Testate Lobose Amoebae)

Total Page:16

File Type:pdf, Size:1020Kb

Testate Lobose Amoebae) Palaeontologia Electronica palaeo-electronica.org Mediolus, a new genus of Arcellacea (Testate Lobose Amoebae) R. Timothy Patterson ABSTRACT Mediolus, a new arcellacean genus of the Difflugidae (informally known as the- camoebia, testate rhizopods, or testate lobose amoebae) differs from other genera of the family in having distinctive tooth-like inward oriented apertural crenulations and tests generally characterized by a variable number of hollow basal spines. R. Timothy Patterson. Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, Ontario, K1S 5B6, Canada. [email protected] Keywords: Arcellacea; thecamoebian; testate lobose amoebae; Quaternary, new genus INTRODUCTION of the simple unilocular test (e.g., Bonnet, 1975; Medioli et al., 1987, 1990; Beyens and Meisterfeld, Arcellacea (also informally known as the- 2001), although some researchers have placed camoebians, testate amoebae, testate rhizopods, more emphasis on test composition (e.g., Ander- or testate lobose amoebae; Patterson et al., 2012) son, 1988). The proliferation of species descrip- are a diverse group of unicellular testate rhizopods tions within the Difflugia, often based on subtle test that occur in a wide array of aquatic and terrestrial differences, has resulted in considerable taxo- environments (Patterson and Kumar, 2002) from nomic confusion (Patterson and Kumar, 2002). the tropics to poles (Dalby et al., 2000). Although Researchers have often described new species most common in Quaternary sediments fossil based on regional interest, often with little consid- arcellaceans have been found preserved in sedi- eration of the previous literature or the systematic ments deposited under freshwater and brackish value of distinguishing characters (see discussions conditions spanning the Phanerozoic and into the in Medioli and Scott, 1983; Medioli et al., 1987; Neoproterozoic (Porter and Knoll, 2000; Van Ogden and Hedley, 1980; Tolonen, 1986; Bobrov Hengstum, 2007). et al., 1999; Charman et al., 2000). On the other Within the Arcellacea the genus Difflugia hand recent research suggests that many morpho- Leclerc, 1815 is the most species rich, being com- logically indistinguishable species may actually be prised of more than 300 species and 200 subspe- cryptospecies (Mitchel and Meisterfeld, 2005; Ali- cies (Meisterfeld and Mitchell, 2008). At the zon et al., 2008; Heger et al., 2013; Oliverio et al., species level, especially for fossil material, the 2014). Species ascribed to Difflugia are character- most important characteristics for systematic ized by a wide variety of morphologies, some bear- placement, has generally been the shape and size www.zoobank.org/E43633B7-2017-48CB-B887-849D86D3F230 PE Article Number: 17.2.28A Copyright: Paleontological Society July 2014 Submission: 15 November 2013. Acceptance: 19 June 2014 Patterson, R. Timothy. 2014. Mediolus, a new genus of Arcellacea (Testate Lobose Amoebae). Palaeontologia Electronica Vol. 17, Issue 2;28A; 8p; palaeo-electronica.org/content/2014/782-mediolus-new-genus PATTERSON: MEDIOLUS NEW GENUS 1 2 3 FIGURE 1. Speci- mens of Difflugia protaeiformis Lamark, 1816, the type species of Difflugia. 1. Difflugia protaeiformis Lamarck, 1816 as illustrated in Lamarck, 1816, pl. 17, figure. 5. 