Ptolemeba N. Gen., a Novel Genus of Hartmannellid Amoebae (Tubulinea, Amoebozoa); with an Emphasis on the Taxonomy of Saccamoeba

Total Page:16

File Type:pdf, Size:1020Kb

Ptolemeba N. Gen., a Novel Genus of Hartmannellid Amoebae (Tubulinea, Amoebozoa); with an Emphasis on the Taxonomy of Saccamoeba The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists Journal of Eukaryotic Microbiology ISSN 1066-5234 ORIGINAL ARTICLE Ptolemeba n. gen., a Novel Genus of Hartmannellid Amoebae (Tubulinea, Amoebozoa); with an Emphasis on the Taxonomy of Saccamoeba Pamela M. Watsona, Stephanie C. Sorrella & Matthew W. Browna,b a Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, 39762 b Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, Mississippi, 39762 Keywords ABSTRACT 18S rRNA; amoeba; amoeboid; Cashia; cristae; freshwater amoebae; Hartmannella; Hartmannellid amoebae are an unnatural assemblage of amoeboid organisms mitochondrial morphology; SSU rDNA; SSU that are morphologically difficult to discern from one another. In molecular phy- rRNA; terrestrial amoebae; tubulinid. logenetic trees of the nuclear-encoded small subunit rDNA, they occupy at least five lineages within Tubulinea, a well-supported clade in Amoebozoa. The Correspondence polyphyletic nature of the hartmannellids has led to many taxonomic problems, M.W. Brown, Department of Biological in particular paraphyletic genera. Recent taxonomic revisions have alleviated Sciences, Mississippi State University, some of the problems. However, the genus Saccamoeba is paraphyletic and is Mississippi State, MS 39762, USA still in need of revision as it currently occupies two distinct lineages. Here, we Telephone number: +1 662-325-2406; report a new clade on the tree of Tubulinea, which we infer represents a novel FAX number: +1 662-325-7939; genus that we name Ptolemeba n. gen. This genus subsumes a clade of hart- e-mail: [email protected] mannellid amoebae that were previously considered in the genus Saccamoeba, but whose mitochondrial morphology is distinct from Saccamoeba. In accor- Received: 6 March 2014; revised 7 May dance with previous research, we formalize the clade as distinct from Sacc- 2014; accepted May 8, 2014. amoeba. Transmission electron microscopy of our isolates illustrate that both molecularly discrete species can be further differentiated by their unique mito- doi:10.1111/jeu.12139 chondrial cristal morphology. HARTMANNELLIDAE Volkonsky, 1931 is a family of limax- Dykova et al. 2008). The hartmannellids have recently shaped amoebae within Tubulinea of Amoebozoa (Adl been reviewed and redefined (Brown et al. 2011; Smirnov et al. 2012). The family classically includes the genera et al. 2011). Hartmannella, Cashia, Glaeseria, and Saccamoeba (Page The two most speciose hartmannellid genera are Hart- 1974, 1988). These genera are morphologically difficult to mannella and Saccamoeba; however, both genera appear ascertain between taxa, and recent molecular data have to be paraphyletic in molecular phylogenetic reconstruc- proven that the lines between the genera are particularly tions (Dykova et al. 2008). The fundamental difference skewed. The most challenging aspect is that hartmannel- between the two genera is that Saccamoeba lacks a lids look very similar to one another in terms of gross mor- distinctive hyaline cap on its monotactic pseudopodium, phology. Generally, the trophozoites are elongate with a unlike the distinctive hyaline cap observed in Hartmannella high length to breadth of ratio, typically > 4 (Page 1988). (Page 1988). Hartmannella has been recently redefined They most often move in a monotactic fashion, with non- according to molecular phylogenetics in Brown et al. monotactic pseudopodial extensions resulting in abrupt (2011) and is beginning to be taxonomically resolved changes in direction that can be somewhat eruptive in (Smirnov et al. 2011). However, Saccamoeba is still fashion. Cells are uninucleate with a vesicular nucleolus. greatly in need of