Antibody Persistence Enhanced Affinity Maturation but Impaired

Total Page:16

File Type:pdf, Size:1020Kb

Antibody Persistence Enhanced Affinity Maturation but Impaired Humoral Immune Responses in Cr2−/− Mice: Enhanced Affinity Maturation but Impaired Antibody Persistence This information is current as Zhibin Chen, Sergei B. Koralov, Mariya Gendelman, of September 25, 2021. Michael C. Carroll and Garnett Kelsoe J Immunol 2000; 164:4522-4532; ; doi: 10.4049/jimmunol.164.9.4522 http://www.jimmunol.org/content/164/9/4522 Downloaded from References This article cites 74 articles, 38 of which you can access for free at: http://www.jimmunol.org/content/164/9/4522.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2000 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Humoral Immune Responses in Cr2؊/؊ Mice: Enhanced Affinity Maturation but Impaired Antibody Persistence1 Zhibin Chen,* Sergei B. Koralov,* Mariya Gendelman,* Michael C. Carroll,† and Garnett Kelsoe2* Deficiency in CD21/CD35 by disruption of the Cr2 loci leads to impaired humoral immune responses. In this study, we detail the role of CD21/CD35 on Ab responses to the hapten (4-hydroxy-3-nitrophenyl)acetyl conjugated to chicken gamma-globulin. Sur- ,prisingly, Cr2؊/؊ mice generate significant Ab responses and germinal center (GC) reactions to low doses of this Ag in alum although the magnitude of their responses is much reduced in comparison with those of Cr2؉/؊ and C57BL/6 controls. Increasing Ag dose partially corrected this deficit. In situ study of the somatic genetics of GC B cells demonstrated that VDJ hypermutation does not require CD21/CD35, and Cr2؊/؊ mice exhibited enhanced affinity maturation of serum Ab in the post-GC phase of the ؊ ؊ primary response. On the other hand, Cr2 / mice displayed accelerated loss of serum Ab and long-lived Ab-forming cells. These Downloaded from observations suggest that B cell activation/survival signals mediated by CD21 and/or the retention of Ag by CD21/CD35 play important roles in the generation, quality, and maintenance of serum Ab. The Journal of Immunology, 2000, 164: 4522–4532. he discovery of complement receptors on B cells by Nus- mains of human CD21 suppressed primary Ab responses to T- senzweig and colleagues (1–3) suggested that the com- dependent Ags in mice (17). Two mechanisms have been proposed T plement system might affect acquired immunity. Pepys (4, to explain enhancement of humoral immunity by CD21 (18, 19): http://www.jimmunol.org/ 5) tested this possibility by transient depletion of C3 in mice with facilitation of Ag retention by FDC in germinal centers (GCs) cobra venom factor and observed suppression of Ab responses to (20–23) and enhanced recruitment of the CD21/CD19/CD81 co- T-dependent Ags. Subsequent studies in guinea pigs (6–9), dogs receptor into the B cell Ag receptor (BCR) complex (24–27). Ag (10), humans (11), and mice (12) demonstrated that genetic defi- bound to FDCs drives the GC reaction that generates the B cell ciencies in C2, C3, or C4 resulted in similar immunological de- memory compartment, whereas the CD19/CD21 coreceptor lowers fects. Recently, Dempsey et al. (13) generated T-dependent Ags B cell activation thresholds. comprised of hen egg lysozyme and two or three tandemly aligned Several groups have used gene disruption to clarify the role(s) of copies of C3d. These novel Ags were 1,000- to 10,000-fold more CD21/35 in immunity (28–30). In mice, CD21 and CD35 are al- by guest on September 25, 2021 immunogenic in mice than the unmodified hen egg lysozyme, dra- ternatively spliced gene products encoded by the Cr2 locus (31– matically illustrating the importance of complement in enhancing 33). Disruption of the Cr2 loci abolishes expression of both CD21 Ab responses. and CD35 and results in impaired humoral immune responses (28, The effect of complement on B cell responses is thought to be 29). However, the degree of impairment is controversial. One line mediated by two distinct complement receptors, CD21 (CR2) and of Cr2Ϫ/Ϫ mice failed to generate serum Ab responses to immu- CD35 (CR1), that are expressed on B cells and