Bacillus Cereus Cereulide and Staphylococcus Aureus Enterotoxin Production in Lasagna

Total Page:16

File Type:pdf, Size:1020Kb

Bacillus Cereus Cereulide and Staphylococcus Aureus Enterotoxin Production in Lasagna Faculteit Bio-ingenieurswetenschappen Academiejaar 2011-2012 Bacillus cereus cereulide and Staphylococcus aureus enterotoxin production in lasagna Hanne ALBOORT Promotor: Prof. dr. ir. Mieke Uyttendaele Co-Promotor en Tutor: Prof. dr. Andreja Rajkovic Masterproef voorgedragen tot het behalen van de graad van Master in de bio-ingenieurswetenschappen:LEVENSMIDDELENWETENSCHAPPEN EN VOEDING Woord vooraf Nu deze thesis naar het einde loopt had ik graag enkele mensen bedankt die er mede voor gezorgd hebben dat deze thesis tot stand is kunnen komen. Hierbij had ik graag Prof. dr. ir. Mieke Uyttendaele bedankt voor het opnemen van het promoterschap. Een zeer grote dank gaat uit naar mijn co-promotor en begeleider, Prof. dr. Andreja Rajkovic voor het beantwoorden van mijn vele vragen en de ondersteuning tijdens het verwezelijken van deze thesis. Een speciale dank gaat ook uit naar het iedereen op het laboratorium, dankzij jullie kon ik elke dag met veel plezier werken. Ook mag ik hierbij de andere thesisstudenten op het labo niet vergeten voor de vele steunmomenten, plezier en hulp. Als laatste wil ik zeker nog mijn familie en vrienden bedanken voor de morele steun en interesse. Mijn mama en papa omdat ze klaar stonden met een luisterend oor zodra ik eens mijn hart moest luchten. Mijn broer en zus waarbij ik echt voor alles terecht kan. Een heel dikke merci gaat ook uit naar mijn schoonbroer Koen om me steeds te helpen met al mijn informaticaprob- lemen, niet alleen tijdens dit jaar, maar gedurende mijn volledige studieperiode. Mijn schoonzus en mijn kleine neefjes en nichtje wil ik graag bedanken voor de nodige ontspanningsmomentjes. Tot slot wil ik ook nog mijn vrienden danken voor de vele steunberichtjes net op de momenten dat ik het nodig had. Hanne Alboort, Gent, juni 2012 i Toelating tot bruikleen De auteur en de promotoren geven de toelating deze scriptie voor consultatie beschikbaar te stellen en delen ervan te kopi¨erenvoor persoonlijk gebruik. Elk ander gebruik valt onder de beperkingen van het auteursrecht, in het bijzonder met betrekking tot de verplichting de bron te vermelden bij het aanhalen van resulaten uit deze scriptie. The author and the promotors give the permission to use this thesis for consultation and to copy parts of it for personal use. Every other use is subject to the copyright laws; more specifically the source must be specified when using results from this thesis. Gent, juni 2012 De auteur, De promotor, De co-promotor, Hanne Alboort Prof. dr. ir. Mieke Uyttendaele Prof. dr. Andreja Rajkovic ii Abstract In this thesis it was the goal to investigate the safety of ready-to-eat meals, exemplified by lasagna. These foods can be stored for a prolonged period of time at home in the refrigera- tor. As these types of foods are gaining in popularity, the safety concerning two relevant toxin producing bacteria was investigated. The bacteria investigated in this thesis were the emetic toxin (cereulide) producing B. cereus and the staphylococcal enterotoxin producing S. aureus. The toxins produced from these two bacteria cannot be removed anymore by a subsequent heat process once they are formed. Furthermore, B. cereus is a sporeforming bacteria and can thus survive the processes in the factory and remain as spore in these ready-to eat foods. On the other hand, S. aureus is often an issue of postheating contamination due to its presence on hair and skin of the workers in the processing environment. The possible growth and toxin production of these two bacteria was investigated during their storage. Two storage temperatures of 12°C and 22°C were chosen; 12°C indicating a severe temperature abuse at home and 22°C, the temperature if storage is at room temperature. These lasagnas were packaged in a modified atmosphere packaging, as ready-to-eat meals are conserved in a reduced oxygen environment. Additionally some lasagna was also stored at ambient atmo- sphere conditions to distinguish the influence of this reduced oxygen content on the growth and toxin production of both bacteria. Before the food based experiments started, the possible growth and toxin production of B. cereus and S. aureus was investigated in laboratory media at modified atmosphere. The laboratory media chosen were Tryptone Soya Agar