Genome-Wide Screening of Copy Number Variants in Children Born Small for Gestational Age Reveals Several Candidate Genes Involved in Growth Pathways

Total Page:16

File Type:pdf, Size:1020Kb

Genome-Wide Screening of Copy Number Variants in Children Born Small for Gestational Age Reveals Several Candidate Genes Involved in Growth Pathways A P M Canton and others Copy number variants in 171:2 253–262 Clinical Study SGA children Genome-wide screening of copy number variants in children born small for gestational age reveals several candidate genes involved in growth pathways Ana P M Canton, Sı´lvia S Costa1, Tatiane C Rodrigues1, Debora R Bertola1,2, Alexsandra C Malaquias, Fernanda A Correa3, Ivo J P Arnhold3, Carla Rosenberg1 and Alexander A L Jorge Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 58 Andar Sala 5340, CEP 01246-903 Sao Paulo, Brazil, 1Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias da Correspondence Universidade de Sao Paulo, 05508-900 Sao Paulo, Brazil, 2Unidade de Genetica, Instituto da Crianca, Faculdade de should be addressed Medicina da Universidade de Sao Paulo, 05403-000 Sao Paulo, Brazil and 3Unidade de Endocrinologia do to A A L Jorge Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular LIM/42 do Hospital das Clinicas, Disciplina de Email Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil [email protected] Abstract Background: The etiology of prenatal-onset short stature with postnatal persistence is heterogeneous. Submicroscopic chromosomal imbalances, known as copy number variants (CNVs), may play a role in growth disorders. Objective: To analyze the CNVs present in a group of patients born small for gestational age (SGA) without a known cause. Patients and methods: A total of 51 patients with prenatal and postnatal growth retardation associated with dysmorphic features and/or developmental delay, but without criteria for the diagnosis of known syndromes, were selected. Array-based comparative genomic hybridization was performed using DNA obtained from all patients. The pathogenicity of CNVs European Journal of Endocrinology was assessed by considering the following criteria: inheritance; gene content; overlap with genomic coordinates for a known genomic imbalance syndrome; and overlap with CNVs previously identified in other patients with prenatal-onset short stature. Results: In 17 of the 51 patients, 18 CNVs were identified. None of these imbalances has been reported in healthy individuals. Nine CNVs, found in eight patients (16%), were categorized as pathogenic or probably pathogenic. Deletions found in three patients overlapped with known microdeletion syndromes (4q, 10q26, and 22q11.2). These imbalances are de novo, gene rich and affect several candidate genes or genomic regions that may be involved in the mechanisms of growth regulation. Conclusion: Pathogenic CNVs in the selected patients born SGA were common (at least 16%), showing that rare CNVs are probably among the genetic causes of short stature in SGA patients and revealing genomic regions possibly implicated in this condition. European Journal of Endocrinology (2014) 171, 253–262 Introduction Children born small for gestational age (SGA) are defined and involve maternal, placental, and/or fetal factors (1). as those with birth weight and/or birth length at least 2 S.D. Fetal factors include several genetic causes commonly below the population mean for gestational age (1). The characterized by persistent short stature, dysmorphic causes of prenatal growth impairment are often unclear features, and developmental disorders (2). These genetic www.eje-online.org Ñ 2014 European Society of Endocrinology Published by Bioscientifica Ltd. DOI: 10.1530/EJE-14-0232 Printed in Great Britain Downloaded from Bioscientifica.com at 09/27/2021 08:54:10PM via free access Clinical Study A P M Canton and others Copy number variants in 171:2 254 SGA children syndromes of prenatal-onset growth impairment often informed consent. Candidates for aCGH were selected encompass complex clinical disorders of difficult from a total of 137 children followed at our outpatient diagnosis (3). clinic due to prenatal-onset short stature using the Array-based genomic copy number analysis has following criteria: i) birth weight and/or length S.D. recently become a research tool and a clinical genetic %K2.0; ii) persistent short stature after early infancy test in the diagnostic work-up of several clinical settings (height S.D. %K2.0 at the age of 4 years or