follicular dendritic 7 nization with 3 ϫ 10 PFU of bacteriophage ⌽X174 in the absence cells (FDCs).3 Administration of a rat mAb specific for both CD21 of adjuvant. Nonetheless, a 10-fold increase in Ag dose elicited Ab and CD35 suppressed primary Ab responses of mice to T-depen- production but only to levels significantly below that of wild-type dent Ags, whereas an Ab specific for CD35 alone had a more Ϫ Ϫ controls (28). Reconstitution of lethally irradiated Cr2 / mice modest immunosuppressive effect (14–16). This suggested that ϩ ϩ with bone marrow from MHC-matched Cr2 / donors repaired CD21 may play a more prominent role in mediating complement’s this defect, indicating that impaired Ab production was a defect of immune-enhancing effects than does CD35. Supporting this argu- B cells (28). Supporting this notion, mice lacking CD21/35 only on ment, a fusion protein containing the complement-binding do- B cells failed to generate Ab responses to 10 ␮g (4-hydroxy-3- nitrophenyl)acetyl (NP)-keyhole limpet hemocyanin in alum adju- *Department of Immunology, Duke University Medical Center, Durham, NC 27710; vant (30). An independently generated line of Cr2Ϫ/Ϫ mice also † and Center for Blood Research, Harvard Medical School, Boston, MA 02115 displayed markedly reduced primary humoral responses but re- Received for publication September 14, 1999. Accepted for publication February sponded to both high and low doses of SRBCs (29). In addition, 18, 2000. defective Ab responses were observed even when this line of The costs of publication of this article were defrayed in part by the payment of page Ϫ/Ϫ ϩ/ϩ charges. This article must therefore be hereby marked advertisement in accordance Cr2 mice was reconstituted with Cr2 bone marrow, sug- with 18 U.S.C. Section 1734 solely to indicate this fact. gesting a significant role for CD21/CD35 on FDCs (34). 1 This work was supported in part by U.S. Public Health Service Grants AI-24335 and CD21 has also been shown to promote the survival of GC B AG-13789 (to G.K.), AI-39246, AI-36389 (to M.C.C.), and AG-10207 (to G.K. and M.C.C.). cells. Stimulation of human tonsillar GC B cells with anti-CD21 mAbs in vitro induced the expression of Bcl-2 and reduced levels 2 Address correspondence and reprint requests to Dr. Garnett Kelsoe, Department of Ϫ/Ϫ Immunology, Box 3010, Duke University Medical Center, Durham, NC 27710. E- of apoptosis (35, 36). Adoptively transferred, Ag-specific Cr2 mail address: [email protected] B cells did not persist in the GCs of wild-type mice, despite ex- 3 Abbreviations used in this paper: FDC, follicular dendritic cell; GC, germinal cen- pression of BCRs with high affinity for Ag (37). Nonetheless, in ter; BCR, B cell Ag receptor; NP, (4-hydroxy-3-nitrophenyl)acetyl; AFC, Ab-forming the absence of competition from CD21/CD35ϩ cells, B lympho- cell; CG, chicken gamma-globulin; ELISPOT, enzyme-linked immunospot; PNA, Ϫ Ϫ peanut agglutinin. cytes in Cr2 / mice can form GCs (28, 29, 34), although the Copyright © 2000 by The American Association of Immunologists 0022-1767/00/$02.00 The Journal of Immunology 4523 magnitude of the reaction is significantly reduced (28). The quality Mice were immunized with a single i.p. injection of NP12-CG precipitated of the GC reaction in the absence of CD21/CD35, e.g., hypermu- in alum. tation, clonal selection and affinity maturation, and maintenance of B cell memory compartments, remains unknown. Quantification of serum NP-specific Abs To investigate further the function of CD21/CD35 in B cell responses, we bred the Cr2Ϫ/Ϫ mutation onto the Ighb genetic Serum IgM, IgG1, or ␭1 Ab specific for NP was quantified by ELISA on NP6-BSA or NP20-BSA (48). In brief, 96-well plates (Falcon 3912; Becton background of C57BL/6 mice to study immune responses to NP. In ␮ b ␭ Dickinson, Oxnard, CA) were coated with 20 g/ml NP-BSA in 0.1 M all inbred mouse strains carrying Igh and Ig 1, primary Ab re- carbonate buffer (pH 8.8) at 4°C overnight and then were blocked and sponses to immunogenic conjugates of NP are clonally restricted washed with PBS (pH7.4) containing 0.1% Tween 20 (Sigma, St. Louis, (38). Virtually all NP-specific Abs in Ighb mice bear the ␭1 light MO) and 1% BSA. Serially diluted sera were added to duplicate wells and chain (39, 40) and use V 186.2 and DFL16.1 gene segments to incubated for1hatroom temperature. Each plate included standard con- H ␭ ␥ ␭ encode the Ig heavy chain (41–43). This response is compartmen- trols of serially diluted monoclonal IgG1/ 1 Abs, H33L 1/ 1, and pE- ␥ Х ϫ 7 VHC 1 (50). These Abs bind NP with different affinities (Ka 2.0 10 talized into pauciclonal foci of Ab-forming cells (AFCs) along the Ϫ1 ϫ 6 Ϫ1 ␭ M and 1 10 M , respectively).