revision. The first molecular assignation In addition, molecular phylogenetic trees have shown that of Saccamoeba was in 2000 from an isolate earlier identi- even though the hartmannellids are superficially alike at fied at the American Type Culture Collection (ATCC) as the morphological level they are polyphyletic, comprising Saccamoeba limax (ATCC 30942) (Amaral Zettler et al. at least four different clades in nuclear-encoded small 2000). Dykova et al. (2002)isolated an amoeba (strain subunit rDNA (SSU rDNA) trees (Brown et al. 2011; LOS7N) that is nearly identical in SSU rDNA sequence © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists Journal of Eukaryotic Microbiology 2014, 0, 1–9 1 Ptolemeba n. gen., a New Hartmannellid Genus Watson et al. (99.58% uncorrected pairwise distance [upd]) to ATCC 0.75 g K2HPO4, 15.0 g agar, and 1 liter ddH2O) Petri 30942, S. limax sensu (Amaral Zettler et al. 2000). They plates. The plates were then incubated for 4 d and examined strain LOS7N under transmission electron observed with a 10X objective under a compound micro- microscopy (TEM) and found that it has unique tubular scope. On the edges of the absorbed water droplet amoe- mitochondrial cristae that are arranged in an unusual heli- bae were observed. For all strains, a single amoeba cell cal pattern that is very uniform (Dykova et al. 2002). This was isolated using a flame sterilized 30-gage platinum cristal configuration is clearly dissimilar to previous TEM wire micro loop, where the loop was used to drag a single reports of S. limax sensu Page, 1985; which has branching amoeba along the agar surface to isolate it away from all tubular cristae that do not appear to have a uniform other eukaryotes on the inoculated plate. Each culture arrangement (Page 1985). Later, Dykova et al. (2008) iso- was established as clonal with no other accompanying lated a new strain (NTSHR) assigned to Saccamoeba that eukaryotes. Cultures are maintained through monthly pas- appears to be very similar to Page’s concept of S. limax in sage onto fresh wMY plates inoculated with a streak of both light and TEM morphology. However, strain NTSHR Escherichia coli (strain K-12 MG1655) as a food source. branches distantly away from S. limax sensu Amaral Zet- Cultures Nx13-1a and SK13-4e have been deposited with tler et al. 2000 (Dykova et al. 2008). This led Dykova et al. the ATCC under accession PRA-414 and PRA-415, respec- to recognize NTSHR as a representative strain of Sacc- tively. amoeba and that S. limax sensu Amaral Zettler et al. (2000) should be considered a distinct genus. However, Light microscopy they did not propose a name for that clade of strains. Although helical patterning of mitochondrial cristae is All light micrographs were taken using a Zeiss AxioSkop 2 observed in the morphologically similar genus Cashia (Carl Zeiss Microimaging, Thornwood, NY) connected to (Page, 1985) as noted by Dykova et al. 2008; the pattern- an 18-megapixel Canon 650D color digital camera (Canon, ing of Cashia is much less pronounced and less uniform Melville, NY). Image capture was performed by use of than in NTSHR (compare fig. 1E–H of Dykova et al. 2008 Canon’s image capture software (EOS Utility; Canon). to fig. 27 and 28 of Page 1985). Observations and photomicrographs using differential Here, we present three novel isolates of freshwater/soil interference contrast optics were made by inoculating a amoebae that were obtained from samples collected from drop of wMY liquid media with amoebae taken from agar eastern-central Mississippi. Our isolates have a general plates onto glass slides covered with a coverslip. Mea- appearance of saccamoebids, with limax-type morphology surements were taken using the measurement function of and frequently lack a distinctive hyaline cap. We present ImageJ (Schneider et al. 2012). morphological and ultrastructural data as well as an SSU rDNA phylogeny. One of our strains branches with the DNA extraction taxon “Saccamoeba limax” sensu Amaral Zettler