above); and iii) (4). One of the most used genomic copy number analysis thepresenceofdysmorphicfeatures,developmental types is array-based comparative genomic hybridization delay, and/or intellectual disability, but without criteria (aCGH), a technique used for genome-wide screening of for the diagnosis of a recognized syndrome, including submicroscopic segmental genomic gains and losses. This Silver–Russell syndrome (14). The exclusion criteria for method enables a much higher resolution assay (greater selection were as follows: i) placental and maternal known than tenfold) of genomic imbalances than conventional factors of intrauterine growth retardation, including cytogenetic methods (4, 5). The imbalances characterized placental structural or perfusional factors and maternal by aCGH are called copy number variants (CNVs). A CNV infections, substance use/abuse, or medical conditions is an imbalance of a genomic sequence that alters the and ii) known causes of short stature, including endocri- diploid status of a particular locus in the human genome; nological diseases, skeletal dysplasias, hepatic diseases, essentially, it comprises deletions and duplications. systemic diseases, and established genetic diseases. All Currently, aCGH is indicated as a first-tier clinical patients had normal G-banded karyotyping. A total of diagnostic test in patients with unexplained develop- 51 patients, who fulfilled all inclusion criteria and no mental delay/intellectual disability, autism spectrum exclusion criteria, were selected for the molecular genetic disorders, and multiple congenital anomalies (5).Itis study. Among these patients, 11 were investigated for also becoming a powerful tool in the discovery of disease demethylation of the paternal imprinting center region genes, identification of new syndromes, and delineation one on chromosome 11p15 and 14 were investigated for of known deletion/duplication syndromes, known as insulin-like growth factor 1 (IGF1) and IGF1 receptor genomic disorders. In the field of endocrinology, gen- (IGF1R) mutations (15, 16). In all the selected patients, ome-wide analysis of CNVs has been evaluated as a tool these molecular genetic tests proved to be normal. to identify genetic causes in several clinical conditions, including premature ovarian failure (6), severe early-onset Array-based comparative genomic hybridization obesity (7), congenital hypothyroidism and thyroid European Journal of Endocrinology dysgenesis (8), ambiguous genitalia (9), skeletal defects Genomic DNA was extracted from peripheral blood with growth impairment (10), and Silver–Russell syn- leucocytes of all patients and 28 relatives (including 14 drome (11). Two recent studies have demonstrated the maternal samples, 11 paternal samples, and three other presence of causative and possible pathogenic CNVs in first-degree relatives’ samples) using standard procedures. short-stature children (12, 13). However, in both studies, aCGH was performed in a whole-genome customized 60K children were selected regardless of compromised birth oligonucleotide platform (SurePrint G3 Human CGH weight and/or length. Microarray Kit, 8!60K, Agilent Technologies, Inc., Santa In the present study, we performed aCGH in a group of Clara, CA, USA). The procedure was conducted according 51 children born SGA with persistent short stature without to the standard protocol of the manufacturer (17). Briefly, a recognized cause of prenatal and postnatal growth all standard quality assessments were implemented during impairment. Our results indicate that CNVs contribute DNA sample and array preparation. Microarray scanned to the genetic etiology of prenatal-onset short stature and images were processed using the Software Feature Extrac- reveal novel potential candidate genes and/or loci related tion, version 10.7.3.1 (Agilent Technologies, Inc.). The to this condition. Genomic Workbench 6.9 Software (Agilent Technologies, Inc.) was applied for calling CNVs using the Aberration Detection Method 2 analysis algorithm, with a sensitivity Patients and methods threshold of 6.7. To consider an aberration of a genomic segment as a duplication or a deletion, the log2 ratio of Patients cyanine 3:cyanine 5 intensities was used encompassing This study was approved by the Local Ethics Committee, at least three probes. Ratios O0.3 were considered dupli- and the patients and/or guardians gave their written cations, whereas ratios !K0.3 were considered deletions. www.eje-online.org