2. and 3. Scanning electron micrographs of hypotypes of Difflugia protaeiformis Lamark strain “protaeiformis” from Mytopo Lake, eastern Ontario (Latitude 44°40.179N, Longitude 77°3.397W). Scale bar equals 100 m. 2. side view of typical specimen with characteristic broad base and narrow, elongate neck; 3. side view of a relatively common morphology characterized by heavy agglutination on neck. ing little resemblance to the type species Difflugia sev et al., 2009), and only a single study has been protaeiformis Lamarck, 1816 (lectotype designated carried out on Difflugia (Gomaa et al., 2012). In an by Loeblich and Tappan, 1964, p. C35, as the analysis of five taxa (Difflugia bacillariarum Perty, specimen illustrated in Lamarck, 1816, pl. 17, fig- 1849, D. hiraethogii Ogden, 1983, D. acuminata ure. 5), which is characterized by an amphora- Ehrenberg, 1838; D. lanceolata Penard, 1890; D. shaped test with narrow aperture and tapering at achlora Penard, 1902) Gomaa et al. (2012) deter- the base to a point (Figure 1.1-3). mined that Difflugia is not monophyletic, and as There have been various attempts to subdi- suggested in previous morphologic studies, shell vide this large genus into more manageable sub- shape, and not test composition, most closely cor- groups. For example, Gauthier-Lièvre and Thomas relates with genetic clades. Genetic analysis of (1958) divided the genus into 10 artificial groups Arcellacea is in its infancy, and it will be many based on morphologic test variability (e.g., elon- years before such analysis is routine. It is obvious gate, globose, ovoid, urceolate, pyriform, and com- though, that due to the morphological plasticity pressed tests; lobate, collared, and toothed within lineages across evolutionary time scales, it apertures; presence or absence of spiked pro- will be a combination of morphometric and molecu- cesses). Mazei and Warren (2012) carried out a lar analysis that will eventually provide a more similar survey of Difflugia species, informally subdi- complete understanding of arcellacean biodiversity viding the genus into groupings based on morphol- (Oliverio et al., 2014). New advances in morpho- ogy. The newest available systematic tool to metric analysis techniques may also provide guid- potentially study the systematics of Difflugia is the ance as to the validity of at least morphologically application of molecular systematics. Unfortu- distinct taxa. For example, Macumber, et al. (2014) nately, due to the difficulty of sequencing protists employed a novel statistical approach to determine with agglutinated tests, only a handful of studies that two strains of Arcellacea, Difflugia protaei- have been carried out on thecamoebian taxa (e.g., formis Lamarck strain ‘acuminata’ and Difflugia Nikolaev et al., 2005; Lara et al., 2008; Kudryavt- 2 PALAEO-ELECTRONICA.ORG 12 FIGURE 2. Specimens of Mediolus corona from Wallich, 1864.1. illustrated as figure 19 in the original publication, Wallich described the specimen as “front view, showing crenulate margin of aperture; a six-horned variety”; 2. illus- trated as figure 20 in the original publication, Wallich described the specimen as “a somewhat smaller four-horned variety; side view.” protaeiformis Lamarck strain ‘claviformis’ most corona (Wallich) WALLICH 1864 p. 244, pl. 16, fig- likely represent distinct species. ures 19, 20 (reillustrated here as Figure 2.1-2). One of the most distinctive and easily recog- Diagnosis. A genus of Difflugidae characterized nizable arcellacean taxa is D. corona, Wallich, by a symmetrical globular test, a test most typically 1864, which is characterized by an agglutinated comprised of agglutinated particles from the envi- subspheroidal test, a fundus covered with a vari- ronment, round aperture with multiple inward-ori- able number of processes and a round aperture ented angular tooth-line crenulations, and a test bordered by numerous crenulations or teeth (Fig- typically characterized by a variable number of ure 2.1-2; Figure 3.1-12). Aside from both being spines extending outward on the test. unilocular and characterized by an agglutinated Description. Test free, unilocular; ovoid to sub- test this species bears no resemblance to the Diffl- spherical to spheroid; circular in section, about the ugia type species, D. protaeiformis (Figure 1.1-3). vertical aperture through the fundus; test wall com- In an attempt to make a start at formally breaking prised of agglutinating