The Regulation of Peptide Mimotope/Epitope Recognition By

Total Page:16

File Type:pdf, Size:1020Kb

The Regulation of Peptide Mimotope/Epitope Recognition By The Regulation of Peptide Mimotope/Epitope Recognition by Monoclonal Antibodies by Richard Gary Smith B.Sc. (Hons) Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy, March 2002. TABLE OF CONTENTS Abstract………………………………………………………………...……….…….8 Acknowledgements…………………………………………………………………...9 Glossary of terms……………………………………………………………………10 Chapter 1 Antibody Purification…………………………………………………..11 1.1 Introduction ......................................................................................................11 1.1.1 Antibodies ................................................................................................11 1.1.2 Monoclonal and engineered Antibodies...................................................12 1.2 Examples of a therapeutic and a commercially applied monoclonal antibody17 1.2.1 C595 monoclonal antibody (NCRC48)...................................................17 1.2.2 mAb 4155.................................................................................................18 1.3 Approaches to antibody purification................................................................20 1.3.1 Column chromatography..........................................................................20 1.3.2 Fluidized bed and expanded bed adsorption ............................................20 1.3.3 High performance Tangential Flow Filtration (HPTFF)..........................21 1.3.4 Magnetic beads.........................................................................................21 1.4 Physical separation techniques.........................................................................22 1.4.1 Ion exchange ............................................................................................22 1.4.2 Gel filtration .............................................................................................23 1.4.3 Hydrophobic Interaction Chromatography (HIC)....................................23 1.5 Affinity Purification Techniques......................................................................23 1.5.1 Fc Binding Proteins..................................................................................24 1.5.2 Recombinant Protein Tags .......................................................................24 1.5.3 Paratope specific binding ligands.............................................................25 1.5.4 Non-proteinaceous, paratope specific affinity ligands.............................30 1.6 Summary ..........................................................................................................32 Chapter 2 Regulation of peptide antibody interactions……………………….…33 2.1 Introduction ......................................................................................................33 2.1.1 Library Technologies ...............................................................................35 2.1.2 The distinction between screening and selection in library technologies 36 2.2 Synthetic Peptide Libraries ..............................................................................40 2.2.1 Pepscan – The application of synthetic peptides in Epitope mapping. ....40 2.2.2 Replacement Net (RNET) analysis ..........................................................40 2 2.2.3 Combinatorial peptide libraries................................................................41 2.3 Biological libraries ...........................................................................................42 2.3.1 In vivo libraries.........................................................................................42 2.3.2 In vitro libraries........................................................................................47 2.4 Other non-peptide ligands ................................................................................51 2.4.1 Synthetic Libraries ...................................................................................51 2.4.2 Biological Libraries..................................................................................51 2.5 Mutagenesis......................................................................................................52 2.6 Aims and Objectives of the research................................................................55 Chapter 3 Materials and Methods…………………………………………………57 3.1 Reagents ...........................................................................................................57 3.2 Enzymes ...........................................................................................................59 3.3 Buffers and Solutions.......................................................................................60 3.4 Methods............................................................................................................65 3.4.1 Monoclonal Antibody Production............................................................65 3.4.2 Biopanning of phage library.....................................................................65 3.4.3 PCR analysis of individual phage clones .................................................66 3.4.4 Direct sequencing of PCR products .........................................................67 3.4.5 Phage Capture ELISA ..............................................................................68 3.4.6 Sepharose Bead Assay .............................................................................69 3.4.7 Peptide Affinity Chromatography............................................................69 3.4.8 Sodium dodecyl sulphate