Downloaded from Bioscientifica.com at 09/27/2021 08:54:10PM via free access Clinical Study A P M Canton and others Copy number variants in 171:2 255 SGA children All hybridizations were gender-matched and processed in this strategy, CNVs were categorized as pathogenic if they reverse-labeling duplicates, which means that all patients fulfilled all these criteria. CNVs were categorized as were evaluated twice for confirmation. CNVs not detected probably pathogenic if they fulfilled all these criteria, in both experiments were disregarded. except the overlap with genomic coordinates for a known genomic imbalance syndrome. CNVs were categorized as probably benign mainly if they did not segregate with the Copy number
Recommended publications
  • Open Dogan Phdthesis Final.Pdf
    The Pennsylvania State University The Graduate School Eberly College of Science ELUCIDATING BIOLOGICAL FUNCTION OF GENOMIC DNA WITH ROBUST SIGNALS OF BIOCHEMICAL ACTIVITY: INTEGRATIVE GENOME-WIDE STUDIES OF ENHANCERS A Dissertation in Biochemistry, Microbiology and Molecular Biology by Nergiz Dogan © 2014 Nergiz Dogan Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2014 ii The dissertation of Nergiz Dogan was reviewed and approved* by the following: Ross C. Hardison T. Ming Chu Professor of Biochemistry and Molecular Biology Dissertation Advisor Chair of Committee David S. Gilmour Professor of Molecular and Cell Biology Anton Nekrutenko Professor of Biochemistry and Molecular Biology Robert F. Paulson Professor of Veterinary and Biomedical Sciences Philip Reno Assistant Professor of Antropology Scott B. Selleck Professor and Head of the Department of Biochemistry and Molecular Biology *Signatures are on file in the Graduate School iii ABSTRACT Genome-wide measurements of epigenetic features such as histone modifications, occupancy by transcription factors and coactivators provide the opportunity to understand more globally how genes are regulated. While much effort is being put into integrating the marks from various combinations of features, the contribution of each feature to accuracy of enhancer prediction is not known. We began with predictions of 4,915 candidate erythroid enhancers based on genomic occupancy by TAL1, a key hematopoietic transcription factor that is strongly associated with gene induction in erythroid cells. Seventy of these DNA segments occupied by TAL1 (TAL1 OSs) were tested by transient transfections of cultured hematopoietic cells, and 56% of these were active as enhancers. Sixty-six TAL1 OSs were evaluated in transgenic mouse embryos, and 65% of these were active enhancers in various tissues.
    [Show full text]
  • A Private 16Q24.2Q24.3 Microduplication in a Boy with Intellectual Disability, Speech Delay and Mild Dysmorphic Features
    G C A T T A C G G C A T genes Article A Private 16q24.2q24.3 Microduplication in a Boy with Intellectual Disability, Speech Delay and Mild Dysmorphic Features Orazio Palumbo * , Pietro Palumbo , Ester Di Muro, Luigia Cinque, Antonio Petracca, Massimo Carella and Marco Castori Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; [email protected] (P.P.); [email protected] (E.D.M.); [email protected] (L.C.); [email protected] (A.P.); [email protected] (M.C.); [email protected] (M.C.) * Correspondence: [email protected]; Tel.: +39-088-241-6350 Received: 5 June 2020; Accepted: 24 June 2020; Published: 26 June 2020 Abstract: No data on interstitial microduplications of the 16q24.2q24.3 chromosome region are available in the medical literature and remain extraordinarily rare in public databases. Here, we describe a boy with a de novo 16q24.2q24.3 microduplication at the Single Nucleotide Polymorphism (SNP)-array analysis spanning ~2.2 Mb and encompassing 38 genes. The patient showed mild-to-moderate intellectual disability, speech delay and mild dysmorphic features. In DECIPHER, we found six individuals carrying a “pure” overlapping microduplication. Although available data are very limited, genomic and phenotype comparison of our and previously annotated patients suggested a potential clinical relevance for 16q24.2q24.3 microduplication with a variable and not (yet) recognizable phenotype predominantly affecting cognition. Comparing the cytogenomic data of available individuals allowed us to delineate the smallest region of overlap involving 14 genes. Accordingly, we propose ANKRD11, CDH15, and CTU2 as candidate genes for explaining the related neurodevelopmental manifestations shared by these patients.