Recommended publications
  • B Cell Activation and Escape of Tolerance Checkpoints: Recent Insights from Studying Autoreactive B Cells
    cells Review B Cell Activation and Escape of Tolerance Checkpoints: Recent Insights from Studying Autoreactive B Cells Carlo G. Bonasia 1 , Wayel H. Abdulahad 1,2 , Abraham Rutgers 1, Peter Heeringa 2 and Nicolaas A. Bos 1,* 1 Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; [email protected] (C.G.B.); [email protected] (W.H.A.); [email protected] (A.R.) 2 Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; [email protected] * Correspondence: [email protected] Abstract: Autoreactive B cells are key drivers of pathogenic processes in autoimmune diseases by the production of autoantibodies, secretion of cytokines, and presentation of autoantigens to T cells. However, the mechanisms that underlie the development of autoreactive B cells are not well understood. Here, we review recent studies leveraging novel techniques to identify and characterize (auto)antigen-specific B cells. The insights gained from such studies pertaining to the mechanisms involved in the escape of tolerance checkpoints and the activation of autoreactive B cells are discussed. Citation: Bonasia, C.G.; Abdulahad, W.H.; Rutgers, A.; Heeringa, P.; Bos, In addition, we briefly highlight potential therapeutic strategies to target and eliminate autoreactive N.A. B Cell Activation and Escape of B cells in autoimmune diseases. Tolerance Checkpoints: Recent Insights from Studying Autoreactive Keywords: autoimmune diseases; B cells; autoreactive B cells; tolerance B Cells. Cells 2021, 10, 1190. https:// doi.org/10.3390/cells10051190 Academic Editor: Juan Pablo de 1.
    [Show full text]
  • Case of the Anti HIV-1 Antibody, B12
    Spectrum of Somatic Hypermutations and Implication on Antibody Function: Case of the anti HIV-1 antibody, b12 Mesfin Mulugeta Gewe A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2015 Reading Committee: Roland Strong, Chair Nancy Maizels Jessica A. Hamerman Program Authorized to Offer Degree: Molecular and Cellular Biology i ii ©Copyright 2015 Mesfin Mulugeta Gewe iii University of Washington Abstract Spectrum of Somatic Hypermutations and Implication on Antibody Function: Case of the anti HIV-1 antibody, b12 Mesfin Mulugeta Gewe Chair of the Supervisory Committee: Roland Strong, Full Member Fred Hutchinson Cancer Research Center Sequence diversity, ability to evade immune detection and establishment of human immunodeficiency virus type 1 (HIV-1) latent reservoirs present a formidable challenge to the development of an HIV-1 vaccine. Structure based vaccine design stenciled on infection elicited broadly neutralizing antibodies (bNAbs) is a promising approach, in some measure to circumvent existing challenges. Understanding the antibody maturation process and importance of the high frequency mutations observed in anti-HIV-1 broadly neutralizing antibodies are imperative to the success of structure based vaccine immunogen design. Here we report a biochemical and structural characterization for the affinity maturation of infection elicited neutralizing antibodies IgG1 b12 (b12). We investigated the importance of affinity maturation and mutations accumulated therein in overall antibody function and their potential implications to vaccine development. Using a panel of point iv reversions, we examined relevance of individual amino acid mutations acquired during the affinity maturation process to deduce the role of somatic hypermutation in antibody function.