particles variously com- Difflugia into more systematically realistic groups it posed of xenogenous mineral grains and/or is proposed that D. corona be recognized as the organic material derived from the ambient environ- type species of the new genus Mediolus n. gen. ment; agglutinating particles attached together with an organic cement; circular aperture characterized TAXONOMY by thin collar of secreted cement with variable number of inward-oriented angular crenulations Subkingdom PROTOZOA also composed of cement; delicate spines may be Phylum AMOEBOZOA Lühe, 1913 present, spines long and narrow, hollow, and com- Class LOBOSIA Carpenter, 1861 posed of very fine agglutinating particles. Order ARCELLINIDA Kent, 1880 Types and occurrence. Hypotype (Canadian Superfamily ARCELLACEA Ehrenberg, 1830 Museum of Nature (CANA 87186), recent from Family DIFFLUGIDAE Stein, 1859 “Lake 10” near Yellowknife, Northwest Territories, Genus Mediolus n. gen. Canada (62°30.924’N, 113°46.817’W); Hypotype www.zoobank.org/E43633B7-2017-48CB-B887- (CANA 91905), recent from Mew Lake, Algonquin 849D86D3F230 Park, Ontario (45°34.575’N, 78°31.087’W); Hypo- Type species. Difflugia proteiformis (sic) (Ehren- type (CANA 87197), recent from Bell’s Lake, berg) subspecies D. globularis (Dujardin) var. D. municipality of King (Greater Toronto Area), 3 PATTERSON: MEDIOLUS NEW GENUS 12 34 100 µm 100 µm 50 µm 2.5 µm 56 7 8 50 µm 50 µm 50 µm 50 µm 9101112 50 µm 50 µm 10 µm 5 µm FIGURE 3. Specimens of Mediolus corona from lakes in the Subarctic (“Lake 10” near Yellowknife, Northwest Territo- ries; 62°30.924’N, 113°46.817’W); temperature region (Mew Lake, Algonquin Park, Ontario; 45°34.575’N, 78°31.087’W, Bell’s Lake, King (Greater Toronto Area), Ontario; 43°N56.597, 79°39.762W); and equatorial regions (Holocene core from Laguna
Recommended publications
  • Protozoan Fauna of Freshwater Habitats in South Dum Dum Municipality, North 24 Parganas, West Bengal
    Journal of Academia and Industrial Research (JAIR) Volume 3, Issue 3 August 2014 139 ISSN: 2278-5213 RESEARCH ARTICLE Protozoan Fauna of Freshwater Habitats in South Dum Dum Municipality, North 24 Parganas, West Bengal J. Chitra Protozoology Section, Lower Invertebrate Division, M Block, New Alipore, Kolkata-700053, India [email protected]; +91 98315 47265 ______________________________________________________________________________________________ Abstract Wetlands of South Dum Dum Municipality were focused to reveal the status of the planktonic protozoan fauna in detail. A total of 37 different sites were selected and plankton samples from these sites were collected. About 16 sp. of protozoa were identified from few localities from the present investigation. Eight species of rhizopoda belonged to 4 genera, 4 family (Pelomyxidae, Arcellidae, Centropyxidae and Difflugiidae) and 2 order (Pelobintida and Arcellinida), Four species of flagellate belongs to 2 genera, 1 family (Euglinidae) and 1 order (Euglenida), 4 species of ciliate belongs to 4 genera, 4 family (Colepidae, Vorticellidae, Euplotidae and Paramaeciidae), 2 order (Prorodontida and Peritrichida) and 2 suborder (Sporadotrichinia and Peniculina). Among 37 localities, protozoans were observed only in L2, L3, L8, L9, L12, L13, L15, L17, L18, L19, L21, L24, L26, L32, L33, L34 and L36 localities. Protozoan diversity and their abundance were noticed higher in L12, L18, L21, L26, L33 and L34 localities. Euglena viridis, E. acus, E. oxyuris and Phacus acumininata, Pelomyxa palustris, Vorticella companula were found to be higher in abundance and distribution. Keywords: South Dum Dum municipality, planktonic protozoan, Euglena viridis, abundance, distribution. Introduction Dumdum Park, Amarpalli, Telipukur, Nager Bazar, Protozoa are highly abundant in all aquatic habitats and Patipukur and Dum Dum were selected and the plankton greatly involved in food chain (Finlay, 1997).
