Protozoologica Special Issue: Protists in Soil Processes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quantitative Evolutionary Analysis of the Life Cycle of Social Amoebae Darja Dubravcic
Quantitative evolutionary analysis of the life cycle of social amoebae Darja Dubravcic To cite this version: Darja Dubravcic. Quantitative evolutionary analysis of the life cycle of social amoebae. Agricultural sciences. Université René Descartes - Paris V, 2013. English. NNT : 2013PA05T033. tel-00914467 HAL Id: tel-00914467 https://tel.archives-ouvertes.fr/tel-00914467 Submitted on 5 Dec 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Paris Descartes Ecole doctorale « Interdisciplinaire Européen Frontières de vivant » Laboratory « Ecology & Evolution » UMR7625 Laboratory of Interdisciplinary Physics UMR5588 Quantitative evolutionary analysis of the life cycle of social amoebae By Darja Dubravcic PhD Thesis in: Evolutionary Biology Directed by Minus van Baalen and Clément Nizak Presented on the 15th November 2013 PhD committee: Dr. M. van Baalen, PhD director Dr. C. Nizak, PhD Co-director Prof. V. Nanjundiah, Reviewer Prof. P. Rainey, Reviewer Prof. A. Gardner Prof. J-P. Rieu Prof. J-M Di Meglio Dr. S. de Monte, Invited 2 Abstract Social amoebae are eukaryotic organisms that inhabit soil of almost every climate zone. They are remarkable for their switch from unicellularity to multicellularity as an adaptation to starvation. -
Fold-Change Detection and Scale Invariance of Cell–Cell Signaling In
Fold-change detection and scale invariance of cell–cell PNAS PLUS signaling in social amoeba Keita Kaminoa,1, Yohei Kondoa, Akihiko Nakajimab, Mai Honda-Kitaharaa, Kunihiko Kanekoa,b, and Satoshi Sawaia,b,c,1 aDepartment of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan; bResearch Center for Complex Systems Biology, University of Tokyo, Tokyo 153-8902, Japan; and cPrecursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan Edited by Peter N. Devreotes, The Johns Hopkins University School of Medicine, Baltimore, MD, and approved April 9, 2017 (received for review February 9, 2017) Cell–cell signaling is subject to variability in the extracellular volume, process called “cAMP relay” (13). After prolonged exposure to cell number, and dilution that potentially increase uncertainty in the cAMP, the rise in extracellular cAMP level ceases due to inacti- absolute concentrations of the extracellular signaling molecules. To vation of adenylyl cyclase (14). As extracellular cAMP level is direct cell aggregation, the social amoebae Dictyostelium discoideum lowered by degradation, the cells exit from the state of reduced collectively give rise to oscillations and waves of cyclic adenosine responsivity over the course of several minutes (15, 16), and hence 3′,5′-monophosphate (cAMP) under a wide range of cell density. To the extracellular cAMP level once again starts to elevate. This date, the systems-level mechanism underlying the robustness is un- tendency for the extracellular cAMP level to rise when it is lowered, clear. By using quantitative live-cell imaging, here we show that the and to be lowered when it is raised, essentially renders extracellular magnitude of the cAMP relay response of individual cells is deter- cAMP level unstable and oscillatory. -
Comparative Genomics of the Social Amoebae Dictyostelium Discoideum
Sucgang et al. Genome Biology 2011, 12:R20 http://genomebiology.com/2011/12/2/R20 RESEARCH Open Access Comparative genomics of the social amoebae Dictyostelium discoideum and Dictyostelium purpureum Richard Sucgang1†, Alan Kuo2†, Xiangjun Tian3†, William Salerno1†, Anup Parikh4, Christa L Feasley5, Eileen Dalin2, Hank Tu2, Eryong Huang4, Kerrie Barry2, Erika Lindquist2, Harris Shapiro2, David Bruce2, Jeremy Schmutz2, Asaf Salamov2, Petra Fey6, Pascale Gaudet6, Christophe Anjard7, M Madan Babu8, Siddhartha Basu6, Yulia Bushmanova6, Hanke van der Wel5, Mariko Katoh-Kurasawa4, Christopher Dinh1, Pedro M Coutinho9, Tamao Saito10, Marek Elias11, Pauline Schaap12, Robert R Kay8, Bernard Henrissat9, Ludwig