An Investigation of Stainless Steels for Long-Term Use in Liquid Sodium At
Total Page:16
File Type:pdf, Size:1020Kb
DEGREE PROJECT IN MATERIALS SCIENCE AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2019 What If We Tilt the AOD? Developing a numerical and physical model of a downscaled AOD converter to investigate flow behaviour when applying an inclination. SERG CHANOUIAN KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT Abstract In a scrap based stainless steel plant the dominant process for carbon reduction is the Argon oxygen decarburisation process (AOD). The process goes through three steps: decarburisation, reduction and desulphurisation where the main challenge is to oxidise carbon to CO without oxidising the expensive chromium. The general practical approach is to inject a mixture of oxygen and an inert gas, like argon or nitrogen, through tuyeres at the converter side starting with a high amount of oxygen gas which followingly is reduced as the inert gas is increased during the decarburisation steps. This allows for a decrease in partial pressure for the CO bubbles which is thermodynamically favourable for carbon oxidation. Recent studies have shown that an aged AOD converter with a worn lining can decarburise the melt faster than a fresh vessel due to favourable thermodynamic conditions occurring since the bath height is lower in the aged converter. The studies show 8-10% savings of oxygen gas which have led to an interest to study the matter. One of two approaches are taken in the present work with the focus to develop a numerical model that simulates a downscaled AOD converter with applied inclinations that is to be validated through physical modelling. A 75-ton industrial converter was downscaled for water-air experiments where three inclination angles namely 0, 5.5 and 14° were studied with focus on mixing time and penetration length. The physical model was replicated for computational fluid dynamics (CFD) modelling using the Euler-Euler approach in ANSYS Fluent. The models show rather good similarities when comparing gas penetration length, flow structure and mixing time however needs some complementary work and final adjustments before upscaling as well as coupling with thermodynamic modelling can be done. i Sammanfattning Den dominerande processen för kolfärskning vid skrot baserad rostfri ståltillverkning är AOD- processen (Argon Oxygen Decarburisation). Processen går igenom tre steg, kolfärskning, reducering av krom och svavelrening där de största utmaningarna ligger i att oxidera kol utan att oxidera krom. I praktiken gör detta genom att injicera en blandning av argon och syrgas från sidan av AOD-konvertern för att sänka partial trycket av den kolmonoxid som bildas när kol oxideras. Syftet är att göra det mer termodynamiskt fördelaktigt att oxidera kol i systemet. Den injicerade blandgasen har olika förhållanden under kolfärskning med en hög andel syrgas i början som sedan sänks genom processen tills bara argon injiceras. Tidigare studier har visat att kolfärskningen är en funktion av konverterns ålder där ju äldre en konverter är desto snabbare går kolfärskning. Enligt studierna har det visats att 8-10% mindre syrgas eller användning av reducerings medel kan uppnås i en gammal konverter vilket har väckt ett intresse för vidare studier. I detta arbete har en av två metoder prövats för att undersöka om man kan applicera det som sker i en gammal konverter till en ny. En numerisk modell av en nerskalad AOD-konverter har utvecklats och validerats mot en vattenmodell då konvertern vinklas. En 75-tons konverter nerskalades till en vattenmodell där vinklarna 0, 5.5 och 14° studerades med fokus på blandningstid och penetrations djup. Vattenmodellen gjordes om till en numerisk modell som använde Euler-Euler metoden i ANSYS Fluent. Modellerna visade likheter gällande penetrationsdjup, flödes struktur och blandnings tid men kräver en del justeringar innan en uppskalning samt koppling till termodynamisk modellering kan ske. ii Table of Contents 1 Introduction ......................................................................................................................... 1 1.1 Background .................................................................................................................. 1 1.2 AIM ............................................................................................................................. 4 2 Theory ................................................................................................................................. 5 2.1 Horizontal injection of gas jet into liquid .................................................................... 5 2.2 Similarity criteria ......................................................................................................... 9 2.2.1 Geometric ............................................................................................................. 9 2.2.2 Dynamic similarity ............................................................................................... 9 2.2.3 Kinematic similarity ............................................................................................. 9 2.2.4 Thermal similarity .............................................................................................. 10 2.2.5 Chemical similarity ............................................................................................ 10 2.2.6 Dimensional similarity ....................................................................................... 10 2.3 Computational Fluid Dynamics and governing equations ........................................ 10 2.4 Euler-Euler Model (EE) ............................................................................................. 12 2.5 Turbulent flow and mathematical turbulent models .................................................. 13 2.6 k - εpsilon .................................................................................................................. 14 2.6.1 Standard k- ε ....................................................................................................... 14 2.6.2 RNG k- ε model ................................................................................................. 15 2.6.3 Realizable k- ε model ......................................................................................... 15 3 Method .............................................................................................................................. 16 3.1 Flow chart of method ................................................................................................. 16 3.2 Physical Model .......................................................................................................... 16 3.2.1 Scaling ................................................................................................................ 17 3.2.2 Experimental procedure ..................................................................................... 19 3.3 Numerical model ....................................................................................................... 21 3.3.1 General CFD Procedure ..................................................................................... 21 3.4 Method CFD model ................................................................................................... 22 3.4.1 Geometry ............................................................................................................ 22 3.4.2 Mesh ................................................................................................................... 22 3.4.3 Numerical setup .................................................................................................. 23 3.4.4 Mixing time and Penetration length ................................................................... 24 4 Results ............................................................................................................................... 27 4.1 Mixing time ............................................................................................................... 27 4.2 Penetration length ...................................................................................................... 28 iii 4.3 Flow ........................................................................................................................... 33 4.3.1 0 ° angle .............................................................................................................. 33 4.3.2 5.5 ° angle ........................................................................................................... 35 4.3.3 14 ° angle ............................................................................................................ 37 5 Discussion ......................................................................................................................... 39 5.1 Similarity between the physical model and the converter ......................................... 39 5.2 Penetration Length ..................................................................................................... 39 5.3 Mixing time ............................................................................................................... 41 5.4 Sustainability ............................................................................................................. 44 6 Conclusion ........................................................................................................................ 45 7 Future work in VariAOD 2 ..............................................................................................