et al. 2000 and LOS7N. Our other two strains are virtually identi- For DNA isolation, Nx13-1a, Nx13-1c, and Sk13-4e were cal to one another at the SSU rDNA level except for a cultured with E. coli (strain K-12 MG1655) on wMY agar 497-bp group I intron in strain Nx13-1c; together they plates at room temperature (ca. 21 °C). DNA was branch as sister to the amoebae with helical cristae, i.e. extracted from two plates of dense growth amoebae ATCC 30942 and LOS7N. using a modified salt extraction method (Aljanabi and Mar- tinez 1997) for use as a template in polymerase chain reaction (PCR) amplifications. Briefly, cells were resus- MATERIALS AND METHODS pended in 5-ml liquid wMY and collected in a 15-ml coni- cal tube. The cells were pelleted by centrifugation at Isolation and culturing 3184 g for 2 min, and the cell pellet was suspended in Strains Nx13-1a and Nx13-1c were isolated from a water 200 ll of salt homogenizing buffer (0.4 M NaCl, 10 mM sample that was collected from Sam D. Hamilton Noxu- Tris–HCl pH 8.0 and 2 mM ethylenediaminetetraacetic bee National Wildlife Refuge (33.273220°N, 88.790542°W) acid [EDTA] pH 8.0). Then proteinase K (20 mg/ml) was on September 2, 2013. The water sample was from water added to the solution to a final concentration of 400 lg/ml that was about 20-cm deep, with a mud sediment bottom. and sodium dodecyl sulfate was added to final concentra- Sediment was also obtained during the water collection. tion of 2%. The sample was mixed by gentle inverting Strain Sk13-4e was isolated from a soil sample that was and then incubated at 56 °C for 1 h. The sample was incu- collected in between the annex and lecture hall of Harned bated on ice for 5 min followed by the addition of one vol- Hall on the Mississippi State University campus, Missis- ume of 5M NaCl [2.5 M]. The sample was then vortexed sippi State, MS, USA (33.455790°N, 88.788123°W) on lightly and spun 14,000 g at 4 °C for 30 min. The superna- September 20, 2013. For the soil sample, as mud slurry tant was moved to a fresh tube and centrifuged again to was made with ~5 g of soil mixed with 15 ml of sterile pellet residual precipitant (14,000 g at 4 °C for 10 min).
Recommended publications
  • Protozoologica Special Issue: Protists in Soil Processes
    Acta Protozool. (2012) 51: 201–208 http://www.eko.uj.edu.pl/ap ActA doi:10.4467/16890027AP.12.016.0762 Protozoologica Special issue: Protists in Soil Processes Review paper Ecology of Soil Eumycetozoans Steven L. STEPHENSON1 and Alan FEEST2 1Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA; 2Institute of Advanced Studies, University of Bristol and Ecosulis ltd., Newton St Loe, Bath, United Kingdom Abstract. Eumycetozoans, commonly referred to as slime moulds, are common to abundant organisms in soils. Three groups of slime moulds (myxogastrids, dictyostelids and protostelids) are recognized, and the first two of these are among the most important bacterivores in the soil microhabitat. The purpose of this paper is first to provide a brief description of all three groups and then to review what is known about their distribution and ecology in soils. Key words: Amoebae, bacterivores, dictyostelids, myxogastrids, protostelids. INTRODUCTION that they are amoebozoans and not fungi (Bapteste et al. 2002, Yoon et al. 2008, Baudalf 2008). Three groups of slime moulds (myxogastrids, dic- One of the idiosyncratic branches of the eukary- tyostelids and protostelids) are recognized (Olive 1970, otic tree of life consists of an assemblage of amoe- 1975). Members of the three groups exhibit consider- boid protists referred to as the supergroup Amoebozoa able diversity in the type of aerial spore-bearing struc- (Fiore-Donno et al. 2010). The most diverse members tures produced, which can range from exceedingly of the Amoebozoa are the eumycetozoans, common- small examples (most protostelids) with only a single ly referred to as slime moulds. Since their discovery, spore to the very largest examples (certain myxogas- slime moulds have been variously classified as plants, trids) that contain many millions of spores.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • New Data on the Cyst Structure of Hartmannella Vermiformis Page, 1967 (Lobosea, Gymnamoebia)