    [Show full text]
  • Ptolemeba N. Gen., a Novel Genus of Hartmannellid Amoebae (Tubulinea, Amoebozoa); with an Emphasis on the Taxonomy of Saccamoeba
    The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists Journal of Eukaryotic Microbiology ISSN 1066-5234 ORIGINAL ARTICLE Ptolemeba n. gen., a Novel Genus of Hartmannellid Amoebae (Tubulinea, Amoebozoa); with an Emphasis on the Taxonomy of Saccamoeba Pamela M. Watsona, Stephanie C. Sorrella & Matthew W. Browna,b a Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, 39762 b Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, Mississippi, 39762 Keywords ABSTRACT 18S rRNA; amoeba; amoeboid; Cashia; cristae; freshwater amoebae; Hartmannella; Hartmannellid amoebae are an unnatural assemblage of amoeboid organisms mitochondrial morphology; SSU rDNA; SSU that are morphologically difficult to discern from one another. In molecular phy- rRNA; terrestrial amoebae; tubulinid. logenetic trees of the nuclear-encoded small subunit rDNA, they occupy at least five lineages within Tubulinea, a well-supported clade in Amoebozoa. The Correspondence polyphyletic nature of the hartmannellids has led to many taxonomic problems, M.W. Brown, Department of Biological in particular paraphyletic genera. Recent taxonomic revisions have alleviated Sciences, Mississippi State University, some of the problems. However, the genus Saccamoeba is paraphyletic and is Mississippi State, MS 39762, USA still in need of revision as it currently occupies two distinct lineages. Here, we Telephone number: +1 662-325-2406; report a new clade on the tree of Tubulinea, which we infer represents a novel FAX number: +1 662-325-7939; genus that we name Ptolemeba n. gen. This genus subsumes a clade of hart- e-mail: [email protected] mannellid amoebae that were previously considered in the genus Saccamoeba, but whose mitochondrial morphology is distinct from Saccamoeba.
    [Show full text]
  • Testate Amoebae from South Vietnam Waterbodies with the Description of New Species Difflugia Vietnamicasp
    Acta Protozool. (2018) 57: 215–229 www.ejournals.eu/Acta-Protozoologica ACTA doi:10.4467/16890027AP.18.016.10092 PROTOZOOLOGICA LSID urn:lsid:zoobank.org:pub:AEE9D12D-06BD-4539-AD97-87343E7FDBA3 Testate Amoebae from South Vietnam Waterbodies with the Description of New Species Difflugia vietnamicasp. nov. Hoan Q. TRANa, Yuri A. MAZEIb, c a Vietnamese-Russian Tropical Center, 63 Nguyen Van Huyen, Nghia Do, Cau Giay, Ha Noi, Vietnam b Department of Hydrobiology, Lomonosov Moscow State University, Moscow, Russia c Department of Zoology and Ecology, Penza State University, Penza, Russia Abstract. Testate amoebae in Vietnam are still poorly investigated. We studied species composition of testate amoebae in 47 waterbodies of South Vietnam provinces including natural lakes, reservoirs, wetlands, rivers, and irrigation channels. A total of 109 species and subspe- cies belonging to 16 genera, 9 families were identified from 191 samples. Thirty-five species and subspecies were observed in Vietnam for the first time. New speciesDifflugia vietnamica sp. nov. is described. The most species-rich genera are Difflugia (46 taxa), Arcella (25) and Centropyxis (14). Centropyxis aculeata was the most common species (observed in 68.1% samples). Centropyxis aerophila sphagniсola, Arcella discoides, Difflugia schurmanni and Lesquereusia modesta were characterised by a frequency of occurrence >20%. Other spe- cies were rarer. The species accumulation curve based on the entire dataset of this work was unsaturated and well fitted by equation S = 19.46N0.33. Species richness per sample in natural lakes and wetlands were significantly higher than that of rivers (p < 0.001). The result of the Spearman rank test shows weak or statistically insignificant relationships between species richness and water temperature, pH, dissolved oxygen, and electrical conductivity.