polyacrylamide gel electrophoresis ................70 3.4.9 Circular Dichroism...................................................................................71 3.4.10 Fluorescence Quenching Immunoassay...................................................72 3.4.11 Conjugation of peptides to BSA using glutaraldehyde ............................73 3.4.12 Production of a BSA-Estrone Conjugate .................................................73 3.4.13 Enzyme linked immunosorbent assay (ELISA).......................................73 3.4.14 Surface Plasmon Resonance (SPR) analysis of the C595 – mucin core peptide APDTRPAPG interaction............................................................76 3.4.15 SPR analysis of the interaction between peptide conjugate BSA- (D)DYFLG, and the anti E3G monoclonal antibody 4155. .....................79 3.4.16 Production of pCANTAB-5E [C595scFvGFP]. A Phagemid expression vector containing a C595 ScFv – Green Fluorescent Protein Gene fusion. ..................................................................................................................81 3 3.4.17 Protein expression ....................................................................................88 3.4.18 Western blot analysis ...............................................................................90 3.4.19 ELISA of Supernatant, Periplasmic Extract, Whole Cell Extract and fractions from affinity purification of supernatant...............................................90 3.4.20 Random mutagenesis of the C595-ScFv gene – analysis of a selection of mutants. ................................................................................................................91 3.4.21 Evaluation of pSKGFP expression system...............................................92 Chapter 4 - Results. Phage Display of Peptides…………………………………..93 4.1 Introduction ......................................................................................................93 4.2 The T7Select415 phage display library............................................................94 4.3 Determination of initial phage library titer and stability of the library............97 4.4 Analysis of passive adsorption of proteins on the surface of NUNC immunotubes by ELISA method..............................................................................98 4.5 Removal of non-specifically binding phage.....................................................99 4.6 Biopanning - Screening of library against 4155 mAb....................................100 4.6.1 Determination of the extent of enrichment that can be observed...........100 4.7 Screening of library against C595 mAb.........................................................101 4.7.1 Determination of the extent of enrichment that can be observed...........101 4.7.2 Capture ELISA of phage populations from biopanning rounds.............102 4.7.3 Capture ELISA of phage clones from rounds one and four of screening. …………………………………………………………………………104 4.8 SPR analysis of selected phage clones...........................................................106 4.9 PCR analysis of phage clones from round four of initial screen....................109 4.10 Sequencing of phage clones .......................................................................110 4.10.1 Sequencing of clones from the fourth round of biopanning...................110 4.10.2 Sequence analysis of all four biopanning rounds...................................114 4.11 Summary ....................................................................................................121 Chapter 5 - Results. Analysis of peptides derived from phage display………..123 5.1 Introduction ....................................................................................................123 5.2 ELISA of BSA – peptide conjugates..............................................................124 5.3 Sepharose bead assay .....................................................................................125
Recommended publications
  • B Cell Activation and Escape of Tolerance Checkpoints: Recent Insights from Studying Autoreactive B Cells
    cells Review B Cell Activation and Escape of Tolerance Checkpoints: Recent Insights from Studying Autoreactive B Cells Carlo G. Bonasia 1 , Wayel H. Abdulahad 1,2 , Abraham Rutgers 1, Peter Heeringa 2 and Nicolaas A. Bos 1,* 1 Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; [email protected] (C.G.B.); [email protected] (W.H.A.); [email protected] (A.R.) 2 Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; [email protected] * Correspondence: [email protected] Abstract: Autoreactive B cells are key drivers of pathogenic processes in autoimmune diseases by the production of autoantibodies, secretion of cytokines, and presentation of autoantigens to T cells. However, the mechanisms that underlie the development of autoreactive B cells are not well understood. Here, we review recent studies leveraging novel techniques to identify and characterize (auto)antigen-specific B cells. The insights gained from such studies pertaining to the mechanisms involved in the escape of tolerance checkpoints and the activation of autoreactive B cells are discussed. Citation: Bonasia, C.G.; Abdulahad, W.H.; Rutgers, A.; Heeringa, P.; Bos, In addition, we briefly highlight potential therapeutic strategies to target and eliminate autoreactive N.A. B Cell Activation and Escape of B cells in autoimmune diseases. Tolerance Checkpoints: Recent Insights from Studying Autoreactive Keywords: autoimmune diseases; B cells; autoreactive B cells; tolerance B Cells. Cells 2021, 10, 1190. https:// doi.org/10.3390/cells10051190 Academic Editor: Juan Pablo de 1.