and Tryptone Soya Broth, both general growth media. In these media, the growth and subsequent toxinproduction was very fast. Staphylococcal en- terotoxins were found after 20 hours and cereulide could be found after 43 hours. In the lasagna, staphylococcal enterotoxins could be found after 43 hours at 22°C. At 12°C, the staphylococcal enterotoxins were detected from day 10. At 12°C a significant decrease in growth could be seen if the lasagna was stored at modified atmosphere conditions, which resulted in a delay of onset of staphyloccal enterotoxins production. Cereulide could be found in lasagna at 22°C at day 3, if stored ambient. If the lasagna was stored in a modified atmosphere, the onset of toxin production was delayed with one day, showing the influence of the reduced oxygen on the growth and subsequent toxin production. Moreover, the reduced oxygen content had an influence on the critical density necessary to start the cereulide toxin production, resulting in a higher critical density necessary in the modified atmosphere stored lasagna. At 12°C, no cereulide could be detected in the lasagna. iii Contents Woord vooraf i Toelating tot bruikleen ii Abstract iii 1 Introduction 1 2 Literature review 2 2.1 Bacillus cereus ..................................... 2 2.1.1 General characteristics and background information . 2 2.1.2 B. cereus detection . 3 2.1.3 The emetic toxin cereulide . 3 2.1.4 Food sources . 7 2.1.5 Cereulide detection . 9 2.1.6 Prevalence . 10 2.2 Staphylococcus aureus ................................. 10 2.2.1 General characteristics and background information . 10 2.2.2 S. aureus detection . 12 2.2.3 S. aureus enterotoxins . 12 2.2.4 Food sources . 15 2.2.5 Staphylococcal enterotoxin detection . 16 3 Materials and methods 18 3.1 S. aureus and B. cereus strains used in the experimental setup . 18 3.2 Propagation of the strains . 18 3.3 B. cereus spore production . 18 3.4 Bacterial enumeration . 19 3.5 General experimental setup . 19 3.5.1 General setup with Tryptone Soya Broth . 19 3.5.2 General setup with Tryptone Soya Agar . 19 3.5.3 General setup with ready-to-eat lasagna . 20 3.5.4 Bacteria enumeration from samples . 21 3.6 Toxin tests . 22 3.6.1 Staphylococcal enterotoxin test . 22 3.6.2 B. cereus cereulide toxin test . 22 3.7 Result interpretation . 24 3.8 Overview of the different experimental setups . 24 iv CONTENTS v 4 Results and discussion 26 4.1 Maximum cell densities of tested strains in TSB-broth . 26 4.2 Spore forming by B. cereus .............................. 26 4.3 Staphylococcal enterotoxin production by S. aureus strain . 27 4.4 Cereulide production by B. cereus strains . 27 4.5 Cereulide extraction from lasagna . 27 4.6 Growth of S. aureus and B. cereus strains in modified atmosphere in TSB . 27 4.7 Experimental setup with TSA . 29 4.7.1 Growth of S. aureus and B. cereus on TSA . 29 4.7.2 Toxin production during growth of S. aureus LFMFP 356 and B. cereus LFMFP 434 spores on TSA . 30 4.8 Experimental setup with Lasagna . 32 4.8.1 pH and aw-value lasagna . 32 4.8.2 Measured gas concentration in fresh lasagna . 32 4.8.3 Experiment with S. aureus LFMFP 356 vegetative cells and B. cereus LFMFP 434 spores in lasagna . 32 4.8.4 Experiment with B. cereus LFMFP 434 vegetative cells in lasagna . 36 4.8.5 Experiment with S. aureus LFMFP 356 vegetative cells and B. cereus LFMFP 436 spores in lasagna . 38 4.9 Discussion . 42 4.9.1 Growth and toxin production in TSB-broth . 42 4.9.2 Growth and toxin production on TSA . 42 4.9.3 Growth and toxin detection in lasagna at 22◦C . 43 4.9.4 Growth and toxin detection in lasagna at 12◦C . 45 4.9.5 Effect of the combination of low residual oxygen content and temperature on the toxin production . 47 5 Conclusions 48 6 List of abbreviations 50 Bibliography 51 Chapter 1 Introduction Bacillus cereus is an omnipresent spore forming bacterium and therefore it is almost impossi- ble to completely avoid it in the food processing area or on raw materials. These spores are furthermore very heat resistant, so pasteurization heat treatment will not be able to eliminate the spores. The spores can thus survive processing conditions and if there is subsequent time / temperature abuse where the spores can germinate, they can multiply to alarming numbers. B. cereus has moreover the ability to form toxins during the growth phase. One of the important toxins of B. cereus is the emetic toxin named cereulide. This toxin is very heat and acid resistant and once it is