eastern Indochina, and parts of Thailand (1922) published from Singapore and the lower and Burma (Richards, 1952). Europeans initi­ Malay Peninsula." Other collections were studied ated the modern phase of botanical exploration abroad (Emoto, 1931 b; Lister, 1931; Saccardo in this region. The floristics were done either and Paoletti, 1888). In the Philippines, though locally by resident foreign botanists or by spe­ some mycological work has been done, most of cialists in their native country, working with the plant taxonomists who have worked there contributed materials. That which the early resi­ have known little about the fungi. The Myxo­ dents could not competently identify was sent mycetes of Indochina are completely unknown largely to European and American specialists. in the literature. The specimens, of necessity, had to be dried or The present collections are being treated in otherwise preserved for a long sea journey. As a two parts. This paper deals with the material consequence many prominent mycologists pub­ from Thailand and Burma; the second part con­ lished on material they knew only from her­ cerns collections from the Philippines and will barium specimens. In spite of the disadvantages be submitted for publication to the Philippine of possible misinterpretation and duplication of Agriculturist. work, it is fortunate that this procedure became Heim (1962) refers briefly to an abundance prevalent; the duplicates now in the herbaria of of Myxomycetes in Thailand.
    [Show full text]
  • The Mycetozoa of North America, Based Upon the Specimens in The
    THE MYCETOZOA OF NORTH AMERICA HAGELSTEIN, MYCETOZOA PLATE 1 WOODLAND SCENES IZ THE MYCETOZOA OF NORTH AMERICA BASED UPON THE SPECIMENS IN THE HERBARIUM OF THE NEW YORK BOTANICAL GARDEN BY ROBERT HAGELSTEIN HONORARY CURATOR OF MYXOMYCETES ILLUSTRATED MINEOLA, NEW YORK PUBLISHED BY THE AUTHOR 1944 COPYRIGHT, 1944, BY ROBERT HAGELSTEIN LANCASTER PRESS, INC., LANCASTER, PA. PRINTED IN U. S. A. To (^My CJriend JOSEPH HENRI RISPAUD CONTENTS PAGES Preface 1-2 The Mycetozoa (introduction to life history) .... 3-6 Glossary 7-8 Classification with families and genera 9-12 Descriptions of genera and species 13-271 Conclusion 273-274 Literature cited or consulted 275-289 Index to genera and species 291-299 Explanation of plates 301-306 PLATES Plate 1 (frontispiece) facing title page 2 (colored) facing page 62 3 (colored) facing page 160 4 (colored) facing page 172 5 (colored) facing page 218 Plates 6-16 (half-tone) at end ^^^56^^^ f^^ PREFACE In the Herbarium of the New York Botanical Garden are the large private collections of Mycetozoa made by the late J. B. Ellis, and the late Dr. W. C. Sturgis. These include many speci- mens collected by the earlier American students, Bilgram, Farlow, Fullmer, Harkness, Harvey, Langlois, Macbride, Morgan, Peck, Ravenel, Rex, Thaxter, Wingate, and others. There is much type and authentic material. There are also several thousand specimens received from later collectors, and found in many parts of the world. During the past twenty years my associates and I have collected and studied in the field more than ten thousand developments in eastern North America.
    [Show full text]
  • The Myxomycetes of Athens Conty, Ohio
    The Myxomycetes of Athens County, Ohio1 DAKKIN L. RUIJINO2 AND JAMKS C. CAVI;NI)KR, Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701 ABSTRACT. The goal of this study was to document all reported collections of myxomycetes (slime molds) from Athens County, OH (USA). The compilation of several published and unpublished studies of myxomycete records from Athens County resulted in a total of 52 species. The species were distributed among 6 orders, 9 families, and 25 genera and represent 24% of the myxomycetes known from Ohio and approximately 15% of those recorded for North America. No new collections for the state of Ohio were reported. OHIO J SCI 102 (2):27-29, 2002 INTRODUCTION both authors. Nomenclature follows that of Keller and Although widely distributed, myxomycetes (true slime Braun (1999) [which closely follows the treatment of molds, acellular slime molds, or plasmodial slime molds) Martin and others (1983) and the synonymy of Martin have not been fully studied throughout Ohio. Despite and Alexopoulos (1969)]- major taxonomic works by Fulmer (1921) and Keller Collections made by Udall (1951) were from a beech- and Braun (1999), the distribution and ecology of the maple forest in Lee Township, and collections made by myxomycetes in several Ohio counties are not well Jones (1943) were from Athens Township (mesic forests known. For example, of the 88 counties in the state, only and Ohio University Campus). Jones' and Udall's theses 64 have recorded myxomycete collections, and many of are available from the Department of Environmental these counties have fewer than five recorded species and Plant Biology, Ohio University, Athens, OH.