    [Show full text]
  • Affinity Maturation of a T-Cell Receptor-Like Antibody Specific for A
    International Journal of Molecular Sciences Article Affinity Maturation of a T-Cell Receptor-Like Antibody Specific for a Cytomegalovirus pp65-Derived Peptide Presented by HLA-A*02:01 Se-Young Lee 1,†, Deok-Han Ko 1,†, Min-Jeong Son 1, Jeong-Ah Kim 1, Keunok Jung 2 and Yong-Sung Kim 1,2,* 1 Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; [email protected] (S.-Y.L.); [email protected] (D.-H.K.); [email protected] (M.-J.S.); [email protected] (J.-A.K.) 2 Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon 16499, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-31-219-2662; Fax: +82-31-219-1610 † These authors have contributed equally to this work. Abstract: Human cytomegalovirus (CMV) infection is widespread among adults (60–90%) and is usually undetected in healthy individuals without symptoms but can cause severe diseases in im- munocompromised hosts. T-cell receptor (TCR)-like antibodies (Abs), which recognize complex antigens (peptide–MHC complex, pMHC) composed of MHC molecules with embedded short pep- tides derived from intracellular proteins, including pathogenic viral proteins, can serve as diagnostic and/or therapeutic agents. In this study, we aimed to engineer a TCR-like Ab specific for pMHC comprising a CMV pp65 protein-derived peptide (495NLVPMVATV503; hereafter, CMVpp65 ) 495-503 in complex with MHC-I molecule human leukocyte antigen (HLA)-A*02:01 (CMVpp65495-503/HLA- A*02:01) to increase affinity by sequential mutagenesis of complementarity-determining regions Citation: Lee, S.-Y.; Ko, D.-H.; Son, M.-J.; Kim, J.-A.; Jung, K.; Kim, Y.-S.
    [Show full text]
  • What Are the Primary Limitations in B-Cell Affinity Maturation, and How Much Affinity Maturation Can We Drive with Vaccination?: a Role for Antibody Feedback
    Downloaded from http://cshperspectives.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press What Are the Primary Limitations in B-Cell Affinity Maturation, and How Much Affinity Maturation Can We Drive with Vaccination? A Role for Antibody Feedback Kai-Michael Toellner,1 Daniel M.-Y. Sze,2 and Yang Zhang1 1Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom 2School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia Correspondence: [email protected] We discuss the impact of antibody feedback on affinity maturation of B cells. Competition from epitope-specific antibodies produced earlier during the immune response leads to immune complex formation, which is essential for transport and deposition of antigen onto follicular dendritic cells (FDCs). It also reduces the concentration of free epitopes into the mM to nM range, which is essential for B-cell receptors (BCRs) to sense affinity-dependent changes in binding capacity. Antibody feedback may also induce epitope spreading, leading to a broader selection of epitopes recognized by newly emerging B-cell clones. This may be exploitable, providing ways to manipulate epitope usage induced by vaccination. GREAT DEBATES What are the most interesting topics likely to come up over dinner or drinks with your colleagues? Or, more importantly, what are the topics that don’t come up because they are a little too controversial? In Immune Memory and Vaccines: Great Debates, Editors Rafi Ahmed and Shane Crotty have put together a collection of articles on such ques- tions, written by thought leaders in these fields, with the freedom to talk about the issues as they see fit.