    [Show full text]
  • Small Cell Carcinoma of the Ovary, Hypercalcemic Type (SCCOHT) Beyond SMARCA4 Mutations: a Comprehensive Genomic Analysis
    cells Article Small Cell Carcinoma of the Ovary, Hypercalcemic Type (SCCOHT) beyond SMARCA4 Mutations: A Comprehensive Genomic Analysis Aurélie Auguste 1,Félix Blanc-Durand 2 , Marc Deloger 3 , Audrey Le Formal 1, Rohan Bareja 4,5, David C. Wilkes 4 , Catherine Richon 6,Béatrice Brunn 2, Olivier Caron 6, Mojgan Devouassoux-Shisheboran 7,Sébastien Gouy 2, Philippe Morice 2, Enrica Bentivegna 2, Andrea Sboner 4,5,8, Olivier Elemento 4,8, Mark A. Rubin 9 , Patricia Pautier 2, Catherine Genestie 10, Joanna Cyrta 4,9,11 and Alexandra Leary 1,2,* 1 Medical Oncologist, Gynecology Unit, Lead Translational Research Team, INSERM U981, Gustave Roussy, 94805 Villejuif, France; [email protected] (A.A.); [email protected] (A.L.F.) 2 Gynecological Unit, Department of Medicine, Gustave Roussy, 94805 Villejuif, France; [email protected] (F.B.-D.); [email protected] (B.B.); [email protected] (S.G.); [email protected] (P.M.); [email protected] (E.B.); [email protected] (P.P.) 3 Bioinformatics Core Facility, Gustave Roussy Cancer Center, UMS CNRS 3655/INSERM 23 AMMICA, 94805 Villejuif, France; [email protected] 4 Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10001, USA; [email protected] (R.B.); [email protected] (D.C.W.); [email protected] (A.S.); [email protected] (O.E.); [email protected] (J.C.) 5 Institute for Computational Biomedicine, Weill Cornell
    [Show full text]
  • Role of Transfer RNA Modification and Aminoacylation in the Etiology of Congenital Intellectual Disability
    Franz et al. J Transl Genet Genom 2020;4:50-70 Journal of Translational DOI: 10.20517/jtgg.2020.13 Genetics and Genomics Review Open Access Role of transfer RNA modification and aminoacylation in the etiology of congenital intellectual disability Martin Franz#, Lisa Hagenau#, Lars R. Jensen, Andreas W. Kuss Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17475, Germany. #Authors cotributed equally. Correspondence to: Prof. Andreas W. Kuss; Dr. Lars R. Jensen, Department of Functional Genomics, University Medicine Greifswald, C_FunGene, Felix-Hausdorff-Str. 8, Greifswald 17475, Germany. E-mail: [email protected]; [email protected] How to cite this article: Franz M, Hagenau L, Jensen LR, Kuss AW. Role of transfer RNA modification and aminoacylation in the etiology of congenital intellectual disability. J Transl Genet Genom 2020;4:50-70. http://dx.doi.org/10.20517/jtgg.2020.13 Received: 14 Feb 2020 First Decision: 17 Mar 2020 Revised: 30 Mar 2020 Accepted: 23 Apr 2020 Available online: 16 May 2020 Science Editor: Tjitske Kleefstra Copy Editor: Jing-Wen Zhang Production Editor: Tian Zhang Abstract Transfer RNA (tRNA) modification and aminoacylation are post-transcriptional processes that play a crucial role in the function of tRNA and thus represent critical steps in gene expression. Knowledge of the exact processes and effects of the defects in various tRNAs remains incomplete, but a rapidly increasing number of publications over the last decade has shown a growing amount of evidence as to the importance of tRNAs for normal human development, including brain formation and the development and maintenance of higher cognitive functions as well.