    [Show full text]
  • A Revised Classification of Naked Lobose Amoebae (Amoebozoa
    Protist, Vol. 162, 545–570, October 2011 http://www.elsevier.de/protis Published online date 28 July 2011 PROTIST NEWS A Revised Classification of Naked Lobose Amoebae (Amoebozoa: Lobosa) Introduction together constitute the amoebozoan subphy- lum Lobosa, which never have cilia or flagella, Molecular evidence and an associated reevaluation whereas Variosea (as here revised) together with of morphology have recently considerably revised Mycetozoa and Archamoebea are now grouped our views on relationships among the higher-level as the subphylum Conosa, whose constituent groups of amoebae. First of all, establishing the lineages either have cilia or flagella or have lost phylum Amoebozoa grouped all lobose amoe- them secondarily (Cavalier-Smith 1998, 2009). boid protists, whether naked or testate, aerobic Figure 1 is a schematic tree showing amoebozoan or anaerobic, with the Mycetozoa and Archamoe- relationships deduced from both morphology and bea (Cavalier-Smith 1998), and separated them DNA sequences. from both the heterolobosean amoebae (Page and The first attempt to construct a congruent molec- Blanton 1985), now belonging in the phylum Per- ular and morphological system of Amoebozoa by colozoa - Cavalier-Smith and Nikolaev (2008), and Cavalier-Smith et al. (2004) was limited by the the filose amoebae that belong in other phyla lack of molecular data for many amoeboid taxa, (notably Cercozoa: Bass et al. 2009a; Howe et al. which were therefore classified solely on morpho- 2011). logical evidence. Smirnov et al. (2005) suggested The phylum Amoebozoa consists of naked and another system for naked lobose amoebae only; testate lobose amoebae (e.g. Amoeba, Vannella, this left taxa with no molecular data incertae sedis, Hartmannella, Acanthamoeba, Arcella, Difflugia), which limited its utility.
    [Show full text]
  • Predatory Flagellates – the New Recently Discovered Deep Branches of the Eukaryotic Tree and Their Evolutionary and Ecological Significance
    Protistology 14 (1), 15–22 (2020) Protistology Predatory flagellates – the new recently discovered deep branches of the eukaryotic tree and their evolutionary and ecological significance Denis V. Tikhonenkov Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742, Russia | Submitted March 20, 2020 | Accepted April 6, 2020 | Summary Predatory protists are poorly studied, although they are often representing important deep-branching evolutionary lineages and new eukaryotic supergroups. This short review/opinion paper is inspired by the recent discoveries of various predatory flagellates, which form sister groups of the giant eukaryotic clusters on phylogenetic trees, and illustrate an ancestral state of one or another supergroup of eukaryotes. Here we discuss their evolutionary and ecological relevance and show that the study of such protists may be essential in addressing previously puzzling evolutionary problems, such as the origin of multicellular animals, the plastid spread trajectory, origins of photosynthesis and parasitism, evolution of mitochondrial genomes. Key words: evolution of eukaryotes, heterotrophic flagellates, mitochondrial genome, origin of animals, photosynthesis, predatory protists, tree of life Predatory flagellates and diversity of eu- of the hidden diversity of protists (Moon-van der karyotes Staay et al., 2000; López-García et al., 2001; Edg- comb et al., 2002; Massana et al., 2004; Richards The well-studied multicellular animals, plants and Bass, 2005; Tarbe et al., 2011; de Vargas et al., and fungi immediately come to mind when we hear 2015). In particular, several prevailing and very abun- the term “eukaryotes”. However, these groups of dant ribogroups such as MALV, MAST, MAOP, organisms represent a minority in the real diversity MAFO (marine alveolates, stramenopiles, opistho- of evolutionary lineages of eukaryotes.