    [Show full text]
  • Case of the Anti HIV-1 Antibody, B12
    Spectrum of Somatic Hypermutations and Implication on Antibody Function: Case of the anti HIV-1 antibody, b12 Mesfin Mulugeta Gewe A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2015 Reading Committee: Roland Strong, Chair Nancy Maizels Jessica A. Hamerman Program Authorized to Offer Degree: Molecular and Cellular Biology i ii ©Copyright 2015 Mesfin Mulugeta Gewe iii University of Washington Abstract Spectrum of Somatic Hypermutations and Implication on Antibody Function: Case of the anti HIV-1 antibody, b12 Mesfin Mulugeta Gewe Chair of the Supervisory Committee: Roland Strong, Full Member Fred Hutchinson Cancer Research Center Sequence diversity, ability to evade immune detection and establishment of human immunodeficiency virus type 1 (HIV-1) latent reservoirs present a formidable challenge to the development of an HIV-1 vaccine. Structure based vaccine design stenciled on infection elicited broadly neutralizing antibodies (bNAbs) is a promising approach, in some measure to circumvent existing challenges. Understanding the antibody maturation process and importance of the high frequency mutations observed in anti-HIV-1 broadly neutralizing antibodies are imperative to the success of structure based vaccine immunogen design. Here we report a biochemical and structural characterization for the affinity maturation of infection elicited neutralizing antibodies IgG1 b12 (b12). We investigated the importance of affinity maturation and mutations accumulated therein in overall antibody function and their potential implications to vaccine development. Using a panel of point iv reversions, we examined relevance of individual amino acid mutations acquired during the affinity maturation process to deduce the role of somatic hypermutation in antibody function.
    [Show full text]
  • Rapid Mimotope Optimization for Pharmacokinetic Analysis of the Novel Therapeutic Antibody IMAB362 M
    APPLICATION NOTE PepStar™ Peptide Microarrays IMMUNOLOGY Rapid Mimotope Optimization for Pharmacokinetic Analysis of the Novel Therapeutic Antibody IMAB362 M. Daneschdar*, H.U. Schmoldt*, L. M. Plum**, Y. Kühne**, M. Fiedler*, A. Masch***, K. Schnatbaum†, J. Jansong†, J. Zerweck†, H. Wenschuh†, U.Reimer†, Ö. Türeci**** and U. Sahin* * BioNTech AG, Mainz, Germany ** Institute for Translational Oncology and Immunology (TRON), Mainz, Germany *** Department of Internal Medicine III, Experimental and Translational Oncology, Johannes Gutenberg-University, Mainz, Germany **** Ganymed Pharmaceuticals AG, Mainz, Germany † JPT Peptide Technologies, Volmerstrasse 5, 12489 Berlin, Germany The detection of therapeutic antibodies targeting membrane proteins in the course of (pre-)clinical development is often challenging due to the unavailability of the target molecule in its native form. As an alternative in this study, mimotopes for the antibody IMAB362 (Claudiximab) were discovered and optimized using phage display and peptide microarrays. The best mimotope was successfully used for the peptide ELISA- based quantification of IMAB362 in serum samples. The described process efficiently provides mimotopes for targets which are difficult to produce or handle. Introduction Three peptides (sequences 1a, 2a and 3a, Table 1) were selected IMAB362 (anti-Claudin 18.2) is a highly tumor-specific monoclonal for further analysis. IgG1 antibody currently in clinical development for the treatment Peptide microarrays represent a highly efficient approach for of advanced gastro-esophageal and stomach cancer [1, 2]. The peptide optimization because thousands of peptides can be antibody is directed against the cancer-specific cell surface target screened in parallel requiring only small amounts of precious Claudin 18 isoform 2 (CLDN18.2), a 27.7 kDa gastric differentiation analyte.