    [Show full text]
  • Vaccine Immunology Claire-Anne Siegrist
    2 Vaccine Immunology Claire-Anne Siegrist To generate vaccine-mediated protection is a complex chal- non–antigen-specifc responses possibly leading to allergy, lenge. Currently available vaccines have largely been devel- autoimmunity, or even premature death—are being raised. oped empirically, with little or no understanding of how they Certain “off-targets effects” of vaccines have also been recog- activate the immune system. Their early protective effcacy is nized and call for studies to quantify their impact and identify primarily conferred by the induction of antigen-specifc anti- the mechanisms at play. The objective of this chapter is to bodies (Box 2.1). However, there is more to antibody- extract from the complex and rapidly evolving feld of immu- mediated protection than the peak of vaccine-induced nology the main concepts that are useful to better address antibody titers. The quality of such antibodies (e.g., their these important questions. avidity, specifcity, or neutralizing capacity) has been identi- fed as a determining factor in effcacy. Long-term protection HOW DO VACCINES MEDIATE PROTECTION? requires the persistence of vaccine antibodies above protective thresholds and/or the maintenance of immune memory cells Vaccines protect by inducing effector mechanisms (cells or capable of rapid and effective reactivation with subsequent molecules) capable of rapidly controlling replicating patho- microbial exposure. The determinants of immune memory gens or inactivating their toxic components. Vaccine-induced induction, as well as the relative contribution of persisting immune effectors (Table 2.1) are essentially antibodies— antibodies and of immune memory to protection against spe- produced by B lymphocytes—capable of binding specifcally cifc diseases, are essential parameters of long-term vaccine to a toxin or a pathogen.2 Other potential effectors are cyto- effcacy.
    [Show full text]
  • B-Cell Development, Activation, and Differentiation
    B-Cell Development, Activation, and Differentiation Sarah Holstein, MD, PhD Nov 13, 2014 Lymphoid tissues • Primary – Bone marrow – Thymus • Secondary – Lymph nodes – Spleen – Tonsils – Lymphoid tissue within GI and respiratory tracts Overview of B cell development • B cells are generated in the bone marrow • Takes 1-2 weeks to develop from hematopoietic stem cells to mature B cells • Sequence of expression of cell surface receptor and adhesion molecules which allows for differentiation of B cells, proliferation at various stages, and movement within the bone marrow microenvironment • Immature B cell leaves the bone marrow and undergoes further differentiation • Immune system must create a repertoire of receptors capable of recognizing a large array of antigens while at the same time eliminating self-reactive B cells Overview of B cell development • Early B cell development constitutes the steps that lead to B cell commitment and expression of surface immunoglobulin, production of mature B cells • Mature B cells leave the bone marrow and migrate to secondary lymphoid tissues • B cells then interact with exogenous antigen and/or T helper cells = antigen- dependent phase Overview of B cells Hematopoiesis • Hematopoietic stem cells (HSCs) source of all blood cells • Blood-forming cells first found in the yolk sac (primarily primitive rbc production) • HSCs arise in distal aorta ~3-4 weeks • HSCs migrate to the liver (primary site of hematopoiesis after 6 wks gestation) • Bone marrow hematopoiesis starts ~5 months of gestation Role of bone
    [Show full text]
  • B Cell Responses Against Influenza Viruses
    viruses Review B Cell Responses against Influenza Viruses: Short-Lived Humoral Immunity against a Life-Long Threat Jenna J. Guthmiller 1,* , Henry A. Utset 1 and Patrick C. Wilson 1,2 1 Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; [email protected] (H.A.U.); [email protected] (P.C.W.) 2 Committee on Immunology, University of Chicago, Chicago, IL 60637, USA * Correspondence: [email protected] Abstract: Antibodies are critical for providing protection against influenza virus infections. However, protective humoral immunity against influenza viruses is limited by the antigenic drift and shift of the major surface glycoproteins, hemagglutinin and neuraminidase. Importantly, people are exposed to influenza viruses throughout their life and tend to reuse memory B cells from prior exposure to generate antibodies against new variants. Despite this, people tend to recall memory B cells against constantly evolving variable epitopes or non-protective antigens, as opposed to recalling them against broadly neutralizing epitopes of hemagglutinin. In this review, we discuss the factors that impact the generation and recall of memory B cells against distinct viral antigens, as well as the immunological limitations preventing broadly neutralizing antibody responses. Lastly, we discuss how next-generation vaccine platforms can potentially overcome these obstacles to generate robust and long-lived protection against influenza A viruses. Keywords: influenza viruses; humoral immunity; broadly neutralizing antibodies; imprinting; Citation: Guthmiller, J.J.; Utset, H.A.; hemagglutinin; germinal center; plasma cells Wilson, P.C. B Cell Responses against Influenza Viruses: Short-Lived Humoral Immunity against a Life-Long Threat. Viruses 2021, 13, 1.