    [Show full text]
  • CH28 PROTISTS.Pptx
    9/29/14 Biosc 41 Announcements 9/29 Review: History of Life v Quick review followed by lecture quiz (history & v How long ago is Earth thought to have formed? phylogeny) v What is thought to have been the first genetic material? v Lecture: Protists v Are we tetrapods? v Lab: Protozoa (animal-like protists) v Most atmospheric oxygen comes from photosynthesis v Lab exam 1 is Wed! (does not cover today’s lab) § Since many of the first organisms were photosynthetic (i.e. cyanobacteria), a LOT of excess oxygen accumulated (O2 revolution) § Some organisms adapted to use it (aerobic respiration) Review: History of Life Review: Phylogeny v Which organelles are thought to have originated as v Homology is similarity due to shared ancestry endosymbionts? v Analogy is similarity due to convergent evolution v During what event did fossils resembling modern taxa suddenly appear en masse? v A valid clade is monophyletic, meaning it consists of the ancestor taxon and all its descendants v How many mass extinctions seem to have occurred during v A paraphyletic grouping consists of an ancestral species and Earth’s history? Describe one? some, but not all, of the descendants v When is adaptive radiation likely to occur? v A polyphyletic grouping includes distantly related species but does not include their most recent common ancestor v Maximum parsimony assumes the tree requiring the fewest evolutionary events is most likely Quiz 3 (History and Phylogeny) BIOSC 041 1. How long ago is Earth thought to have formed? 2. Why might many organisms have evolved to use aerobic respiration? PROTISTS! Reference: Chapter 28 3.
    [Show full text]
  • “Modern-Type Plate Tectonics”?
    SILEIR RA A D B E E G D E A O D L Special Session, “A tribute to Edilton Santos, a leader in Precambrian O E I G C I A Geology in Northeastern Brazil”, edited by A.N. Sial and V.P. Ferreira O BJGEO S DOI: 10.1590/2317-4889202020190095 Brazilian Journal of Geology D ESDE 1946 Dawn of metazoans: to what extent was this influenced by the onset of “modern-type plate tectonics”? Umberto G. Cordani1* , Thomas R. Fairchild1 , Carlos E. Ganade1 , Marly Babinski1 , Juliana de Moraes Leme1 Abstract The appearance of complex megascopic multicellular eukaryotes in the Ediacaran occurred just when the dynamics of a cooling Earth allowed establishment of a new style of global tectonics that continues to the present as “modern-type plate tectonics”. The advent of this style was first registered in 620 Ma-old coesite-bearing Ultra-High Pressure eclogites within the Transbrasiliano-Kandi mega-shear zone along the site of the West Gondwana Orogeny (WGO). These eclogites comprise the oldest evidence of slab-pull deep subduction capable of inducing con- tinental collisions and producing high-relief Himalayan-type mega-mountains. Life, prior to this time, was essentially microscopic. Yet with increasing Neoproterozoic oxygenation and intensified influx of nutrients to Ediacaran oceans, resulting from the erosion of these mountains, complex macroscopic heterotrophic eukaryotes arose and diversified, taking the biosphere to a new evolutionary threshold. The repeated elevation of Himalayan-type mega-mountains ever since then has continued to play a fundamental role in nutrient supply and biosphere evolution. Other authors have alluded to the influence of Gondwana mountain-building upon Ediacaran evolution, however we claim here to have identified when and where it began.