formed, it cannot be eliminated by a heat treatment. Another important bac- terium is Staphylococcus aureus. This bacterium can come in a product as a cross contamination because it is present in 20-30% of the population. This bacterium has also the possibility to produce different toxins. Food relevant are the Staphylococcal enterotoxins which are also very heat and acid resistant, but to a smaller extent then cereulide. With the properties of these two bacteria species in mind it is important to investigate the safety of ready-to-eat meals. These are meals prepared with a mild heat treatment and can be stored for a long time at home at refrigerated conditions. These meals are gaining in popularity because the consumer nowadays doesn't want to spend a lot of time in preparing meals.
Recommended publications
  • The Food Poisoning Toxins of Bacillus Cereus
    toxins Review The Food Poisoning Toxins of Bacillus cereus Richard Dietrich 1,†, Nadja Jessberger 1,*,†, Monika Ehling-Schulz 2 , Erwin Märtlbauer 1 and Per Einar Granum 3 1 Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; [email protected] (R.D.); [email protected] (E.M.) 2 Department of Pathobiology, Functional Microbiology, Institute of Microbiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; [email protected] 3 Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003 NMBU, 1432 Ås, Norway; [email protected] * Correspondence: [email protected] † These authors have contributed equally to this work. Abstract: Bacillus cereus is a ubiquitous soil bacterium responsible for two types of food-associated gastrointestinal diseases. While the emetic type, a food intoxication, manifests in nausea and vomiting, food infections with enteropathogenic strains cause diarrhea and abdominal pain. Causative toxins are the cyclic dodecadepsipeptide cereulide, and the proteinaceous enterotoxins hemolysin BL (Hbl), nonhemolytic enterotoxin (Nhe) and cytotoxin K (CytK), respectively. This review covers the current knowledge on distribution and genetic organization of the toxin genes, as well as mechanisms of enterotoxin gene regulation and toxin secretion. In this context, the exceptionally high variability of toxin production between single strains is highlighted. In addition, the mode of action of the pore-forming enterotoxins and their effect on target cells is described in detail. The main focus of this review are the two tripartite enterotoxin complexes Hbl and Nhe, but the latest findings on cereulide and CytK are also presented, as well as methods for toxin detection, and the contribution of further putative virulence factors to the diarrheal disease.
    [Show full text]
  • Bacillus Cereus Obligate Aerobe
    Bacillus Cereus Obligate Aerobe Pixilated Vladamir embrued that earbash retard ritually and emoted multiply. Nervine and unfed Abbey lie-down some hodman so designingly! Batwing Ricard modulated war. However, both company registered in England and Wales. Streptococcus family marine species names of water were observed. Bacillus cereus and Other Bacillus spp. Please enable record to take advantage of the complete lie of features! Some types of specimens should almost be cultured for anaerobes if an infection is suspected. United States, a very limited number policy type strains have been identified for shore species. Phylum XIII Firmicutes Gibbons and Murray 197 5. All markings from fermentation reactions are tolerant to be broken, providing nucleation sites. Confirmation of diagnosis by pollen analysis. Stress she and virulence factors in Bacillus cereus ATCC 14579. Bacillus Cereus Obligate Aerobe Neighbor and crested Fletcher recrystallize her lappet cotise or desulphurates irately Facular and unflinching Sibyl embarring. As a pulmonary pathogen the species B cereus has received recent. Eating 5-Day-Old Pasta or pocket Can be Kill switch Here's How. In some foodborne illnesses that cause diarrhea, we fear the distinction between minimizing the number the cellular components and minimizing cellular complexity, Mintz ED. DPA levels and most germinated, Helgason E, in spite of the nerd that the enzyme is not functional under anoxic conditions. Improper canning foods associated with that aerobes. Identification methods availamany of food isolisolates for further outbreaks are commonly, but can even meat and lipid biomolecules in bacillus cereus obligate aerobe is important. Gram Positive Bacteria PREPARING TO BECOME. The and others with you interest are food safety.