Eichinger13, Francisco Rivero14, Nicholas H Putnam3, Christopher M West5, William F Loomis7, Rex L Chisholm6, Gad Shaulsky3,4, Joan E Strassmann3, David C Queller3, Adam Kuspa1,3,4* and Igor V Grigoriev2 Abstract Background: The social amoebae (Dictyostelia) are a diverse group of Amoebozoa that achieve multicellularity by aggregation and undergo morphogenesis into fruiting bodies with terminally differentiated spores and stalk cells. There are four groups of dictyostelids, with the most derived being a group that contains the model species Dictyostelium discoideum. Results: We have produced a draft genome sequence of another group dictyostelid, Dictyostelium purpureum, and compare it to the D. discoideum genome. The assembly (8.41 × coverage) comprises 799 scaffolds totaling 33.0 Mb, comparable to the D. discoideum genome size. Sequence comparisons suggest that these two dictyostelids shared a common ancestor approximately 400 million years ago. In spite of this divergence, most orthologs reside in small clusters of conserved synteny. Comparative analyses revealed a core set of orthologous genes that illuminate dictyostelid physiology, as well as differences in gene family content. -
Ptolemeba N. Gen., a Novel Genus of Hartmannellid Amoebae (Tubulinea, Amoebozoa); with an Emphasis on the Taxonomy of Saccamoeba
The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists Journal of Eukaryotic Microbiology ISSN 1066-5234 ORIGINAL ARTICLE Ptolemeba n. gen., a Novel Genus of Hartmannellid Amoebae (Tubulinea, Amoebozoa); with an Emphasis on the Taxonomy of Saccamoeba Pamela M. Watsona, Stephanie C. Sorrella & Matthew W. Browna,b a Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, 39762 b Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, Mississippi, 39762 Keywords ABSTRACT 18S rRNA; amoeba; amoeboid; Cashia; cristae; freshwater amoebae; Hartmannella; Hartmannellid amoebae are an unnatural assemblage of amoeboid organisms mitochondrial morphology; SSU rDNA; SSU that are morphologically difficult to discern from one another. In molecular phy- rRNA; terrestrial amoebae; tubulinid. logenetic trees of the nuclear-encoded small subunit rDNA, they occupy at least five lineages within Tubulinea, a well-supported clade in Amoebozoa. The Correspondence polyphyletic nature of the hartmannellids has led to many taxonomic problems, M.W. Brown, Department of Biological in particular paraphyletic genera. Recent taxonomic revisions have alleviated Sciences, Mississippi State University, some of the problems. However, the genus Saccamoeba is paraphyletic and is Mississippi State, MS 39762, USA still in need of revision as it currently occupies two distinct lineages. Here, we Telephone number: +1 662-325-2406; report a new clade on the tree of Tubulinea, which we infer represents a novel FAX number: +1 662-325-7939; genus that we name Ptolemeba n. gen. This genus subsumes a clade of hart- e-mail: [email protected] mannellid amoebae that were previously considered in the genus Saccamoeba, but whose mitochondrial morphology is distinct from Saccamoeba. -
Myxomycetes NMW 2012Orange, Updated KS 2017.Docx
Myxomycete (Slime Mould) Collection Amgueddfa Cymru-National Museum Wales (NMW) Alan Orange (2012), updated by Katherine Slade (2017) Myxomycetes (true or plasmodial slime moulds) belong to the Eumycetozoa, within the Amoebozoa, a group of eukaryotes that are basal to a clade containing animals and fungi. Thus although they have traditionally been studied by mycologists they are distant from the true fungi. Arrangement & Nomenclature Slime Mould specimens in NMW are arranged in alphabetical order of the currently accepted name (as of 2012). Names used on specimen packets that are now synonyms are cross referenced in the list below. The collection currently contains 157 Myxomycete species. Specimens are mostly from Britain, with a few from other parts of Europe or from North America. The current standard work for identification of the British species is: Ing, B. 1999. The Myxomycetes of Britain and Ireland. An