    [Show full text]
  • Protistology an International Journal Vol
    Protistology An International Journal Vol. 10, Number 2, 2016 ___________________________________________________________________________________ CONTENTS INTERNATIONAL SCIENTIFIC FORUM «PROTIST–2016» Yuri Mazei (Vice-Chairman) Welcome Address 2 Organizing Committee 3 Organizers and Sponsors 4 Abstracts 5 Author Index 94 Forum “PROTIST-2016” June 6–10, 2016 Moscow, Russia Website: http://onlinereg.ru/protist-2016 WELCOME ADDRESS Dear colleagues! Republic) entitled “Diplonemids – new kids on the block”. The third lecture will be given by Alexey The Forum “PROTIST–2016” aims at gathering Smirnov (Saint Petersburg State University, Russia): the researchers in all protistological fields, from “Phylogeny, diversity, and evolution of Amoebozoa: molecular biology to ecology, to stimulate cross- new findings and new problems”. Then Sandra disciplinary interactions and establish long-term Baldauf (Uppsala University, Sweden) will make a international scientific cooperation. The conference plenary presentation “The search for the eukaryote will cover a wide range of fundamental and applied root, now you see it now you don’t”, and the fifth topics in Protistology, with the major focus on plenary lecture “Protist-based methods for assessing evolution and phylogeny, taxonomy, systematics and marine water quality” will be made by Alan Warren DNA barcoding, genomics and molecular biology, (Natural History Museum, United Kingdom). cell biology, organismal biology, parasitology, diversity and biogeography, ecology of soil and There will be two symposia sponsored by ISoP: aquatic protists, bioindicators and palaeoecology. “Integrative co-evolution between mitochondria and their hosts” organized by Sergio A. Muñoz- The Forum is organized jointly by the International Gómez, Claudio H. Slamovits, and Andrew J. Society of Protistologists (ISoP), International Roger, and “Protists of Marine Sediments” orga- Society for Evolutionary Protistology (ISEP), nized by Jun Gong and Virginia Edgcomb.
    [Show full text]
  • Conicocassis, a New Genus of Arcellinina (Testate Lobose Amoebae)
    Palaeontologia Electronica palaeo-electronica.org Conicocassis, a new genus of Arcellinina (testate lobose amoebae) Nawaf A. Nasser and R. Timothy Patterson ABSTRACT Superfamily Arcellinina (informally known as thecamoebians or testate lobose amoebae) are a group of shelled benthic protists common in most Quaternary lacus- trine sediments. They are found worldwide, from the equator to the poles, living in a variety of fresh to brackish aquatic and terrestrial habitats. More than 130 arcellininid species and strains are ascribed to the genus Centropyxis Stein, 1857 within the family Centropyxidae Jung, 1942, which includes species that are distinguished by having a dorsoventral-oriented and flattened beret-like test (shell). Conicocassis, a new arcel- lininid genus of Centropyxidae differs from other genera of the family, specifically genus Centropyxis and its type species C. aculeata (Ehrenberg, 1932), by having a unique test comprised of two distinct components; a generally ovoid to subspherical, dorsoventral-oriented test body, with a pronounced asymmetrically positioned, funnel- like flange extending from a small circular aperture. The type species of the new genus, Conicocassis pontigulasiformis (Beyens et al., 1986) has previously been reported from peatlands in Germany, the Netherlands and Austria, as well as very wet mosses and aquatic environments in High Arctic regions of Europe and North America. The occurrence of the species in lacustrine environments in the central Northwest Ter- ritories extends the known geographic distribution of the genus in North America con- siderably southward. Nawaf A. Nasser. Department of Earth Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada. [email protected] R. Timothy Patterson.
    [Show full text]
  • Brown Algae and 4) the Oomycetes (Water Molds)
    Protista Classification Excavata The kingdom Protista (in the five kingdom system) contains mostly unicellular eukaryotes. This taxonomic grouping is polyphyletic and based only Alveolates on cellular structure and life styles not on any molecular evidence. Using molecular biology and detailed comparison of cell structure, scientists are now beginning to see evolutionary SAR Stramenopila history in the protists. The ongoing changes in the protest phylogeny are rapidly changing with each new piece of evidence. The following classification suggests 4 “supergroups” within the Rhizaria original Protista kingdom and the taxonomy is still being worked out. This lab is looking at one current hypothesis shown on the right. Some of the organisms are grouped together because Archaeplastida of very strong support and others are controversial. It is important to focus on the characteristics of each clade which explains why they are grouped together. This lab will only look at the groups that Amoebozoans were once included in the Protista kingdom and the other groups (higher plants, fungi, and animals) will be Unikonta examined in future labs. Opisthokonts Protista Classification Excavata Starting with the four “Supergroups”, we will divide the rest into different levels called clades. A Clade is defined as a group of Alveolates biological taxa (as species) that includes all descendants of one common ancestor. Too simplify this process, we have included a cladogram we will be using throughout the SAR Stramenopila course. We will divide or expand parts of the cladogram to emphasize evolutionary relationships. For the protists, we will divide Rhizaria the supergroups into smaller clades assigning them artificial numbers (clade1, clade2, clade3) to establish a grouping at a specific level.
