Generation of Memory B Cells Inside And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SAHLGRENSKA AKADEMIN Thymic Studies
Göteborg, 2019 Thymic studies Investigations into the effects of childhood thymectomy, and characterization of thymic B cells and Hassall's corpuscles Akademisk avhandling Som för avläggande av medicine doktorsexamen vid Sahlgrenska akademin, Göteborgs universitet kommer att offentligen försvaras i föreläsningssalen våning 3, Guldhedsgatan 10A, Göteborg Tisdagen den 14e maj, klockan 13.00 av Christina Lundqvist Fakultetsopponent: Professor Ludger Klein Ludwig-Maximilians-Universität, Tyskland Avhandlingen baseras på följande delarbeten I. Gudmundsdottir J*, Lundqvist C*, Ijspeert H, van der Slik E, Óskarsdóttir S, Lindgren S, Lundberg V, Berglund M, Lingman-Framme J, Telemo E, van der Burg M, Ekwall O. T-cell receptor sequencing reveals decreased diversity 18 years after early thymectomy. J Allergy Clin Immunol. 2017 Dec;140(6):1743- 1746.e7. doi: 10.1016/j.jaci.2017.08.002. Epub 2017 Sep 1. * These authors contributed equally to this work. II. Lundqvist C*, Camponeschi A*, Visentini M, Telemo E, Ekwall O‡, Mårtensson IL‡. Switched CD21-/low B cells with an antigen-presenting phenotype in the infant thymus. J Allergy Clin Immunol. 2018 Nov 30. pii: S0091-6749(18)31721- 4. doi: 10.1016/j.jaci.2018.11.019. * These authors contributed equally to this work. ‡ These authors contributed equally to this work. III. Lundqvist C, Lindgren S, Cheuk S, Lundberg V, Berglund M, Thörn K, Telemo E, Ekwall O. Characterization of Hassall's corpuscles in the human thymus. Manuscript SAHLGRENSKA AKADEMIN INSTITUTIONEN FÖR MEDICIN Göteborg, 2019 Thymic studies Investigations into the effects of childhood thymectomy, and characterization of thymic B cells and Hassall's corpuscles Christina Lundqvist Avdelningen för reumatologi och inflammationsforskning, Institutionen för medicin, Sahlgrenska akademin, Göteborgs universitet Abstract This thesis focuses on the human thymus, a primary lymphoid organ responsible for the maturation of T cells. -
B Cell Activation and Escape of Tolerance Checkpoints: Recent Insights from Studying Autoreactive B Cells
cells Review B Cell Activation and Escape of Tolerance Checkpoints: Recent Insights from Studying Autoreactive B Cells Carlo G. Bonasia 1 , Wayel H. Abdulahad 1,2 , Abraham Rutgers 1, Peter Heeringa 2 and Nicolaas A. Bos 1,* 1 Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; [email protected] (C.G.B.); [email protected] (W.H.A.); [email protected] (A.R.) 2 Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; [email protected] * Correspondence: [email protected] Abstract: Autoreactive B cells are key drivers of pathogenic processes in autoimmune diseases by the production of autoantibodies, secretion of cytokines, and presentation of autoantigens to T cells. However, the mechanisms that underlie the development of autoreactive B cells are not well understood. Here, we review recent studies leveraging novel techniques to identify and characterize (auto)antigen-specific B cells. The insights gained from such studies pertaining to the mechanisms involved in the escape of tolerance checkpoints and the activation of autoreactive B cells are discussed. Citation: Bonasia, C.G.; Abdulahad, W.H.; Rutgers, A.; Heeringa, P.; Bos, In addition, we briefly highlight potential therapeutic strategies to target and eliminate autoreactive N.A. B Cell Activation and Escape of B cells in autoimmune diseases. Tolerance Checkpoints: Recent Insights from Studying Autoreactive Keywords: autoimmune diseases; B cells; autoreactive B cells; tolerance B Cells. Cells 2021, 10, 1190. https:// doi.org/10.3390/cells10051190 Academic Editor: Juan Pablo de 1. -
Case of the Anti HIV-1 Antibody, B12