Identification Handbook. Slough: Richmond Publishing Co. Ltd. Nomenclature follows the online database of Slime Mould names at www.eumycetozoa.com (accessed 2012). This database is largely in line with Ing (1999). Preservation The feeding stage is a multinucleate motile mass known as a plasmodium. The fruiting stage is a dry, fungus-like structure containing abundant spores. Mature fruiting bodies of Myxomycetes can be collected and dried, and with few exceptions (such as Ceratiomyxa) they preserve well. Plasmodia cannot be preserved, but it is useful to record the colour if possible. Semi-mature fruiting bodies may continue to mature if collected with the substrate and kept in a cool moist chamber. Collected plasmodia are unlikely to fruit. Specimens are stored in boxes to prevent crushing; labels should not be allowed to touch the specimen. -
A Novel Structure Learning Algorithm for Bayesian Networks Inspired by Physarum Polycephalum
Physarum Learner: A Novel Structure Learning Algorithm for Bayesian Networks inspired by Physarum Polycephalum DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES DER NATURWISSENSCHAFTEN (DR. RER. NAT.) DER FAKULTAT¨ FUR¨ BIOLOGIE UND VORKLINISCHE MEDIZIN DER UNIVERSITAT¨ REGENSBURG vorgelegt von Torsten Schon¨ aus Wassertrudingen¨ im Jahr 2013 Der Promotionsgesuch wurde eingereicht am: 21.05.2013 Die Arbeit wurde angeleitet von: Prof. Dr. Elmar W. Lang Unterschrift: Torsten Schon¨ ii iii Abstract Two novel algorithms for learning Bayesian network structure from data based on the true slime mold Physarum polycephalum are introduced. The first algorithm called C- PhyL calculates pairwise correlation coefficients in the dataset. Within an initially fully connected Physarum-Maze, the length of the connections is given by the inverse correla- tion coefficient between the connected nodes. Then, the shortest indirect path between each two nodes is determined using the Physarum Solver. In each iteration, a score of the surviving edges is increased. Based on that score, the highest ranked connections are combined to form a Bayesian network. The novel C-PhyL method is evaluated with different configurations and compared to the LAGD Hill Climber, Tabu Search and Simu- lated Annealing on a set of artificially generated and real benchmark networks of different characteristics, showing comparable performance regarding quality of training results and increased time efficiency for large datasets. The second novel algorithm called SO-PhyL is introduced and shown to be able to out- perform common score based structure learning algorithms for some benchmark datasets. SO-PhyL first initializes a fully connected Physarum-Maze with constant length and ran- dom conductivities. In each Physarum Solver iteration, the source and sink nodes are changed randomly and the conductivities are updated. -
Dictyostelid Cellular Slime Molds from Caves
John C. Landolt, Steven L. Stephenson, and Michael E. Slay – Dictyostelid cellular slime molds from caves. Journal of Cave and Karst Studies, v. 68, no. 1, p. 22–26. DICTYOSTELID CELLULAR SLIME MOLDS FROM CAVES JOHN C. LANDOLT Department of Biology, Shepherd University, Shepherdstown, WV 2544 USA [email protected] STEVEN L. STEPHENSON Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701 USA [email protected] MICHAEL E. SLAY The Nature Conservancy, 601 North University Avenue, Little Rock, AR 72205 USA [email protected] Dictyostelid cellular slime molds associated with caves in Alabama, Arkansas, Indiana, Missouri, New York, Oklahoma, South Carolina, Tennessee, West Virginia, Puerto Rico, and San Salvador in the Bahamas were investigated during the period of 1990–2005. Samples of soil material collected from more than 100 caves were examined using standard methods for isolating dictyostelids. At least 17 species were recovered, along with a number of isolates that could not be identified completely. Four cos- mopolitan species (Dictyostelium sphaerocephalum, D. mucoroides, D. giganteum and Polysphondylium violaceum) and one species (D. rosarium) with a more