    Protistology 1 (2), 82-85 (1999) Protistology July, 1999 New data on the cyst structure of Hartmannella vermiformis Page, 1967 (Lobosea, Gymnamoebia) Alexey V. Smirnov a and Rolf Michel b a Dept. of Invert ebrate Zoology, Fac. of Biology & Soil Sci., St. Petersburg State University, Russia; b Zentrales Institut des Sanitatsdienstes der Bundeswehr Koblenz, Laborabteilung I - Medizin Mikrobiologie, Germany Summary Isolates of widely distributed amoeba species - Hartmannella vermiformis differs in the details of cyst structure. This is unusual for gymnamoebae and is important in course of modern approaches to amoebae systematic. Cysts of the isolate of this species, described here, have regular separation of the cyst wall into endocyst and ectocyst, in contrast with the “original” isolates, described by F.C. Page. Fine structure of H. vermiformis cysts is studied and discussed. Key words: amoebae, Lobosea, Gymnamoebia, Hartmannella, cyst, ultrastructure Introduction portable water-treatment plant near Bonn (Germany). Clonal cultures were maintained on NN-agar plates (Page, Hartmannella vermiformis was described by Page 1988) provided with Enterobacter cloacae as nutrient bac- (1967), and re-investigated twice (Page, 1974, 1985). Tro- teria. All measurements and photographs were made from phozoites of H. vermiformis are very characteristic, and alive amoebae moving on glass surface. identification of this species does not seem to be a prob- For TEM amoebae were fixed for 1h in 3% glutaral- lem. However, cyst structure in this species varies from dehyde with cacodylate buffer (pH 7.2), washed twice in strain to strain. Cyst are double-walled, but ectocyst and the same buffer, postfixed for 1h in 1% osmium tetroxide, endocyst may be so closely apposed in some strains, that dehydrated in ethanol series, and embedded in Spurr resin.
    [Show full text]
  • A Revised Classification of Naked Lobose Amoebae (Amoebozoa
    Protist, Vol. 162, 545–570, October 2011 http://www.elsevier.de/protis Published online date 28 July 2011 PROTIST NEWS A Revised Classification of Naked Lobose Amoebae (Amoebozoa: Lobosa) Introduction together constitute the amoebozoan subphy- lum Lobosa, which never have cilia or flagella, Molecular evidence and an associated reevaluation whereas Variosea (as here revised) together with of morphology have recently considerably revised Mycetozoa and Archamoebea are now grouped our views on relationships among the higher-level as the subphylum Conosa, whose constituent groups of amoebae. First of all, establishing the lineages either have cilia or flagella or have lost phylum Amoebozoa grouped all lobose amoe- them secondarily (Cavalier-Smith 1998, 2009). boid protists, whether naked or testate, aerobic Figure 1 is a schematic tree showing amoebozoan or anaerobic, with the Mycetozoa and Archamoe- relationships deduced from both morphology and bea (Cavalier-Smith 1998), and separated them DNA sequences. from both the heterolobosean amoebae (Page and The first attempt to construct a congruent molec- Blanton 1985), now belonging in the phylum Per- ular and morphological system of Amoebozoa by colozoa - Cavalier-Smith and Nikolaev (2008), and Cavalier-Smith et al. (2004) was limited by the the filose amoebae that belong in other phyla lack of molecular data for many amoeboid taxa, (notably Cercozoa: Bass et al. 2009a; Howe et al. which were therefore classified solely on morpho- 2011). logical evidence. Smirnov et al. (2005) suggested The phylum Amoebozoa consists of naked and another system for naked lobose amoebae only; testate lobose amoebae (e.g. Amoeba, Vannella, this left taxa with no molecular data incertae sedis, Hartmannella, Acanthamoeba, Arcella, Difflugia), which limited its utility.