Spectrum of Somatic Hypermutations and Implication on Antibody Function: Case of the anti HIV-1 antibody, b12 Mesfin Mulugeta Gewe A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2015 Reading Committee: Roland Strong, Chair Nancy Maizels Jessica A. Hamerman Program Authorized to Offer Degree: Molecular and Cellular Biology i ii ©Copyright 2015 Mesfin Mulugeta Gewe iii University of Washington Abstract Spectrum of Somatic Hypermutations and Implication on Antibody Function: Case of the anti HIV-1 antibody, b12 Mesfin Mulugeta Gewe Chair of the Supervisory Committee: Roland Strong, Full Member Fred Hutchinson Cancer Research Center Sequence diversity, ability to evade immune detection and establishment of human immunodeficiency virus type 1 (HIV-1) latent reservoirs present a formidable challenge to the development of an HIV-1 vaccine. Structure based vaccine design stenciled on infection elicited broadly neutralizing antibodies (bNAbs) is a promising approach, in some measure to circumvent existing challenges. Understanding the antibody maturation process and importance of the high frequency mutations observed in anti-HIV-1 broadly neutralizing antibodies are imperative to the success of structure based vaccine immunogen design. Here we report a biochemical and structural characterization for the affinity maturation of infection elicited neutralizing antibodies IgG1 b12 (b12). We investigated the importance of affinity maturation and mutations accumulated therein in overall antibody function and their potential implications to vaccine development. Using a panel of point iv reversions, we examined relevance of individual amino acid mutations acquired during the affinity maturation process to deduce the role of somatic hypermutation in antibody function. -
Affinity Maturation of a T-Cell Receptor-Like Antibody Specific for A
International Journal of Molecular Sciences Article Affinity Maturation of a T-Cell Receptor-Like Antibody Specific for a Cytomegalovirus pp65-Derived Peptide Presented by HLA-A*02:01 Se-Young Lee 1,†, Deok-Han Ko 1,†, Min-Jeong Son 1, Jeong-Ah Kim 1, Keunok Jung 2 and Yong-Sung Kim 1,2,* 1 Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; [email protected] (S.-Y.L.); [email protected] (D.-H.K.); [email protected] (M.-J.S.); [email protected] (J.-A.K.) 2 Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon 16499, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-31-219-2662; Fax: +82-31-219-1610 † These authors have contributed equally to this work. Abstract: Human cytomegalovirus (CMV) infection is widespread among adults (60–90%) and is usually undetected in healthy individuals without symptoms but can cause severe diseases in im- munocompromised hosts. T-cell receptor (TCR)-like antibodies (Abs), which recognize complex antigens (peptide–MHC complex, pMHC) composed of MHC molecules with embedded short pep- tides derived from intracellular proteins, including pathogenic viral proteins, can serve as diagnostic and/or therapeutic agents. In this study, we aimed to engineer a TCR-like Ab specific for pMHC comprising a CMV pp65 protein-derived peptide (495NLVPMVATV503; hereafter, CMVpp65 ) 495-503 in complex with MHC-I molecule human leukocyte antigen (HLA)-A*02:01 (CMVpp65495-503/HLA- A*02:01) to increase affinity by sequential mutagenesis of complementarity-determining regions Citation: Lee, S.-Y.; Ko, D.-H.; Son, M.-J.; Kim, J.-A.; Jung, K.; Kim, Y.-S. -
B Cells + Interaction
Human B Cell Activation by Autologous NK Cells Is Regulated by CD40-CD40 Ligand Interaction: Role of Memory B Cells and CD5 + B Cells This information is current as of October 2, 2021. Isaac R. Blanca, Earl W. Bere, Howard A. Young and John R. Ortaldo J Immunol 2001; 167:6132-6139; ; doi: 10.4049/jimmunol.167.11.6132 http://www.jimmunol.org/content/167/11/6132 Downloaded from References This article cites 45 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/167/11/6132.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 2, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Human B Cell Activation by Autologous NK Cells Is Regulated by CD40-CD40 Ligand Interaction: Role of Memory B Cells and CD5؉ B Cells Isaac R. Blanca,*† Earl W. Bere,* Howard A. -