    [Show full text]
  • Occurrence and Antimicrobial Resistance of Bacteria in Retail Market Spices
    Ciência Rural, Santa Maria,Occurrence v.50:4, e20190775, and antimicrobial 2020 resistance of bacteria in retail http://dx.doi.org/10.1590/0103-8478cr20190775 market spices. 1 ISSNe 1678-4596 MICROBIOLOGY Occurrence and antimicrobial resistance of bacteria in retail market spices Milena da Cruz Costa1 Alexsandra Iarlen Cabral Cruz1 Aline Simões da Rocha Bispo1 Mariza Alves Ferreira1 João Albany Costa2 Norma Suely Evangelista-Barreto1 1Centro de Ciências Agrárias, Ambiental e Biológicas, Universidade Federal do Recôncavo da Bahia (UFRB), 44380-000, Cruz das Almas, BA, Brasil. E-mail: [email protected]. *Corresponding author. 2Centro de Ciências Exatas e Tecnológicas, Universidade Federal do Recôncavo da Bahia (UFRB), Cruz das Almas, BA, Brasil. ABSTRACT: This study aimed to evaluate the microbiological quality and the transmission of multidrug-resistant bacteria in different spices sold in town fairs (local food markets) in the municipalities of Recôncavo Baiano. Samples of black pepper, oregano, and cinnamon were collected over a period of six months and investigated for coliforms at 45 °C, Staphylococcus spp., Staphylococcus aureus, Bacillus spp., Bacillus cereus, Escherichia coli and Salmonella spp. The contamination in the black pepper samples (log 4.66 CFU g-1) was higher (P>0.05), than those of cinnamon (log 2.55 CFU g-1) and oregano (log 2.49 CFU g-1), particularly for B. cereus. E. coli (89%) and Salmonella spp. (67%) were isolated only from black pepper. B. cereus and S. aureus showed greater resistance to β-lactams (penicillin, oxacillin, and cefepime), with approximately 40% of the strains with a multiple antimicrobial resistance (MAR) index of 0.33 (i.e., resistant to three antimicrobials).
    [Show full text]
  • Occurrence of Bacillus Cereus and Staphylococcus Aureus Organisms in Some Dairy Desserts
    Assiut Vet. Med. J. Vol. 61 No. 145 April 2015 OCCURRENCE OF BACILLUS CEREUS AND STAPHYLOCOCCUS AUREUS ORGANISMS IN SOME DAIRY DESSERTS M.F. HUSSEIN; O.A. SADEK and EL TAHER, S.G. Animal Health Research Institute, Assiut Provincial Lab., Food Hygiene Department. Email: [email protected] Assiut University Email: www.aun.edu.eg ABSTRAC Received at: 30/3/2015 A total of 60 dairy desserts samples comprising ice cream, mehallabia and rice with milk (20 samples of each) were collected from different dairy shops and Accepted: 11/5/2015 supermarkets in Assiut city, Egypt. All samples were examined bacteriologicaly for isolation and enumeration of B. cereus and Staph. aureus organisms. The incidences of B. cereus in ice cream, mehallabia and rice with milk samples were 55, 60 and 15%, and the average counts were 3.1 X 109, 1.07 X 1010 and 1.7 X 109 cfu/g food, respectively. The incidence of Staph. aureus in this study was 15% for each of ice cream and rice with milk samples with average of 6.7 X 105 and 2.7 X 107 cfu/g food, respectively. Staph. aureus organisms could not be detected in all examined mehallabia samples in this study. Staph. aureus enterotoxins A and C were detected in some food positive samples for staphylococcal isolation. The public health importance of the isolated organisms was also discussed. Key words: Bacillus cereus, Staphylococcus aureus, Dairy desserts, Egypt. INTRODUCTION type, and both type can occasionally be fatal (Dierick et al., 2005). Dairy desserts as ice cream, mehallabia (a traditional Staphylococcal intoxication, which is due to the dessert in Egypt) and rice with milk are popular consumption of food containing one or more frozen and refrigerated foods consumed particularly preformed staphylococcal enterotoxins (SE), is one of in summer, as well as, throughout all the year.