restricted distribution were each recorded from more than 25 different caves, but three other species were present in more than 20 caves. The data gen- erated in the present study were supplemented with all known published and unpublished records of dic- tyostelids from caves in an effort to summarize what is known about their occurrence in this habitat. INTRODUCTION also occur on dung and were once thought to be primarily coprophilous (Raper, 1984). However, perhaps the most Dictyostelid cellular slime molds (dictyostelids) are single- unusual microhabitat for dictyostelids is the soil material celled, eukaryotic, phagotrophic bacterivores usually present found in caves. -
A Revised Classification of Naked Lobose Amoebae (Amoebozoa
Protist, Vol. 162, 545–570, October 2011 http://www.elsevier.de/protis Published online date 28 July 2011 PROTIST NEWS A Revised Classification of Naked Lobose Amoebae (Amoebozoa: Lobosa) Introduction together constitute the amoebozoan subphy- lum Lobosa, which never have cilia or flagella, Molecular evidence and an associated reevaluation whereas Variosea (as here revised) together with of morphology have recently considerably revised Mycetozoa and Archamoebea are now grouped our views on relationships among the higher-level as the subphylum Conosa, whose constituent groups of amoebae. First of all, establishing the lineages either have cilia or flagella or have lost phylum Amoebozoa grouped all lobose amoe- them secondarily (Cavalier-Smith 1998, 2009). boid protists, whether naked or testate, aerobic Figure 1 is a schematic tree showing amoebozoan or anaerobic, with the Mycetozoa and Archamoe- relationships deduced from both morphology and bea (Cavalier-Smith 1998), and separated them DNA sequences. from both the heterolobosean amoebae (Page and The first attempt to construct a congruent molec- Blanton 1985), now belonging in the phylum Per- ular and morphological system of Amoebozoa by colozoa - Cavalier-Smith and Nikolaev (2008), and Cavalier-Smith et al. (2004) was limited by the the filose amoebae that belong in other phyla lack of molecular data for many amoeboid taxa, (notably Cercozoa: Bass et al. 2009a; Howe et al. which were therefore classified solely on morpho- 2011). logical evidence. Smirnov et al. (2005) suggested The phylum Amoebozoa consists of naked and another system for naked lobose amoebae only; testate lobose amoebae (e.g. Amoeba, Vannella, this left taxa with no molecular data incertae sedis, Hartmannella, Acanthamoeba, Arcella, Difflugia), which limited its utility. -
A Survey of Myxomycetes from the Black Hills of South Dakota and the Bear Lodge Mountains of Wyoming
Proceedings of the South Dakota Academy of Science, Vol. 89 (2010) 45 A SURVEY OF MYXOMYCETES FROM THE BLACK HILLS OF SOUTH DAKOTA AND THE BEAR LODGE MOUNTAINS OF WYOMING A. Gabel1*, E. Ebbert2, M. Gabel1 and L. Zierer2 1Biology Department Black Hills State University 1200 University Spearfish, South Dakota 57799 2Deceased *[email protected] ABSTRACT Fruiting bodies of slime molds were collected intermittently from the field from 1990-2009. During the summers of 2007-2009 slime molds also were cultured in moist chambers from downed, decaying wood, dried deciduous leaf litter, and dried grass litter that was gathered three times each summer from four areas at each of the following six sites. Alabaugh Canyon and Boles/Redbird Canyons were dry, prairie/woodlands in Fall River and Custer Counties in the southern Black Hills. Pony Gulch and Spring Creek, in the central hills were moist, broad gulches in Pennington County, and the northern hills sites were Botany Bay and Grigg’s Gulch, narrow, moist canyons in Lawrence County. Contents of a total of 648 cultures were examined. Presence of a species in a culture was considered to be a collection and some cultures contained more than one species. Eighty-two species from both field and culture surveys were identified, and 62 are considered as new records for the Black Hills, and 61 for western South Dakota. Six hundred fifty-seven collections representing 65 spe- cies developed in culture included species from all orders of Myxomycetes. Only five species occurred at a relative abundance > 5% and 20 occurred only once. -