What Are the Primary Limitations in B-Cell Affinity Maturation, and How Much Affinity Maturation Can We Drive with Vaccination?: a Role for Antibody Feedback
Downloaded from http://cshperspectives.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press What Are the Primary Limitations in B-Cell Affinity Maturation, and How Much Affinity Maturation Can We Drive with Vaccination? A Role for Antibody Feedback Kai-Michael Toellner,1 Daniel M.-Y. Sze,2 and Yang Zhang1 1Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom 2School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia Correspondence: [email protected] We discuss the impact of antibody feedback on affinity maturation of B cells. Competition from epitope-specific antibodies produced earlier during the immune response leads to immune complex formation, which is essential for transport and deposition of antigen onto follicular dendritic cells (FDCs). It also reduces the concentration of free epitopes into the mM to nM range, which is essential for B-cell receptors (BCRs) to sense affinity-dependent changes in binding capacity. Antibody feedback may also induce epitope spreading, leading to a broader selection of epitopes recognized by newly emerging B-cell clones. This may be exploitable, providing ways to manipulate epitope usage induced by vaccination. GREAT DEBATES What are the most interesting topics likely to come up over dinner or drinks with your colleagues? Or, more importantly, what are the topics that don’t come up because they are a little too controversial? In Immune Memory and Vaccines: Great Debates, Editors Rafi Ahmed and Shane Crotty have put together a collection of articles on such ques- tions, written by thought leaders in these fields, with the freedom to talk about the issues as they see fit. -
Advanced Laboratory Studies for Primary Immunodeficiency Disorders
4813: Problem-based Learning Workshop Advanced Laboratory studies for Primary Immunodeficiency Disorders Moderator: Richard Wasserman, MD, PhD Discussion Leader: Roshini Abraham, PhD ● Understand B cell flow analysis in CVID (PBL case) HUMAN PERIPHERAL B CELL DIFFERENTIATION Marginal zone B cells Bone marrow Immature B cells Transitional B cells Naïve B cells Memory B cells Plasmablasts Periphery MARKERS FOR PERIPHERAL B CELL SUBSETS - CURRENT Total B cells: CD19 and/or CD20 Transitional B cells: CD19+CD38+IgM+ Total IgM+ B cells: CD19+IgM+ (includes naïve B cells) Memory B cells: CD19+CD27+ switched memory B cells: CD19+CD27+IgM-IgD- marginal zone B cells: CD19+CD27+IgM+IgD+ IgM-only memory B cells: CD19+CD27+IgM+IgD- Plasmablasts: CD19+CD38+IgM- CD21+ B cells: CD19+CD21+ CD21- B cells: CD19+CD21- ● With newer information, more suitable cellular markers are available for accurate identification of transitional B cells and plasmablasts, in particular, but also for naïve B cells NEWER B CELL MARKERS FOR B CELL SUBSET QUANTITATION Total B cells and B cell subsets can be quantitated in blood using multicolor flow cytometry: Total B cells: CD45+CD19+20+ For B cell subset analysis, the gating strategy uses CD45+19+20+/- (depending on the subset being studied), thus these markers are not specifically repeated in the panel below:- Transitional B cells: T1: CD24hi38hi10+27-21lowIgM+++ T2: CD24hi38hi10+27-21int IgM+++ Naïve B cells: IgM+IgD+27-38-21+++ Memory B cells: Marginal zone B cells: CD27+IgM+IgD+ IgM-only memory: CD27+IgM+IgD- IgD-only -
Vaccine Immunology Claire-Anne Siegrist
2 Vaccine Immunology Claire-Anne Siegrist To generate vaccine-mediated protection is a complex chal- non–antigen-specifc responses possibly leading to allergy, lenge. Currently available vaccines have largely been devel- autoimmunity, or even premature death—are being raised. oped empirically, with little or no understanding of how they Certain “off-targets effects” of vaccines have also been recog- activate the immune system. Their early protective effcacy is nized and call for studies to quantify their impact and identify primarily conferred by the induction of antigen-specifc anti- the mechanisms at