    [Show full text]
  • Identification of Mimotope Peptides Which Bind to the Mycotoxin
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Aug. 1999, p. 3279–3286 Vol. 65, No. 8 0099-2240/99/$04.00ϩ0 Copyright © 1999, American Society for Microbiology. All Rights Reserved. Identification of Mimotope Peptides Which Bind to the Mycotoxin Deoxynivalenol-Specific Monoclonal Antibody QIAOPING YUAN,1† JAMES J. PESTKA,2 BRANDON M. HESPENHEIDE,3 3 2 1 LESLIE A. KUHN, JOHN E. LINZ, AND L. PATRICK HART * Departments of Botany and Plant Pathology,1 Food Science and Human Nutrition,3 and Biochemistry,2 Michigan State University, East Lansing, Michigan 48824 Received 23 October 1998/Accepted 6 May 1999 Monoclonal antibody 6F5 (mAb 6F5), which recognizes the mycotoxin deoxynivalenol (DON) (vomitoxin), was used to select for peptides that mimic the mycotoxin by employing a library of filamentous phages that have random 7-mer peptides on their surfaces. Two phage clones selected from the random peptide phage-displayed library coded for the amino acid sequences SWGPFPF and SWGPLPF. These clones were designated DON- PEP.2 and DONPEP.12, respectively. The results of a competitive enzyme-linked immunosorbent assay (ELISA) suggested that the two phage displayed peptides bound to mAb 6F5 specifically at the DON binding site. The amino acid sequence of DONPEP.2 plus a structurally flexible linker at the C terminus (SWGPF- PFGGGSC) was synthesized and tested to determine its ability to bind to mAb 6F5. This synthetic peptide (designated peptide C430) and DON competed with each other for mAb 6F5 binding. When translationally fused with bacterial alkaline phosphatase, DONPEP.2 bound specifically to mAb 6F5, while the fusion protein retained alkaline phosphatase activity.
    [Show full text]
  • Augmenting Anti-Tumor T Cell Responses to Mimotope Vaccination by Boosting with Native Tumor Antigens Jonathan D. Buhrman , Kimb
    Author Manuscript Published OnlineFirst on November 16, 2012; DOI: 10.1158/0008-5472.CAN-12-1005 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Augmenting Anti-Tumor T Cell Responses to Mimotope Vaccination by Boosting with Native Tumor Antigens Jonathan D. Buhrman1, Kimberly R. Jordan1, Lance U’Ren1, Jonathan Sprague1, Charles B. Kemmler1, and Jill E. Slansky1 1Integrated Department of Immunology, University of Colorado School of Medicine, Denver, CO Running title: Native antigen boost improves mimotope-elicited T cell response Keywords: mimotope, T cell, affinity, vaccine, altered-peptide ligands Financial support: This work was supported by ACS RSG-08-184-01-L1B and CA109560. JDB was supported by the Cancer Research Institute Pre-doctoral Emphasis Pathway in Tumor Immunology Fellowship. Conflict of Interest: The authors declare that there are no conflicts of interest Address correspondence to: Jill E. Slansky, Ph.D. Integrated Department of Immunology University of Colorado School of Medicine, National Jewish Health 1400 Jackson Street, Room K511 Denver, CO 80206 Phone: 303-398-1887 Fax: 303-398-1396 Email: [email protected] Word count: 5,198 (body text) Figures: 6 Tables: 1 Downloaded from cancerres.aacrjournals.org on September 25, 2021. © 2012 American Association for Cancer Research. Author Manuscript Published OnlineFirst on November 16, 2012; DOI: 10.1158/0008-5472.CAN-12-1005 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract Vaccination with antigens expressed by tumors is one strategy for stimulating enhanced T cell responses against tumors. However, these peptide vaccines rarely result in efficient expansion of tumor-specific T cells or responses that protect against tumor growth.