    [Show full text]
  • Urm1 in Trna Thiolation and Protein Modification
    Urm1 in tRNA thiolation and protein modification Annemarthe G. van der Veen Urm1 in tRNA thiolation and protein modification A.G. van der Veen Thesis, Utrecht University, The Netherlands A.G. van der Veen 2011 ISBN: 9789461081728 Cover image: Stata Center, MIT campus. Photo courtesy of W. van der Veen Invitation: Image courtesy of Eugene Galleries, Boston Printed by: Gildeprint Drukkerijen, Enschede Urm1 in tRNA thiolation and protein modification Urm1 in tRNA thiolatie en eiwit modificatie (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op maandag 30 mei 2011 des middags te 12.45 uur door Annemarthe Godelieve van der Veen geboren op 13 september 1982 te Hardenberg Promotoren: Prof.dr. H.L. Ploegh Prof.dr. E.J.H.J. Wiertz The research described in this thesis was supported by a pre-doctoral grant from the Boehringer Ingelheim Fonds. Voor papa en mama Contents Chapter 1 General introduction 8 Chapter 2 A functional proteomics approach links the Ubiquitin- 28 related modifier Urm1 to a tRNA modification pathway Chapter 3 Role of the Ubiquitin-like molecule Urm1 as a 46 noncanonical lysine-directed protein modifier Chapter 4 Transgenic mice expressing a dominant negative Urm1 74 mutant fail to generate offspring Chapter 5 Urm1B, an alternate isoform of Urm1, is stabilized and 90 redistributed by its interaction with ATPBD3 Chapter 6 General discussion 102 English summary 114 Nederlandse samenvatting 116 Acknowledgements 118 Curriculum vitae 121 List of publications 122 Chapter 1 General introduction Post-translational modifications Cellular homeostasis requires tight control of protein activity, function, stability, and localization.
    [Show full text]
  • Chromosomal Microarray Analysis in Turkish Patients with Unexplained Developmental Delay and Intellectual Developmental Disorders
    177 Arch Neuropsychitry 2020;57:177−191 RESEARCH ARTICLE https://doi.org/10.29399/npa.24890 Chromosomal Microarray Analysis in Turkish Patients with Unexplained Developmental Delay and Intellectual Developmental Disorders Hakan GÜRKAN1 , Emine İkbal ATLI1 , Engin ATLI1 , Leyla BOZATLI2 , Mengühan ARAZ ALTAY2 , Sinem YALÇINTEPE1 , Yasemin ÖZEN1 , Damla EKER1 , Çisem AKURUT1 , Selma DEMİR1 , Işık GÖRKER2 1Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey 2Faculty of Medicine, Department of Child and Adolescent Psychiatry, Trakya University, Edirne, Turkey ABSTRACT Introduction: Aneuploids, copy number variations (CNVs), and single in 39 (39/123=31.7%) patients. Twelve CNV variant of unknown nucleotide variants in specific genes are the main genetic causes of significance (VUS) (9.75%) patients and 7 CNV benign (5.69%) patients developmental delay (DD) and intellectual disability disorder (IDD). were reported. In 6 patients, one or more pathogenic CNVs were These genetic changes can be detected using chromosome analysis, determined. Therefore, the diagnostic efficiency of CMA was found to chromosomal microarray (CMA), and next-generation DNA sequencing be 31.7% (39/123). techniques. Therefore; In this study, we aimed to investigate the Conclusion: Today, genetic analysis is still not part of the routine in the importance of CMA in determining the genomic etiology of unexplained evaluation of IDD patients who present to psychiatry clinics. A genetic DD and IDD in 123 patients. diagnosis from CMA can eliminate genetic question marks and thus Method: For 123 patients, chromosome analysis, DNA fragment analysis alter the clinical management of patients. Approximately one-third and microarray were performed. Conventional G-band karyotype of the positive CMA findings are clinically intervenable.
    [Show full text]
  • Whole-Exome Sequencing Identifies Causative Mutations in Families
    BASIC RESEARCH www.jasn.org Whole-Exome Sequencing Identifies Causative Mutations in Families with Congenital Anomalies of the Kidney and Urinary Tract Amelie T. van der Ven,1 Dervla M. Connaughton,1 Hadas Ityel,1 Nina Mann,1 Makiko Nakayama,1 Jing Chen,1 Asaf Vivante,1 Daw-yang Hwang,1 Julian Schulz,1 Daniela A. Braun,1 Johanna Magdalena Schmidt,1 David Schapiro,1 Ronen Schneider,1 Jillian K. Warejko,1 Ankana Daga,1 Amar J. Majmundar,1 Weizhen Tan,1 Tilman Jobst-Schwan,1 Tobias Hermle,1 Eugen Widmeier,1 Shazia Ashraf,1 Ali Amar,1 Charlotte A. Hoogstraaten,1 Hannah Hugo,1 Thomas M. Kitzler,1 Franziska Kause,1 Caroline M. Kolvenbach,1 Rufeng Dai,1 Leslie Spaneas,1 Kassaundra Amann,1 Deborah R. Stein,1 Michelle A. Baum,1 Michael J.G. Somers,1 Nancy M. Rodig,1 Michael A. Ferguson,1 Avram Z. Traum,1 Ghaleb H. Daouk,1 Radovan Bogdanovic,2 Natasa Stajic,2 Neveen A. Soliman,3,4 Jameela A. Kari,5,6 Sherif El Desoky,5,6 Hanan M. Fathy,7 Danko Milosevic,8 Muna Al-Saffar,1,9 Hazem S. Awad,10 Loai A. Eid,10 Aravind Selvin,11 Prabha Senguttuvan,12 Simone Sanna-Cherchi,13 Heidi L. Rehm,14 Daniel G. MacArthur,14,15 Monkol Lek,14,15 Kristen M. Laricchia,15 Michael W. Wilson,15 Shrikant M. Mane,16 Richard P. Lifton,16,17 Richard S. Lee,18 Stuart B. Bauer,18 Weining Lu,19 Heiko M. Reutter ,20,21 Velibor Tasic,22 Shirlee Shril,1 and Friedhelm Hildebrandt1 Due to the number of contributing authors, the affiliations are listed at the end of this article.