play. The objective of this chapter is to bodies (Box 2.1). However, there is more to antibody- extract from the complex and rapidly evolving feld of immu- mediated protection than the peak of vaccine-induced nology the main concepts that are useful to better address antibody titers. The quality of such antibodies (e.g., their these important questions. avidity, specifcity, or neutralizing capacity) has been identi- fed as a determining factor in effcacy. Long-term protection HOW DO VACCINES MEDIATE PROTECTION? requires the persistence of vaccine antibodies above protective thresholds and/or the maintenance of immune memory cells Vaccines protect by inducing effector mechanisms (cells or capable of rapid and effective reactivation with subsequent molecules) capable of rapidly controlling replicating patho- microbial exposure. The determinants of immune memory gens or inactivating their toxic components. Vaccine-induced induction, as well as the relative contribution of persisting immune effectors (Table 2.1) are essentially antibodies— antibodies and of immune memory to protection against spe- produced by B lymphocytes—capable of binding specifcally cifc diseases, are essential parameters of long-term vaccine to a toxin or a pathogen.2 Other potential effectors are cyto- effcacy. -
B-Cell Development, Activation, and Differentiation
B-Cell Development, Activation, and Differentiation Sarah Holstein, MD, PhD Nov 13, 2014 Lymphoid tissues • Primary – Bone marrow – Thymus • Secondary – Lymph nodes – Spleen – Tonsils – Lymphoid tissue within GI and respiratory tracts Overview of B cell development • B cells are generated in the bone marrow • Takes 1-2 weeks to develop from hematopoietic stem cells to mature B cells • Sequence of expression of cell surface receptor and adhesion molecules which allows for differentiation of B cells, proliferation at various stages, and movement within the bone marrow microenvironment • Immature B cell leaves the bone marrow and undergoes further differentiation • Immune system must create a repertoire of receptors capable of recognizing a large array of antigens while at the same time eliminating self-reactive B cells Overview of B cell development • Early B cell development constitutes the steps that lead to B cell commitment and expression of surface immunoglobulin, production of mature B cells • Mature B cells leave the bone marrow and migrate to secondary lymphoid tissues • B cells then interact with exogenous antigen and/or T helper cells = antigen- dependent phase Overview of B cells Hematopoiesis • Hematopoietic stem cells (HSCs) source of all blood cells • Blood-forming cells first found in the yolk sac (primarily primitive rbc production) • HSCs arise in distal aorta ~3-4 weeks • HSCs migrate to the liver (primary site of hematopoiesis after 6 wks gestation) • Bone marrow hematopoiesis starts ~5 months of gestation Role of bone -
B Cell Responses Against Influenza Viruses
viruses Review B Cell Responses against Influenza Viruses: Short-Lived Humoral Immunity against a Life-Long Threat Jenna J. Guthmiller 1,* , Henry A. Utset 1 and Patrick C. Wilson 1,2 1 Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; [email protected] (H.A.U.); [email protected] (P.C.W.) 2 Committee on Immunology, University of Chicago, Chicago, IL 60637, USA * Correspondence: [email protected] Abstract: Antibodies are critical for providing protection against influenza virus infections. However, protective humoral immunity against influenza viruses is limited by the antigenic drift and shift of the major surface glycoproteins, hemagglutinin and neuraminidase. Importantly, people are exposed to influenza viruses throughout their life and tend to reuse memory B cells from prior exposure to generate antibodies against new variants. Despite this, people tend to recall memory B cells against constantly evolving variable epitopes or non-protective antigens, as opposed to recalling them against broadly neutralizing epitopes of hemagglutinin. In this review, we