    [Show full text]
  • Predatory Flagellates – the New Recently Discovered Deep Branches of the Eukaryotic Tree and Their Evolutionary and Ecological Significance
    Protistology 14 (1), 15–22 (2020) Protistology Predatory flagellates – the new recently discovered deep branches of the eukaryotic tree and their evolutionary and ecological significance Denis V. Tikhonenkov Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742, Russia | Submitted March 20, 2020 | Accepted April 6, 2020 | Summary Predatory protists are poorly studied, although they are often representing important deep-branching evolutionary lineages and new eukaryotic supergroups. This short review/opinion paper is inspired by the recent discoveries of various predatory flagellates, which form sister groups of the giant eukaryotic clusters on phylogenetic trees, and illustrate an ancestral state of one or another supergroup of eukaryotes. Here we discuss their evolutionary and ecological relevance and show that the study of such protists may be essential in addressing previously puzzling evolutionary problems, such as the origin of multicellular animals, the plastid spread trajectory, origins of photosynthesis and parasitism, evolution of mitochondrial genomes. Key words: evolution of eukaryotes, heterotrophic flagellates, mitochondrial genome, origin of animals, photosynthesis, predatory protists, tree of life Predatory flagellates and diversity of eu- of the hidden diversity of protists (Moon-van der karyotes Staay et al., 2000; López-García et al., 2001; Edg- comb et al., 2002; Massana et al., 2004; Richards The well-studied multicellular animals, plants and Bass, 2005; Tarbe et al., 2011; de Vargas et al., and fungi immediately come to mind when we hear 2015). In particular, several prevailing and very abun- the term “eukaryotes”. However, these groups of dant ribogroups such as MALV, MAST, MAOP, organisms represent a minority in the real diversity MAFO (marine alveolates, stramenopiles, opistho- of evolutionary lineages of eukaryotes.
    [Show full text]
  • Multiple Roots of Fruiting Body Formation in Amoebozoa
    GBE Multiple Roots of Fruiting Body Formation in Amoebozoa Falk Hillmann1,*, Gillian Forbes2, Silvia Novohradska1, Iuliia Ferling1,KonstantinRiege3,MarcoGroth4, Martin Westermann5,ManjaMarz3, Thomas Spaller6, Thomas Winckler6, Pauline Schaap2,and Gernot Glo¨ ckner7,* 1Junior Research Group Evolution of Microbial Interaction, Leibniz Institute for Natural Product Research and Infection Biology – Hans Kno¨ ll Institute (HKI), Jena, Germany 2Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, United Kingdom 3Bioinformatics/High Throughput Analysis, Friedrich Schiller University Jena, Germany 4CF DNA-Sequencing, Leibniz Institute on Aging Research, Jena, Germany 5Electron Microscopy Center, Jena University Hospital, Germany 6Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany 7Institute of Biochemistry I, Medical Faculty, University of Cologne, Germany *Corresponding authors: E-mails: [email protected]; [email protected]. Accepted: January 11, 2018 Data deposition: The genome sequence and gene predictions of Protostelium aurantium and Protostelium mycophagum were deposited in GenBank under the Accession Numbers MDYQ00000000 and MZNV00000000, respectively. The mitochondrial genome of P. mycophagum was deposited under the Accession number KY75056 and that of P. aurantium under the Accession number KY75057. The RNAseq reads can be found in Bioproject Accession PRJNA338377. All sequence and annotation data are also available directly from the authors. The P. aurantium strain is deposited in the Jena Microbial Resource Collection (JMRC) under accession number SF0012540. Abstract Establishment of multicellularity represents a major transition in eukaryote evolution. A subgroup of Amoebozoa, the dictyos- teliids, has evolved a relatively simple aggregative multicellular stage resulting in a fruiting body supported by a stalk. Protosteloid amoeba, which are scattered throughout the amoebozoan tree, differ by producing only one or few single stalked spores.
    [Show full text]
  • CH28 PROTISTS.Pptx
    9/29/14 Biosc 41 Announcements 9/29 Review: History of Life v Quick review followed by lecture quiz (history & v How long ago is Earth thought to have formed? phylogeny) v What is thought to have been the first genetic material? v Lecture: Protists v Are we tetrapods? v Lab: Protozoa (animal-like protists) v Most atmospheric oxygen comes from photosynthesis v Lab exam 1 is Wed! (does not cover today’s lab) § Since many of the first organisms were photosynthetic (i.e. cyanobacteria), a LOT of excess oxygen accumulated (O2 revolution) § Some organisms adapted to use it (aerobic respiration) Review: History of Life Review: Phylogeny v Which organelles are thought to have originated as v Homology is similarity due to shared ancestry endosymbionts? v Analogy is similarity due to convergent evolution v During what event did fossils resembling modern taxa suddenly appear en masse? v A valid clade is monophyletic, meaning it consists of the ancestor taxon and all its descendants v How many mass extinctions seem to have occurred during v A paraphyletic grouping consists of an ancestral species and Earth’s history? Describe one? some, but not all, of the descendants v When is adaptive radiation likely to occur? v A polyphyletic grouping includes distantly related species but does not include their most recent common ancestor v Maximum parsimony assumes the tree requiring the fewest evolutionary events is most likely Quiz 3 (History and Phylogeny) BIOSC 041 1. How long ago is Earth thought to have formed? 2. Why might many organisms have evolved to use aerobic respiration? PROTISTS! Reference: Chapter 28 3.