    [Show full text]
  • Agricultural University of Athens
    ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΩΝ ΖΩΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΖΩΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΝΙΚΗΣ ΚΑΙ ΕΙΔΙΚΗΣ ΖΩΟΤΕΧΝΙΑΣ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων ΕΙΡΗΝΗ Κ. ΤΑΡΣΑΝΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΙΟΣ ΚΟΜΙΝΑΚΗΣ ΑΘΗΝΑ 2020 ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων Genome-wide association analysis and gene network analysis for (re)production traits in commercial broilers ΕΙΡΗΝΗ Κ. ΤΑΡΣΑΝΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΙΟΣ ΚΟΜΙΝΑΚΗΣ Τριμελής Επιτροπή: Aντώνιος Κομινάκης (Αν. Καθ. ΓΠΑ) Ανδρέας Κράνης (Eρευν. B, Παν. Εδιμβούργου) Αριάδνη Χάγερ (Επ. Καθ. ΓΠΑ) Επταμελής εξεταστική επιτροπή: Aντώνιος Κομινάκης (Αν. Καθ. ΓΠΑ) Ανδρέας Κράνης (Eρευν. B, Παν. Εδιμβούργου) Αριάδνη Χάγερ (Επ. Καθ. ΓΠΑ) Πηνελόπη Μπεμπέλη (Καθ. ΓΠΑ) Δημήτριος Βλαχάκης (Επ. Καθ. ΓΠΑ) Ευάγγελος Ζωίδης (Επ.Καθ. ΓΠΑ) Γεώργιος Θεοδώρου (Επ.Καθ. ΓΠΑ) 2 Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων Περίληψη Σκοπός της παρούσας διδακτορικής διατριβής ήταν ο εντοπισμός γενετικών δεικτών και υποψηφίων γονιδίων που εμπλέκονται στο γενετικό έλεγχο δύο τυπικών πολυγονιδιακών ιδιοτήτων σε κρεοπαραγωγικά ορνίθια. Μία ιδιότητα σχετίζεται με την ανάπτυξη (σωματικό βάρος στις 35 ημέρες, ΣΒ) και η άλλη με την αναπαραγωγική
    [Show full text]
  • Molecular Sciences High-Resolution Chromosome Ideogram Representation of Currently Recognized Genes for Autism Spectrum Disorder
    Int. J. Mol. Sci. 2015, 16, 6464-6495; doi:10.3390/ijms16036464 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article High-Resolution Chromosome Ideogram Representation of Currently Recognized Genes for Autism Spectrum Disorders Merlin G. Butler *, Syed K. Rafi † and Ann M. Manzardo † Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA; E-Mails: [email protected] (S.K.R.); [email protected] (A.M.M.) † These authors contributed to this work equally. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-913-588-1873; Fax: +1-913-588-1305. Academic Editor: William Chi-shing Cho Received: 23 January 2015 / Accepted: 16 March 2015 / Published: 20 March 2015 Abstract: Recently, autism-related research has focused on the identification of various genes and disturbed pathways causing the genetically heterogeneous group of autism spectrum disorders (ASD). The list of autism-related genes has significantly increased due to better awareness with advances in genetic technology and expanding searchable genomic databases. We compiled a master list of known and clinically relevant autism spectrum disorder genes identified with supporting evidence from peer-reviewed medical literature sources by searching key words related to autism and genetics and from authoritative autism-related public access websites, such as the Simons Foundation Autism Research Institute autism genomic database dedicated to gene discovery and characterization. Our list consists of 792 genes arranged in alphabetical order in tabular form with gene symbols placed on high-resolution human chromosome ideograms, thereby enabling clinical and laboratory geneticists and genetic counsellors to access convenient visual images of the location and distribution of ASD genes.