Multiple Roots of Fruiting Body Formation in Amoebozoa
GBE Multiple Roots of Fruiting Body Formation in Amoebozoa Falk Hillmann1,*, Gillian Forbes2, Silvia Novohradska1, Iuliia Ferling1,KonstantinRiege3,MarcoGroth4, Martin Westermann5,ManjaMarz3, Thomas Spaller6, Thomas Winckler6, Pauline Schaap2,and Gernot Glo¨ ckner7,* 1Junior Research Group Evolution of Microbial Interaction, Leibniz Institute for Natural Product Research and Infection Biology – Hans Kno¨ ll Institute (HKI), Jena, Germany 2Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, United Kingdom 3Bioinformatics/High Throughput Analysis, Friedrich Schiller University Jena, Germany 4CF DNA-Sequencing, Leibniz Institute on Aging Research, Jena, Germany 5Electron Microscopy Center, Jena University Hospital, Germany 6Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany 7Institute of Biochemistry I, Medical Faculty, University of Cologne, Germany *Corresponding authors: E-mails: [email protected]; [email protected]. Accepted: January 11, 2018 Data deposition: The genome sequence and gene predictions of Protostelium aurantium and Protostelium mycophagum were deposited in GenBank under the Accession Numbers MDYQ00000000 and MZNV00000000, respectively. The mitochondrial genome of P. mycophagum was deposited under the Accession number KY75056 and that of P. aurantium under the Accession number KY75057. The RNAseq reads can be found in Bioproject Accession PRJNA338377. All sequence and annotation data are also available directly from the authors. The P. aurantium strain is deposited in the Jena Microbial Resource Collection (JMRC) under accession number SF0012540. Abstract Establishment of multicellularity represents a major transition in eukaryote evolution. A subgroup of Amoebozoa, the dictyos- teliids, has evolved a relatively simple aggregative multicellular stage resulting in a fruiting body supported by a stalk. Protosteloid amoeba, which are scattered throughout the amoebozoan tree, differ by producing only one or few single stalked spores. -
Protist Phylogeny and the High-Level Classification of Protozoa
Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane). -
GIULIA MAGRI RIBEIRO Sequenciamento E
GIULIA MAGRI RIBEIRO Sequenciamento e anota¸c˜ao do transcriptoma da ameba tecada Arcella intermedia: Descri¸c˜ao de vias e descobertas de genes. Transcriptome sequencing and annotation of the testate amoeba Arcella intermedia: Pathway description and gene discovery. S˜aoPaulo 2018 GIULIA MAGRI RIBEIRO Sequenciamento e anota¸c˜ao do transcriptoma da ameba tecada Arcella intermedia: Descri¸c˜ao de vias e descobertas de genes. Transcriptome sequencing and annotation of the testate amoeba Arcella intermedia: Pathway description and gene discovery. Disserta¸c˜aoapresentada ao Instituto de Biociˆencias da Universidade de S˜ao Paulo para obten¸c˜aodo t´ıtulo de Mestre em Zoologia pelo Programa de P´os-gradua¸c˜ao em Zoologia. Vers˜ao corrigida contendo as altera¸c˜oes solicitadas pela comiss˜aojulgadora em 30 de Outubro de 2018. A vers˜aooriginal encontra-se no Instituto de Biociˆencias da USP e na Biblioteca Digital de Teses e Disserta¸c˜oes da USP. Supervisor: Prof. Dr. Daniel J.G. Lahr S˜aoPaulo 2018 Ficha catalográfica elaborada pelo Serviço de Biblioteca do Instituto de Biociências da USP, com os dados fornecidos pelo autor no formulário: http://www.ib.usp.br/biblioteca/ficha-catalografica/ficha.php Ribeiro, Giulia Magri Sequenciamento e anotação do transcriptoma da ameba tecada Arcella intermedia: Descrição de vias e descobertas de genes. / Giulia Magri Ribeiro; orientador Daniel José Galafasse Lahr. -- São Paulo, 2018. 118 f. Dissertação (Mestrado) - Instituto de Biociências da Universidade de São Paulo, Departamento de Zoologia. 1. Teca ameba. 2. Transcriptoma. 3. Transferências laterais de genes. 4. Metabolismo anaeróbio. I. Lahr, Daniel José Galafasse, orient.