    [Show full text]
  • Testate Lobose Amoebae)
    Palaeontologia Electronica palaeo-electronica.org Mediolus, a new genus of Arcellacea (Testate Lobose Amoebae) R. Timothy Patterson ABSTRACT Mediolus, a new arcellacean genus of the Difflugidae (informally known as the- camoebia, testate rhizopods, or testate lobose amoebae) differs from other genera of the family in having distinctive tooth-like inward oriented apertural crenulations and tests generally characterized by a variable number of hollow basal spines. R. Timothy Patterson. Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, Ontario, K1S 5B6, Canada. [email protected] Keywords: Arcellacea; thecamoebian; testate lobose amoebae; Quaternary, new genus INTRODUCTION of the simple unilocular test (e.g., Bonnet, 1975; Medioli et al., 1987, 1990; Beyens and Meisterfeld, Arcellacea (also informally known as the- 2001), although some researchers have placed camoebians, testate amoebae, testate rhizopods, more emphasis on test composition (e.g., Ander- or testate lobose amoebae; Patterson et al., 2012) son, 1988). The proliferation of species descrip- are a diverse group of unicellular testate rhizopods tions within the Difflugia, often based on subtle test that occur in a wide array of aquatic and terrestrial differences, has resulted in considerable taxo- environments (Patterson and Kumar, 2002) from nomic confusion (Patterson and Kumar, 2002). the tropics to poles (Dalby et al., 2000). Although Researchers have often described new species most common in Quaternary sediments fossil based on regional interest, often with little consid- arcellaceans have been found preserved in sedi- eration of the previous literature or the systematic ments deposited under freshwater and brackish value of distinguishing characters (see discussions conditions spanning the Phanerozoic and into the in Medioli and Scott, 1983; Medioli et al., 1987; Neoproterozoic (Porter and Knoll, 2000; Van Ogden and Hedley, 1980; Tolonen, 1986; Bobrov Hengstum, 2007).
    [Show full text]
  • The Risk to Human Health from Free-Living Amoebae Interaction with Legionella in Drinking and Recycled Water Systems
    THE RISK TO HUMAN HEALTH FROM FREE-LIVING AMOEBAE INTERACTION WITH LEGIONELLA IN DRINKING AND RECYCLED WATER SYSTEMS Dissertation submitted by JACQUELINE MARIE THOMAS BACHELOR OF SCIENCE (HONOURS) AND BACHELOR OF ARTS, UNSW In partial fulfillment of the requirements for the award of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL ENGINEERING SCHOOL OF CIVIL AND ENVIRONMENTAL ENGINEERING FACULTY OF ENGINEERING MAY 2012 SUPERVISORS Professor Nicholas Ashbolt Office of Research and Development United States Environmental Protection Agency Cincinnati, Ohio USA and School of Civil and Environmental Engineering Faculty of Engineering The University of New South Wales Sydney, Australia Professor Richard Stuetz School of Civil and Environmental Engineering Faculty of Engineering The University of New South Wales Sydney, Australia Doctor Torsten Thomas School of Biotechnology and Biomolecular Sciences Faculty of Science The University of New South Wales Sydney, Australia ORIGINALITY STATEMENT '1 hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom 1 have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.' Signed ~ ............................