    [Show full text]
  • Affinity Maturation of a T-Cell Receptor-Like Antibody Specific for A
    International Journal of Molecular Sciences Article Affinity Maturation of a T-Cell Receptor-Like Antibody Specific for a Cytomegalovirus pp65-Derived Peptide Presented by HLA-A*02:01 Se-Young Lee 1,†, Deok-Han Ko 1,†, Min-Jeong Son 1, Jeong-Ah Kim 1, Keunok Jung 2 and Yong-Sung Kim 1,2,* 1 Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; [email protected] (S.-Y.L.); [email protected] (D.-H.K.); [email protected] (M.-J.S.); [email protected] (J.-A.K.) 2 Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon 16499, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-31-219-2662; Fax: +82-31-219-1610 † These authors have contributed equally to this work. Abstract: Human cytomegalovirus (CMV) infection is widespread among adults (60–90%) and is usually undetected in healthy individuals without symptoms but can cause severe diseases in im- munocompromised hosts. T-cell receptor (TCR)-like antibodies (Abs), which recognize complex antigens (peptide–MHC complex, pMHC) composed of MHC molecules with embedded short pep- tides derived from intracellular proteins, including pathogenic viral proteins, can serve as diagnostic and/or therapeutic agents. In this study, we aimed to engineer a TCR-like Ab specific for pMHC comprising a CMV pp65 protein-derived peptide (495NLVPMVATV503; hereafter, CMVpp65 ) 495-503 in complex with MHC-I molecule human leukocyte antigen (HLA)-A*02:01 (CMVpp65495-503/HLA- A*02:01) to increase affinity by sequential mutagenesis of complementarity-determining regions Citation: Lee, S.-Y.; Ko, D.-H.; Son, M.-J.; Kim, J.-A.; Jung, K.; Kim, Y.-S.
    [Show full text]
  • What Are the Primary Limitations in B-Cell Affinity Maturation, and How Much Affinity Maturation Can We Drive with Vaccination?: a Role for Antibody Feedback
    Downloaded from http://cshperspectives.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press What Are the Primary Limitations in B-Cell Affinity Maturation, and How Much Affinity Maturation Can We Drive with Vaccination? A Role for Antibody Feedback Kai-Michael Toellner,1 Daniel M.-Y. Sze,2 and Yang Zhang1 1Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom 2School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia Correspondence: [email protected] We discuss the impact of antibody feedback on affinity maturation of B cells. Competition from epitope-specific antibodies produced earlier during the immune response leads to immune complex formation, which is essential for transport and deposition of antigen onto follicular dendritic cells (FDCs). It also reduces the concentration of free epitopes into the mM to nM range, which is essential for B-cell receptors (BCRs) to sense affinity-dependent changes in binding capacity. Antibody feedback may also induce epitope spreading, leading to a broader selection of epitopes recognized by newly emerging B-cell clones. This may be exploitable, providing ways to manipulate epitope usage induced by vaccination. GREAT DEBATES What are the most interesting topics likely to come up over dinner or drinks with your colleagues? Or, more importantly, what are the topics that don’t come up because they are a little too controversial? In Immune Memory and Vaccines: Great Debates, Editors Rafi Ahmed and Shane Crotty have put together a collection of articles on such ques- tions, written by thought leaders in these fields, with the freedom to talk about the issues as they see fit.
    [Show full text]
  • Mimotope-Based Allergen-Specific Immunotherapy: Ready for Prime Time?