    [Show full text]
  • Testate Amoebae As a Hydrological Proxy for Reconstructing Water-Table
    *Manuscript Click here to view linked References 1 Testate amoebae as a hydrological proxy for reconstructing 2 water-table depth in the mires of south-eastern Australia 3 Xianglin Zheng1, Matthew J. Amesbury2, Geoffrey Hope3, Len F. Martin1 and Scott D. Mooney1* 4 5 1 School of Biological, Earth & Environmental Sciences, University of New South Wales, Australia 6 2 Geography, College of Life and Environmental Sciences, University of Exeter, UK 7 3 Department of Archaeology and Natural History, Australian National University, Australia 8 *Corresponding author: [email protected] 9 Abstract: 10 11 Although it is well established that moisture availability in south-eastern Australia has been 12 decreasing through time recently, the driver(s) of this trend are contentious, and our understanding 13 of any drivers is limited by a relatively short historic record. Testate amoebae have been widely used 14 to reconstruct peatland hydrology in the Northern Hemisphere, but in the Southern Hemisphere 15 research is still needed to assess their proficiency as a palaeohydrological proxy and to develop 16 robust transfer functions. Here we examine the ecology of testate amoebae in several high altitude 17 mires in south-eastern Australia and present the first transfer function for the continent. Euglypha 18 tuberculata type, Centropyxis platystoma type and Assulina muscorum were the most common taxa 19 in our modern samples. Water-table depth was the primary environmental variable determining 20 testate amoebae assemblages and therefore transfer functions were developed for this ecological 21 factor. We found that the performance of various all-species and species-pruned transfer functions 22 were statistically robust, with R2 values of around 0.8 and Root Mean Squared Error of Prediction 23 (RMSEP) values of about 7 cm.
    [Show full text]
  • Arcellinida Testate Amoebae (Amoebozoa: Arcellinida): Model of Organisms for Assessing Microbial Biogeography
    1 Arcellinida testate amoebae (Amoebozoa: Arcellinida): model of organisms for assessing microbial biogeography T h i e r r y J . H e g e r , E n r i q u e L a r a , E d w a r d A . D . M i t c h e l l 1 WSL, Swiss Federal Institute for Forest, Snow and Landscape Research, Ecosystem Boundaries Research Unit, Wetlands Research Group, Lausanne, Switzerland; Laboratory of Ecological Systems, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Zoology and Animal Biology, University of Geneva,Switzerland; and Biodiversity Research Center, University of British Columbia, Vancouver, Canada 2 Institute of Biology, Laboratory of Soil Biology, University of Neuchâtel, Switzerland 7.1 Introduction Although widely recognised as essential participants in ecosystem processes and representing a signifi cant part of the Earth’s biodiversity (Clarholm, 1985 ; Corliss, 2002; Schröter et al., 2003 ; Falkowski et al., 2004 ), eukaryotic microorganisms are very poorly understood from evolutionary and biogeographic points of view. Major questions concerning the diversity and the distribution of protists remain 2 completely unresolved. Arcellinida testate amoebae are an excellent group from which to get insights into these questions because they are easy to collect, pre- sent in diff erent habitats and they build a shell of characteristic morphology that remains even after the organism’s death. In this group, both cosmopolitan and restricted distribution patterns have been documented. Some morphospecies such as Apodera vas(=Nebela vas) , Alocodera cockayni or the whole genus Certesella have been reported as one of the most convincing examples of heterotrophic protist s with restricted distributions (Foissner, 2006 ; Smith and Wilkinson, 2007 ; Smith et al., 2008 ).
    [Show full text]