    [Show full text]
  • Diptera: Sciaroidea Incertae Sedis), with Description of Three New Species from India and Vietnam
    ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 15.xii.2014 Volume 54(2), pp. 729–739 ISSN 0374-1036 http://zoobank.org/urn:lsid:zoobank.org:pub:8FF046B2-6267-454D-8A28-9AE80CC0F23C Notes on Nepaletricha (Diptera: Sciaroidea incertae sedis), with description of three new species from India and Vietnam Heikki HIPPA1) & Jan ŠEVýÍK2) 1) Gribbylunds allé 2, SE-183 65 Täby, Sweden; e-mail: [email protected] 2) Department of Biology and Ecology, University of Ostrava, Chittussiho 10, CZ-71000 Ostrava, Czech Republic; e-mail: [email protected] Abstract. The following new species are described: Nepaletricha dembickyi sp. nov. (India), N. lobosa sp. nov. (Vietnam) and N. sigma sp. nov. (India). The sys- tematic position of the genus is brieÀ y discussed. A key to the six known species of Nepaletricha is given. Key words. Insecta, Diptera, Sciaroidea, Antefungivoridae, Pleciomimidae, Rangomaramidae, Heterotricha group, Nepaletricha, fungus gnats, taxonomy, key, Oriental Region Introduction The genus Nepaletricha was established by CHANDLER (2002) for a single Oriental species Nepaletricha mystica Chandler, 2002. Subsequently, HIPPA et al. (2009) re-characterized the genus and added two new species from northern Thailand and Vietnam, respectively. The genus was considered as Sciaroidea incertae sedis by CHANDLER (2002) and HIPPA & VILKAMAA (2005, 2006). AMORIM & RINDAL (2007) placed Nepaletricha in the family Rangomaramidae, together with many other earlier unplaced genera of Sciaroidea. Concerning Nepaletricha, HIPPA et al. (2009) followed this placement. The classi¿ cation of AMORIM & RINDAL (2007) was strongly criticized by JASCHHOF (2011) who did not accept the new concept of Rangomara- midae and suggested to continue using Sciaroidea incertae sedis for a number of problematic genera of Sciaroidea.
    [Show full text]
  • Conicocassis, a New Genus of Arcellinina (Testate Lobose Amoebae)
    Palaeontologia Electronica palaeo-electronica.org Conicocassis, a new genus of Arcellinina (testate lobose amoebae) Nawaf A. Nasser and R. Timothy Patterson ABSTRACT Superfamily Arcellinina (informally known as thecamoebians or testate lobose amoebae) are a group of shelled benthic protists common in most Quaternary lacus- trine sediments. They are found worldwide, from the equator to the poles, living in a variety of fresh to brackish aquatic and terrestrial habitats. More than 130 arcellininid species and strains are ascribed to the genus Centropyxis Stein, 1857 within the family Centropyxidae Jung, 1942, which includes species that are distinguished by having a dorsoventral-oriented and flattened beret-like test (shell). Conicocassis, a new arcel- lininid genus of Centropyxidae differs from other genera of the family, specifically genus Centropyxis and its type species C. aculeata (Ehrenberg, 1932), by having a unique test comprised of two distinct components; a generally ovoid to subspherical, dorsoventral-oriented test body, with a pronounced asymmetrically positioned, funnel- like flange extending from a small circular aperture. The type species of the new genus, Conicocassis pontigulasiformis (Beyens et al., 1986) has previously been reported from peatlands in Germany, the Netherlands and Austria, as well as very wet mosses and aquatic environments in High Arctic regions of Europe and North America. The occurrence of the species in lacustrine environments in the central Northwest Ter- ritories extends the known geographic distribution of the genus in North America con- siderably southward. Nawaf A. Nasser. Department of Earth Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada. [email protected] R. Timothy Patterson.
    [Show full text]
  • Slime Molds: Biology and Diversity
    Glime, J. M. 2019. Slime Molds: Biology and Diversity. Chapt. 3-1. In: Glime, J. M. Bryophyte Ecology. Volume 2. Bryological 3-1-1 Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 18 July 2020 and available at <https://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 3-1 SLIME MOLDS: BIOLOGY AND DIVERSITY TABLE OF CONTENTS What are Slime Molds? ....................................................................................................................................... 3-1-2 Identification Difficulties ...................................................................................................................................... 3-1- Reproduction and Colonization ........................................................................................................................... 3-1-5 General Life Cycle ....................................................................................................................................... 3-1-6 Seasonal Changes ......................................................................................................................................... 3-1-7 Environmental Stimuli ............................................................................................................................... 3-1-13 Light .................................................................................................................................................... 3-1-13 pH and Volatile Substances
    [Show full text]