    www.nature.com/cmi Cellular & Molecular Immunology CORRESPONDENCE Mimotope-based allergen-specific immunotherapy: ready for prime time? Nicki Y. H. Leung1, Christine Y. Y. Wai1, Ka Hou Chu2 and Patrick S. C. Leung3 Cellular & Molecular Immunology (2019) 16:890–891; https://doi.org/10.1038/s41423-019-0272-7 INTRODUCTION and the safety and efficacy of mimotope-carrier constructs must Allergen-specific immunotherapy (AIT) is a therapeutic strategy to be evaluated case by case. restore the normal immune response by suppressing inflammatory effector cells and inducing regulatory cells specific to the culprit allergen. Conventionally, AIT is achieved by administering escalating RECENT ADVANCES IN MIMOTOPE-BASED AIT doses of allergen over a long treatment course. However, the use of Biopanning phage displayed5 or screening of one-bead-one- unmodified allergens for AIT often results in severe anaphylactic side compound combinatorial peptide libraries6 are high-throughput effects, and alternative approaches such as hypoallergens and T-cell approaches to identify mimotopes. Via screening of these peptide epitopes with enhanced safety have been considered. The use of libraries with allergen-specific IgE, the mimotopes obtained can be mimotopes in AIT is a relatively new concept, but earlier proof-of- subsequently mapped to the three-dimensional structure of the concept studies showed promising results for mimotopes, with allergen using bioinformatic algorithms to identify the particular decent safety profiles and immunomodulatory capacity1.Whilethe epitopes that they mimic. These methods are technically unde- treatment of cancer with mimotope-based immunotherapy has manding and cost effective. Many IgE epitopes of foods and already been tested in clinical trials2, mimotope-based AIT remains inhalant allergens have been identified using these approaches largely in the preclinical stage.
    [Show full text]
  • Vaccine Immunology Claire-Anne Siegrist
    2 Vaccine Immunology Claire-Anne Siegrist To generate vaccine-mediated protection is a complex chal- non–antigen-specifc responses possibly leading to allergy, lenge. Currently available vaccines have largely been devel- autoimmunity, or even premature death—are being raised. oped empirically, with little or no understanding of how they Certain “off-targets effects” of vaccines have also been recog- activate the immune system. Their early protective effcacy is nized and call for studies to quantify their impact and identify primarily conferred by the induction of antigen-specifc anti- the mechanisms at play. The objective of this chapter is to bodies (Box 2.1). However, there is more to antibody- extract from the complex and rapidly evolving feld of immu- mediated protection than the peak of vaccine-induced nology the main concepts that are useful to better address antibody titers. The quality of such antibodies (e.g., their these important questions. avidity, specifcity, or neutralizing capacity) has been identi- fed as a determining factor in effcacy. Long-term protection HOW DO VACCINES MEDIATE PROTECTION? requires the persistence of vaccine antibodies above protective thresholds and/or the maintenance of immune memory cells Vaccines protect by inducing effector mechanisms (cells or capable of rapid and effective reactivation with subsequent molecules) capable of rapidly controlling replicating patho- microbial exposure. The determinants of immune memory gens or inactivating their toxic components. Vaccine-induced induction, as well as the relative contribution of persisting immune effectors (Table 2.1) are essentially antibodies— antibodies and of immune memory to protection against spe- produced by B lymphocytes—capable of binding specifcally cifc diseases, are essential parameters of long-term vaccine to a toxin or a pathogen.2 Other potential effectors are cyto- effcacy.