    [Show full text]
  • The Regulation of Peptide Mimotope/Epitope Recognition By
    The Regulation of Peptide Mimotope/Epitope Recognition by Monoclonal Antibodies by Richard Gary Smith B.Sc. (Hons) Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy, March 2002. TABLE OF CONTENTS Abstract………………………………………………………………...……….…….8 Acknowledgements…………………………………………………………………...9 Glossary of terms……………………………………………………………………10 Chapter 1 Antibody Purification…………………………………………………..11 1.1 Introduction ......................................................................................................11 1.1.1 Antibodies ................................................................................................11 1.1.2 Monoclonal and engineered Antibodies...................................................12 1.2 Examples of a therapeutic and a commercially applied monoclonal antibody17 1.2.1 C595 monoclonal antibody (NCRC48)...................................................17 1.2.2 mAb 4155.................................................................................................18 1.3 Approaches to antibody purification................................................................20 1.3.1 Column chromatography..........................................................................20 1.3.2 Fluidized bed and expanded bed adsorption ............................................20 1.3.3 High performance Tangential Flow Filtration (HPTFF)..........................21 1.3.4 Magnetic beads.........................................................................................21 1.4 Physical
    [Show full text]
  • In Vitro Selection and Affinity Maturation of Antibodies from A
    Proc. Natd. Acad. Sci. USA Vol. 89, pp. 3576-3580, April 1992 Biochemistry In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin library (naive immunoglobulin repertoire/fflamentous phage/random mutagenesis) HERMANN GRAM*, LORI-ANNE MARCONI, CARLOS F. BARBAS III, THOMAS A. COLLET, RICHARD A. LERNER, AND ANGRAY S. KANG The Scripps Research Institute, Departments of Molecular Biology and Chemistry, 10666 North Torrey Pines Road, La Jolla, CA 92037 Contributed by Richard A. Lerner, January 7, 1992 ABSTRACT We have used a combinatorial immunoglob- H-chain IgG isotype for molecular cloning, and/or the high ulin library approach to obtain monoclonal antibodies from abundance of specific mRNA in the starting material (12) nonimmune adult mice, thereby establishing the principles of most likely biased the combinatorial libraries toward affinity- (i) accessing naive combinatorial antibody libraries for prede- matured antibodies. Recently, Marks et al. (19) demonstrated termined specificities and (ii) increasing the affinity of the that active single-chain (Sc) antibodies with affinity constants selected antibody binding sites by random mutagenesis. A between 106 and 107 M-1 against a hapten or a small number combinatorial Fab library expressing immunoglobulin Ip and it of epitopes on a protein can be obtained directly from light-chain fragments on the surface of filamentous phage was nonimmune combinatorial immunoglobulin libraries. prepared from bone marrow ofnonimmunized, adult BALB/c In its simplest form, the initial stage of the immune mice with the multivalent display vector pComb8. Phage response can be re-created in vitro by generating a combi- displaying low affinity Fabs (binding constants, 104-1O M-') natorial library of PCR-amplified immunoglobulin At and L binding to a progesterone-bovine serum albumin conjugate chains from the bone marrow of adult mice.