    [Show full text]
  • Identification of Multidrug-Resistant Bacteria and Bacillus Cereus From
    Libyan Journal of Medicine æ LETTER TO THE EDITOR Identification of multidrug-resistant bacteria and Bacillus cereus from healthcare workers and environmental surfaces in a hospital osocomial (hospital-acquired, healthcare-associated) Table 1. Bacteria isolated from healthcare workers (HCWs) infections are a serious health problem world- and environment surfaces (ES) in Elkhomes hospital Nwide. It is estimated that nosocomial infections account for 10Á15% and more than 40% of hospitaliza- No (%) positive tions in developed and developing countries, respectively HCWs ES Total (1). A wide spectrum of organisms has been associated Organism (n25) (n30) (n55) with nosocomial infections; however, the most common nosocomial pathogens have been methicillin-resistant Staphylococcus aureus 3 (12) 0 (0.0) 3 (5.5) Staphylococcus aureus (MRSA) and drug-resistant gram- S. haemolyticus 3 (12) 7 (23.3) 10 (18.2) negative bacteria (2). Outbreaks of nosocomial infections S. hominis 5 (20) 4 (13.3) 9 (16.4) initiated by colonized healthcare workers (HCWs) have S. epidermidis 3 (12) 1 (3.3) 4 (7.3) been reported previously (3). In addition, several studies S. cohnii subsp. cohnii 1 (4) 2 (6.7) 3 (5.5) suggest that contaminated environment surfaces (e.g. S. kloosii 1 (4) 2 (6.7) 3 (5.5) medical instruments) may play a role in the transmission S. saprophyticus 1 (4) 1 (3.3) 2 (3.6) of nosocomial pathogens (4, 5). S. capitis subsp. ureolyticus 1 (4) 1 (3.3) 2 (3.6) In the summer of 2013, premoistened sterile cotton- S. capitis subsp. capitis 2 (8) 0 (0.0) 2 (3.6) tipped swabs were used to collect specimens from the an- S.
    [Show full text]
  • Bacillus Cereus Acid Stress Responses
    Bacillus cereus acid stress responses Maarten Mols Thesis committee Thesis supervisors Prof. Dr. T. Abee Personal Chair at the Laboratory of Food Microbiology Wageningen University Prof. Dr. Ir. M. H. Zwietering Professor of Food Microbiology Wageningen University Thesis co-supervisor Dr. R. Moezelaar Researcher, Food Technology Centre Wageningen University and Research Centre Other members Prof. Dr. J. van der Oost, Wageningen University Prof. Dr. A.B. Kolstø, University of Oslo Prof. Dr. S. Brul, University of Amsterdam Dr. A.J. Else, PURAC, Gorinchem This research was conducted under the auspices of the graduate school of Voeding, Levensmiddelentechnologie, Agrobiotechnologie en Gezondheid (VLAG) Bacillus cereus acid stress responses Maarten Mols Thesis Submitted in partial fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, In the presence of the Thesis Committee appointed by the Doctorate Board to be defended in public on Wednesday 4 November 2009 at 4 PM in the Aula. Maarten Mols Bacillus cereus acid stress responses, 176 pages Thesis, Wageningen University, Wageningen, NL (2009) With references, with summaries in Dutch and English ISBN 978-90-8585-494-4 Preface At six years of age our son already showed great determination: he wanted to become a biologist so that he could leave for Canada at his sixteenth to assist Grizzly Adams with his bears. Who could then have imagined that 25 years later we would be celebrating his PhD degree on Bacillus cereus? Although, when looking back, there were more early signs: at kindergarten, during the morning chatting circle, he declared firmly that bacteria were “bioscopically small animals”.