    [Show full text]
  • Arcyria Cinerea (Bull.) Pers
    Myxomycete diversity of the Altay Mountains (southwestern Siberia, Russia) 1* 2 YURI K. NOVOZHILOV , MARTIN SCHNITTLER , 3 4 ANASTASIA V. VLASENKO & KONSTANTIN A. FEFELOV *[email protected] 1,3V.L. Komarov Botanical Institute of the Russian Academy of Sciences 197376 St. Petersburg, Russia, 2Institute of Botany and Landscape Ecology, Ernst-Moritz-Arndt University D-17487 Greifswald, Germany, 4Institute of Plant and Animal Ecology of the Russian Academy of Sciences Ural Division, 620144 Yekaterinburg, Russia Abstract ― A survey of 1488 records of myxomycetes found within a mountain taiga-dry steppe vegetation gradient has identified 161 species and 41 genera from the southeastern Altay mountains and adjacent territories of the high Ob’ river basin. Of these, 130 species were seen or collected in the field and 59 species were recorded from moist chamber cultures. Data analysis based on the species accumulation curve estimates that 75–83% of the total species richness has been recorded, among which 118 species are classified as rare (frequency < 0.5%) and 7 species as abundant (> 3% of all records). Among the 120 first species records for the Altay Mts. are 6 new records for Russia. The southeastern Altay taiga community assemblages appear highly similar to other taiga regions in Siberia but differ considerably from those documented from arid regions. The complete and comprehensive illustrated report is available at http://www.Mycotaxon.com/resources/weblists.html. Key words ― biodiversity, ecology, slime moulds Introduction Although we have a solid knowledge about the myxomycete diversity of coniferous boreal forests of the European part of Russia (Novozhilov 1980, 1999, Novozhilov & Fefelov 2001, Novozhilov & Lebedev 2006, Novozhilov & Schnittler 1997, Schnittler & Novozhilov 1996) the species associated with this vegetation type in Siberia are poorly studied.
    [Show full text]
  • Hydrophobicity of Myxomycete Spores: an Undescribed Aspect of Spore Ornamentation
    Mycosphere 5 (4): 601−606 (2014) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2014 Online Edition Doi 10.5943/mycosphere/5/4/12 Hydrophobicity of myxomycete spores: An undescribed aspect of spore ornamentation Hoppe T1 and Schwippert WW2 1 Institute of Botany and Landscape Ecology, University of Greifswald, Soldmann-Street 15, D−17487 Greifswald, Germany 2 Department of Neurobiology, University of Kassel, Heinrich-Plett-Street 40, D−34131 Kassel, Germany Hoppe T, Schwippert WW 2014 − Hydrophobicity of myxomycete spores: An undescribed aspect of spore ornamentation. Mycosphere 5(4), 601−606, Doi 10.5943/mycosphere/5/4/12 Abstract Plasmodial slime molds are adapted to a number of different ecosystems. Spores could be classified into three different ornamentation types: spiny, reticulate and smooth surfaces. We examined three different hydrophobic effects for these surface types. The surface energy was calculated for Metatrichia floriformis (reticulate) = 25.61 J, Fuligo septica var. candida (spiny) = 50.81 J, Ceratiomyxa fruticulosa (smooth) = 72.63 J and Licea parasitica (smooth) = 72.74 J. Spores with spines half-sink into the water surface. However, they float on the surface. Reticulate spores show super-hydrophobic effects and are refractive to the water surface. Spores without ornamentation sink after contact with water. Key words – dispersal strategies – spore morphology – surface-energy Introduction Myxomycetes are common protoctista of natural habitats. There are two possible strategies to colonize a new habitat. We differentiate an active (via amoeba or plasmodia) and a passive (dispersal by spores and cysts) form of disperse. The life cycle can be described as a two generation model (Fig.