    [Show full text]
  • Generation of Memory B Cells Inside And
    1258 Toshitada Takemori et al. DOI: 10.1002/eji.201343716 Eur. J. Immunol. 2014. 44: 1258–1264 Mini-Review Generation of memory B cells inside and outside germinal centers Toshitada Takemori1, Tomohiro Kaji2, Yoshimasa Takahashi3, Michiko Shimoda4 and Klaus Rajewsky5 1 Drug Discovery Antibody Platform Unit, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan 2 Laboratory for Immunological Memory, RIKEN Research Center for Allergy and Immunology (RCAI), Yokohama, Japan 3 Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan 4 Cancer Immunology, Inflammation and Tolerance Program, Georgia Regents University Cancer Center, Augusta, GA, USA 5 Immune Regulation and Cancer, Max-Delbruck-Center¨ for Molecular Medicine, Berlin, Germany Germinal centers (GCs) are generally considered to be the sole site of memory B-cell generation. However, recent studies demonstrate that memory B cells can also develop in response to a T-cell dependent (TD) antigen before the onset, and independently of, the GC reaction. These two classes of memory cells persist equally over long periods of time and attain functional maturation through distinct but related transcriptional programs. Although the development of both memory B-cell types requires classical T-cell help, the generation of GC-dependent memory B cells requires TFH-cell help, while the generation of GC-independent memory cells does not. These findings led to the conclusion that B-cell memory is generated along two fundamentally distinct cellular differentiation pathways. In this review, we focus on the GC-independent pathway of memory B-cell development, and discuss how the unique features of memory B cells are maintained in the GC-independent pathway.
    [Show full text]
  • γδ T Cells Control Humoral Immune Response by Inducing T Follicular
    ARTICLE DOI: 10.1038/s41467-018-05487-9 OPEN γδ T cells control humoral immune response by inducing T follicular helper cell differentiation Rafael M. Rezende1, Amanda J. Lanser1, Stephen Rubino1, Chantal Kuhn1, Nathaniel Skillin1, Thais G. Moreira1, Shirong Liu1, Galina Gabriely1, Bruna A. David2, Gustavo B. Menezes2 & Howard L. Weiner1 γδ T cells have many known functions, including the regulation of antibody responses. However, how γδ T cells control humoral immunity remains elusive. Here we show that 1234567890():,; complete Freund’s adjuvant (CFA), but not alum, immunization induces a subpopulation of CXCR5-expressing γδ T cells in the draining lymph nodes. TCRγδ+CXCR5+ cells present antigens to, and induce CXCR5 on, CD4 T cells by releasing Wnt ligands to initiate the T follicular helper (Tfh) cell program. Accordingly, TCRδ−/− mice have impaired germinal center formation, inefficient Tfh cell differentiation, and reduced serum levels of chicken ovalbumin (OVA)-specific antibodies after CFA/OVA immunization. In a mouse model of lupus, TCRδ−/− mice develop milder glomerulonephritis, consistent with decreased serum levels of lupus-related autoantibodies, when compared with wild type mice. Thus, modulation of the γδ T cell-dependent humoral immune response may provide a novel therapy approach for the treatment of antibody-mediated autoimmunity. 1 Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA. 2 Center for Gastrointestinal Biology, Federal University of Minas Gerais,
    [Show full text]
  • Somatic Hypermutation and Affinity Maturation Analysis Using the 4-Hydroxy-3-Nitrophenyl-Acetyl (NP) System
    This is a repository copy of Somatic hypermutation and affinity maturation analysis using the 4-hydroxy-3-nitrophenyl-acetyl (NP) system. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/138157/ Version: Accepted Version Book Section: Heise, N and Klein, U orcid.org/0000-0002-4789-967X (2017) Somatic hypermutation and affinity maturation analysis using the 4-hydroxy-3-nitrophenyl-acetyl (NP) system. In: Calado, DP, (ed.) Germinal Centers. Methods in Molecular Biology, 1623 . Springer (Humana) , pp. 191-208. ISBN 978-1-4939-7094-0 https://doi.org/10.1007/978-1-4939-7095-7_16 (c) 2017, Springer Science+Business Media LLC. This is an author produced version of a chapter published in Methods in Molecular Biology volume 1623. Uploaded in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Somatic hypermutation and affinity maturation analysis using the 4-hydroxy- 3-nitrophenyl-acetyl (NP) system Nicole Heise and Ulf Klein Herbert Irving Comprehensive Cancer Center and Departments of Pathology & Cell Biology and Microbiology & Immunology, Columbia University, 1130 St.
    [Show full text]