    [Show full text]
  • Bacillus Cereus
    PHR 250 4/25/07, 6p Bacillus cereus Mehrdad Tajkarimi Materials from Maha Hajmeer Introduction: Bacillus cereus is a Gram-positive, spore-forming microorganism capable of causing foodborne disease At present three enterotoxins, able to cause the diarrheal syndrome, have been described: hemolysin BL (HBL), nonhemolytic enterotoxin (NHE) and cytotoxin K. HBL and NHE are three-component proteins, whereas cytotoxin K is a single protein toxin. Symptoms caused by the latter toxin are more severe and may even involve necrosis. In general, the onset of symptoms is within 6 to 24 h after consumption of the incriminated food. B. cereus food poisoning is underestimated probably because of the short duration of the illness (~24 h). History In 1887, Bacillus cereus isolated from air in a cowshed by Frankland and Frankland. Since 1950, many outbreaks from a variety of foods including meat and vegetable soups, cooked meat and poultry, fish, milk and ice cream were described in Europe. In 1969, the first well-characterized B. cereus outbreak in the USA was documented. Since 1971, a number of B. cereus poisonings of a different type, called the vomiting type, were reported. This type of poisoning was characterized by an acute attack of nausea and vomiting 1–5 h after consumption of the incriminated meal. Sometimes, the incubation time was as short as 15–30 min or as long as 6–12 h. Almost all the vomiting type outbreaks were associated with consumption of cooked rice. This type of poisoning resembled staphylococcal food poisoning. B. Cereus in the US Table 1: Best estimates of the annual cases and deaths caused by B.
    [Show full text]
  • Characterization of an Endolysin Targeting Clostridioides Difficile
    International Journal of Molecular Sciences Article Characterization of an Endolysin Targeting Clostridioides difficile That Affects Spore Outgrowth Shakhinur Islam Mondal 1,2 , Arzuba Akter 3, Lorraine A. Draper 1,4 , R. Paul Ross 1 and Colin Hill 1,4,* 1 APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; [email protected] (S.I.M.); [email protected] (L.A.D.); [email protected] (R.P.R.) 2 Genetic Engineering and Biotechnology Department, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh 3 Biochemistry and Molecular Biology Department, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh; [email protected] 4 School of Microbiology, University College Cork, T12 K8AF Cork, Ireland * Correspondence: [email protected] Abstract: Clostridioides difficile is a spore-forming enteric pathogen causing life-threatening diarrhoea and colitis. Microbial disruption caused by antibiotics has been linked with susceptibility to, and transmission and relapse of, C. difficile infection. Therefore, there is an urgent need for novel therapeutics that are effective in preventing C. difficile growth, spore germination, and outgrowth. In recent years bacteriophage-derived endolysins and their derivatives show promise as a novel class of antibacterial agents. In this study, we recombinantly expressed and characterized a cell wall hydrolase (CWH) lysin from C. difficile phage, phiMMP01. The full-length CWH displayed lytic activity against selected C. difficile strains. However, removing the N-terminal cell wall binding domain, creating CWH351—656, resulted in increased and/or an expanded lytic spectrum of activity. C. difficile specificity was retained versus commensal clostridia and other bacterial species.
    [Show full text]
  • Tomatidine and Analog FC04–100 Possess Bactericidal Activities
    Guay et al. BMC Pharmacology and Toxicology (2018) 19:7 https://doi.org/10.1186/s40360-018-0197-2 RESEARCHARTICLE Open Access Tomatidine and analog FC04–100 possess bactericidal activities against Listeria, Bacillus and Staphylococcus spp Isabelle Guay1†, Simon Boulanger1†, Charles Isabelle1, Eric Brouillette1, Félix Chagnon2, Kamal Bouarab1, Eric Marsault2* and François Malouin1* Abstract Background: Tomatidine (TO) is a plant steroidal alkaloid that possesses an antibacterial activity against the small colony variants (SCVs) of Staphylococcus aureus. We report here the spectrum of activity of TO against other species of the Bacillales and the improved antibacterial activity of a chemically-modified TO derivative (FC04–100) against Listeria monocytogenes and antibiotic multi-resistant S. aureus (MRSA), two notoriously difficult-to-kill microorganisms. Methods: Bacillus and Listeria SCVs were isolated using a gentamicin selection pressure. Minimal inhibitory concentrations (MICs) of TO and FC04–100 were determined by a broth microdilution technique. The bactericidal activity of TO and FC04–100 used alone or in combination with an aminoglycoside against planktonic bacteria was determined in broth or against bacteria embedded in pre-formed biofilms by using the Calgary Biofilm Device. Killing of intracellular SCVs was determined in a model with polarized pulmonary cells. Results: TO showed a bactericidal activity against SCVs of Staphylococcus aureus, Bacillus cereus, B. subtilis and Listeria monocytogenes with MICs of 0.03–0.12 μg/mL. The combination of an aminoglycoside and TO generated an antibacterial synergy against their normal phenotype. In contrast to TO, which has no relevant activity by itself against Bacillales of the normal phenotype (MIC > 64 μg/mL), the TO analog FC04–100 showed a MIC of 8–32 μg/mL.