discuss the factors that impact the generation and recall of memory B cells against distinct viral antigens, as well as the immunological limitations preventing broadly neutralizing antibody responses. Lastly, we discuss how next-generation vaccine platforms can potentially overcome these obstacles to generate robust and long-lived protection against influenza A viruses. Keywords: influenza viruses; humoral immunity; broadly neutralizing antibodies; imprinting; Citation: Guthmiller, J.J.; Utset, H.A.; hemagglutinin; germinal center; plasma cells Wilson, P.C. B Cell Responses against Influenza Viruses: Short-Lived Humoral Immunity against a Life-Long Threat. Viruses 2021, 13, 1. -
Evasion of Affinity-Based Selection in Germinal Centers by Epstein–Barr Virus LMP2A
Evasion of affinity-based selection in germinal centers by Epstein–Barr virus LMP2A Takeharu Minamitania,1, Teruhito Yasuia,1,2, Yijie Mab, Hufeng Zhoub, Daisuke Okuzakic, Chiau-Yuang Tsaia, Shuhei Sakakibaraa, Benjamin E. Gewurzb, Elliott Kieffb,2, and Hitoshi Kikutania,2 aDepartment of Molecular Immunology, Research Institute for Microbial Diseases, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; bDivision of Infectious Disease, Department of Medicine, Microbiology and Immunobiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115; and cDNA-chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan Contributed by Elliott Kieff, July 27, 2015 (sent for review May 1, 2015) Epstein–Barr virus (EBV) infects germinal center (GC) B cells and B-cell development or augments the differentiation and acti- establishes persistent infection in memory B cells. EBV-infected B vation of antigen-driven B cells (9, 10, 14–16). cells can cause B-cell malignancies in humans with T- or natural In the peripheral blood of persistently infected people, EBV − killer-cell deficiency. We now find that EBV-encoded latent mem- resides exclusively in IgD memory B cells (17). However, in ton- brane protein 2A (LMP2A) mimics B-cell antigen receptor (BCR) signal- sils, EBV is found not only in memory B cells but also in GC and + ing in murine GC B cells, causing altered humoral immune responses IgD resting B cells in which EBNA1, LMP1, and LMP2A are and autoimmune diseases. Investigation of the impact of LMP2A on expressed (17, 18). -
An Overview of B Cells – from Discovery to Therapy Mini Review
An Overview of B Cells – from Discovery to Therapy Mini Review Immunology In the past two decades, significant advances have been made in B cell biology. These critical immune cells remain an active area of research particularly because disruption of B cell development or function results in a number of autoimmune diseases and malignancies. In addition to producing antibodies, B cells are professional antigen presenting cells that can present antigens to T cells to generate effective immune responses. B cells are however, a heterogeneous population of cells at different stages of maturation along the lineage, each with unique functional properties. This mini-review provides a brief history of the discovery of B cells, as well as describes the characteristics of each B cell lineage and the processes of B cell development, maturation and activation. Finally, we highlight the application of B cell biology in the development of novel therapeutics for the treatment of B cell mediated diseases. Contents 1. A brief history of the discovery of B cells 2. B cell development and maturation 3. B cell activation and the humoral immune response 4. B cells as therapeutic targets 1. A brief history of the discovery of B cells B cells are an integral part of the adaptive immune response. They represent a distinct lineage, with separate and unique functions from T cells. In addition to producing antibodies, they perform critical immune functions such as generating immunological memory, antigen presentation and regulatory cytokine production. Our current understanding of B cell biology was initiated in 1965 with a landmark study by Max Cooper and Robert Good.