    [Show full text]
  • B-Cell Development, Activation, and Differentiation
    B-Cell Development, Activation, and Differentiation Sarah Holstein, MD, PhD Nov 13, 2014 Lymphoid tissues • Primary – Bone marrow – Thymus • Secondary – Lymph nodes – Spleen – Tonsils – Lymphoid tissue within GI and respiratory tracts Overview of B cell development • B cells are generated in the bone marrow • Takes 1-2 weeks to develop from hematopoietic stem cells to mature B cells • Sequence of expression of cell surface receptor and adhesion molecules which allows for differentiation of B cells, proliferation at various stages, and movement within the bone marrow microenvironment • Immature B cell leaves the bone marrow and undergoes further differentiation • Immune system must create a repertoire of receptors capable of recognizing a large array of antigens while at the same time eliminating self-reactive B cells Overview of B cell development • Early B cell development constitutes the steps that lead to B cell commitment and expression of surface immunoglobulin, production of mature B cells • Mature B cells leave the bone marrow and migrate to secondary lymphoid tissues • B cells then interact with exogenous antigen and/or T helper cells = antigen- dependent phase Overview of B cells Hematopoiesis • Hematopoietic stem cells (HSCs) source of all blood cells • Blood-forming cells first found in the yolk sac (primarily primitive rbc production) • HSCs arise in distal aorta ~3-4 weeks • HSCs migrate to the liver (primary site of hematopoiesis after 6 wks gestation) • Bone marrow hematopoiesis starts ~5 months of gestation Role of bone
    [Show full text]
  • B Cell Responses Against Influenza Viruses
    viruses Review B Cell Responses against Influenza Viruses: Short-Lived Humoral Immunity against a Life-Long Threat Jenna J. Guthmiller 1,* , Henry A. Utset 1 and Patrick C. Wilson 1,2 1 Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; [email protected] (H.A.U.); [email protected] (P.C.W.) 2 Committee on Immunology, University of Chicago, Chicago, IL 60637, USA * Correspondence: [email protected] Abstract: Antibodies are critical for providing protection against influenza virus infections. However, protective humoral immunity against influenza viruses is limited by the antigenic drift and shift of the major surface glycoproteins, hemagglutinin and neuraminidase. Importantly, people are exposed to influenza viruses throughout their life and tend to reuse memory B cells from prior exposure to generate antibodies against new variants. Despite this, people tend to recall memory B cells against constantly evolving variable epitopes or non-protective antigens, as opposed to recalling them against broadly neutralizing epitopes of hemagglutinin. In this review, we discuss the factors that impact the generation and recall of memory B cells against distinct viral antigens, as well as the immunological limitations preventing broadly neutralizing antibody responses. Lastly, we discuss how next-generation vaccine platforms can potentially overcome these obstacles to generate robust and long-lived protection against influenza A viruses. Keywords: influenza viruses; humoral immunity; broadly neutralizing antibodies; imprinting; Citation: Guthmiller, J.J.; Utset, H.A.; hemagglutinin; germinal center; plasma cells Wilson, P.C. B Cell Responses against Influenza Viruses: Short-Lived Humoral Immunity against a Life-Long Threat. Viruses 2021, 13, 1.
    [Show full text]
  • Epidermal Growth Factor Receptor Mimotope Alleviates Renal Fibrosis in Murine Unilateral Ureteral Obstruction Model
    Clinical Immunology 205 (2019) 57–64 Contents lists available at ScienceDirect Clinical Immunology journal homepage: www.elsevier.com/locate/yclim Epidermal growth factor receptor mimotope alleviates renal fibrosis in murine unilateral ureteral obstruction model T ⁎ Lin Yanga, Haoran Yuanb, Ying Yua, Nan Yua, Lilu Linga, Jianying Niua, , Yong Gua a Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Shanghai 200240, PR China b Department of Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Shanghai 200240, PR China ARTICLE INFO ABSTRACT Keywords: Macrophages have been recognized as a vital factor that can promote renal fibrosis. Previously we reported that Epidermal growth factor receptor the EGFR mimotope could alleviate the macrophage infiltration in the Sjögren's syndrome-like animal model. In Macrophage current study, we sought to observe whether the active immunization induced by the EGFR mimotope could Mimotope ameliorate renal fibrosis in the murine Unilateral Ureteral Obstruction (UUO) model. A series of experiments Renal fibrosis showed the EGFR mimotope immunization could ameliorate renal fibrosis, reduce the expressions of fibronectin, CD9 α-SMA and collagen I and alleviate the infiltrations of F4/80+ macrophages in UUO model. Meanwhile, the EGFR mimotope immunization could inhibit the EGFR downstream signaling. Additionally, the frequency of and F4/80+CD9+/FAS+ macrophages significantly increased in spleen after the EGFR mimotope immunization. These evidence suggested that the EGFR mimotope could alleviate renal fibrosis by both inhibiting EGFR sig- naling and promoting macrophages apoptosis. 1. Introduction activation of renal fibroblasts independent of TGF-β expression or downstream signaling [8].
    [Show full text]