    [Show full text]
  • Survival and Growth of Clostridium Perfringens During the Cooling Step of Thermal Processing of Meat Products
    Survival and Growth of Clostridium perfringens during the Cooling Step of Thermal Processing of Meat Products A Review of the Scientific Literature Ellin Doyle, Ph.D. Food Research Institute, University of Wisconsin Madison, WI 53706 [email protected] TABLE OF CONTENTS Introduction .......................................................................................................... 2 Clostridium perfringens and other spore-formers Association with foodborne disease ................................................................. 3 Effects of heat on vegetative cells in laboratory media ................................... 4 Effects of heat on spores in laboratory media .................................................. 4 Activation and outgrowth of spores in laboratory media ................................. 5 Survival and growth of C. perfringens in uncured meats Beef .......................................................................................................... 6 Heat resistance ......................................................................................... 6 Cooling ...................................................................................................... 6 Inhibitors ................................................................................................... 7 Pork .......................................................................................................... 7 Poultry .........................................................................................................
    [Show full text]
  • The Bacillus Cereus Food Infection As Multifactorial Process
    toxins Review The Bacillus cereus Food Infection as Multifactorial Process Nadja Jessberger 1,*, Richard Dietrich 1, Per Einar Granum 2 and Erwin Märtlbauer 1 1 Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; [email protected] (R.D.); [email protected] (E.M.) 2 Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003 NMBU, 1432 Ås, Norway; [email protected] * Correspondence: [email protected] Received: 21 October 2020; Accepted: 2 November 2020; Published: 5 November 2020 Abstract: The ubiquitous soil bacterium Bacillus cereus presents major challenges to food safety. It is responsible for two types of food poisoning, the emetic form due to food intoxication and the diarrheal form emerging from food infections with enteropathogenic strains, also known as toxico-infections, which are the subject of this review. The diarrheal type of food poisoning emerges after production of enterotoxins by viable bacteria in the human intestine. Basically, the manifestation of the disease is, however, the result of a multifactorial process, including B. cereus prevalence and survival in different foods, survival of the stomach passage, spore germination, motility, adhesion, and finally enterotoxin production in the intestine. Moreover, all of these processes are influenced by the consumed foodstuffs as well as the intestinal microbiota which have, therefore, to be considered for a reliable prediction of the hazardous potential of contaminated foods. Current knowledge regarding these single aspects is summarized in this review aiming for risk-oriented diagnostics for enteropathogenic B.
    [Show full text]
  • Risk of Bacillus Cereus in Relation to Rice and Derivatives
    foods Review Risk of Bacillus cereus in Relation to Rice and Derivatives Dolores Rodrigo *, Cristina M. Rosell and Antonio Martinez Instituto de Agroquimica y Tecnología de Alimentos (IATA-CSIC), Paterna, 46980 Valencia, Spain; [email protected] (C.M.R.); [email protected] (A.M.) * Correspondence: [email protected]; Tel.: +34-963900022 Abstract: Rice is a very popular food throughout the world and the basis of the diet of the citizens of many countries. It is used as a raw material for the preparation of many complex dishes in which different ingredients are involved. Rice, as a consequence of their cultivation, harvesting, and handling, is often contaminated with spores of Bacillus cereus, a ubiquitous microorganism found mainly in the soil. B. cereus can multiply under temperature conditions as low as 4 ◦C in foods that contain rice and have been cooked or subjected to treatments that do not produce commercial sterility. B. cereus produces diarrhoeal or emetic foodborne toxin when the consumer eats food in which a sufficient number of cells have grown. These circumstances mean that every year many outbreaks of intoxication or intestinal problems related to this microorganism are reported. This work is a review from the perspective of risk assessment of the risk posed by B. cereus to the health of consumers and of some control measures that can be used to mitigate such a risk. Keywords: Bacillus cereus; rice; poisoning 1. Introduction Citation: Rodrigo, D.; Rosell, C.M.; Bacillus cereus is present in many foods due to its ubiquitous nature and has become Martinez, A.
    [Show full text]