    [Show full text]
  • Nisan-EKİM2012 1 2.Cdr
    Nisan-Ekim(2012)3(1-2)5-11 25.06.2012 05.10.2012 Diversity and Ecology of Myxomycetes in Antakya-Hatay (Turkey) Hayri BABA Department of Biology, Faculty of Science and Arts, Mustafa Kemal University, Alahan-31000 Antakya- Hatay – Turkey Abstract This taxonomic study has been made on the specimens which were obtained from different region of Antakya (Hatay) and near environment in 2010 and 2011. The specimens on natural substrata, barks and debris material, the bark of living trees, as well as decaying bark, wood, leaves and litter were collected. In this study forty four species belonging toProtosteliomycetes and Myxomycetes were identified both in field and moist chamber culture. This is the first study in Antakya and all of the species are recorded for the first time inAntakya-Hatay Key Words: Myxomycetes diversity, Ecology,Antakya-Hatay, Turkey. Antakya-Hatay (Türkiye) Miksomisetlerinin Çeşitliliği ve Ekolojisi Özet Bu taksonomik çalışma Antakya (Hatay) merkez ve yakın çevresinden 2010 ve 2011 yılları arasında toplanan örnekler üzerinde yapılmıştır. Doğal ortamdan bitkisel substratlar, kabuk, döküntü materyaller, yaprak odun ve canlı bitkisel substratlar toplandı. Doğal ortamda ve nem odası tekniği ile Protosteliomycetesve Myxomycetes sınıfında 44 tür elde edildi. Bu çalışma Antakya'da ilk defa yapılmıştır ve toplanan tüm türlerAntakya'da ilk defa kaydedilmiştir. Anahtar kelimeler: Miksomiset çeşitliliği, Ekolojisi,Antakya-Hatay, Türkiye Introduction Animalia. Because of being typically found with Myxomycetes are characterized by an fungi in the same habitats, they were treated as amorphous, multinucleate, protoplasmic mass taxa within the KingdomFungi . Unlike fungi, called plasmodium and fruiting bodies. myxomycetes do not excrete extracellular Myxomycetes are widespread and relatively digestive enzymes and the role of myxomycetes diversed in their distribution throughout the in the environment is not as decomposers or world.Myxomycetes were previously classified pathogens (Keller and Braun, 1999).
    [Show full text]
  • The Evolution of Ogres: Cannibalistic Growth in Giant Phagotrophs
    bioRxiv preprint doi: https://doi.org/10.1101/262378; this version posted February 12, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bloomfield, 2018-02-08 – preprint copy - bioRχiv The evolution of ogres: cannibalistic growth in giant phagotrophs Gareth Bloomfell MRC Laboratory of Molecular Biology, Cambrilge, UK [email protected] twitter.com/iliomorph Abstract Eukaryotes span a very large size range, with macroscopic species most often formel in multicellular lifecycle stages, but sometimes as very large single cells containing many nuclei. The Mycetozoa are a group of amoebae that form macroscopic fruiting structures. However the structures formel by the two major mycetozoan groups are not homologous to each other. Here, it is proposel that the large size of mycetozoans frst arose after selection for cannibalistic feeling by zygotes. In one group, Myxogastria, these zygotes became omnivorous plasmolia; in Dictyostelia the evolution of aggregative multicellularity enablel zygotes to attract anl consume surrounling conspecifc cells. The cannibalism occurring in these protists strongly resembles the transfer of nutrients into metazoan oocytes. If oogamy evolvel early in holozoans, it is possible that aggregative multicellularity centrel on oocytes coull have precelel anl given rise to the clonal multicellularity of crown metazoa. Keyworls: Mycetozoa; amoebae; sex; cannibalism; oogamy Introduction – the evolution of Mycetozoa independently in several diverse lineages, presumably reflecting strong selection for effective dispersal [9]. The dictyostelids (social amoebae or cellular slime moulds) and myxogastrids (also known as myxomycetes and true or The close relationship between dictyostelia and myxogastria acellular slime moulds) are protists that form macroscopic suggests that they shared a common ancestor that formed fruiting bodies (Fig.
    [Show full text]