    [Show full text]
  • 466151-1.Pdf
    1 1 Methods 1.1 Data Collection Human (9606) Salmonella (590) Uniprot taxon identifier mode: normal mode: recursive Uniprot (Swiss-Prot) normal recursive proteom (taxon identifier) QuickGO QuickGO, Uniprot (Taxonomy) RNA-binding annotation (taxon identifier) RNA-binding annotation proteins with length (all taxa which are hierarchically > 6000 or < 50 arranged to the specified taxon) Uniprot (Keywords) proteins from RNA associated CD-HIT (Li et al., 2001) keyword list (Cai and Lin et al., 2001) proteins with sequence such as RNA-, DNA- or similarity higher than 90 % Nucleotide-binding QuickGO positive data set RNA, DNA or nucleotide- binding annotation 1812 306 Pfam (526 profile HMMs) proteins containing RNA associated Pfam domains databases/applications CD-HIT (Li et al., 2001) collected proteins proteins with sequence removed proteins similarity higher than 90 % negative data set 12038 1415 Figure S1: Pipeline to collect RBPs (positive data) and non-RBPs (negative data). The fully automated pipeline requires the Uniprot identification number of a taxon to collect positive and negative data sets. The data sets form the foundation to train and validate the TriPepSVM classifier. The pipeline supports a recursive mode to collect positive data from all members of the specified taxon. In the figure we see the results for human (9606, normal mode) and Salmonella (590, recursive mode). Red boxes in the workflow correspond to filtering operations on the input sequences, while green boxes correspond to collection steps on the input sequences. 2 1.2 Parameter Tuning n data set m > n: class imbalance m test set n/10 s = 9n / 10 training set (performance) m/10 q = 9m / 10 KeBABS-package in R 10 - fold cross - validation 10 - fold 9s / 10 validation set s / 10 training set (model selection) q / 10 9q / 10 build models based on different parameter estimate error combinations parameter combination k with highest balanced accuracy cost Model selection W+ W- Figure S2: Data splitting and parameter tuning.
    [Show full text]
  • WO 2015/149034 A2 1 October 2015 (01.10.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/149034 A2 1 October 2015 (01.10.2015) P O P C T (51) International Patent Classification: (71) Applicant: LIFE TECHNOLOGIES CORPORATION C12Q 1/68 (2006.01) [US/US]; c/o IP Legal Department Docketing, 5791 Van Allen Way, Carlsbad, California 92008 (US). (21) International Application Number: PCT/US2015/023 197 (72) Inventors: RHODES, Daniel; Life Technologies Corpora tion, c/o IP Legal Department Docketing, 579 1 Van Allen (22) International Filing Date: Way, Carlsbad, California 92008 (US). SADIS, Seth; Life 27 March 2015 (27.03.2015) Technologies Corporation, c/o IP Legal Department Dock (25) Filing Language: English eting, 5791 Van Allen Way, Carlsbad, California 92008 (US). WYNGAARD, Peter; Life Technologies Corpora (26) Publication Language: English tion, c/o IP Legal Department Docketing, 579 1 Van Allen (30) Priority Data: Way, Carlsbad, California 92008 (US). KHAZANOV, 61/971,455 27 March 2014 (27.03.2014) US Nikolay; Life Technologies Corporation, c/o IP Legal De 61/993,732 15 May 2014 (15.05.2014) US partment Docketing, 5791 Van Allen Way, Carlsbad, Cali 62/004,727 29 May 2014 (29.05.2014) us fornia 92008 (US). BANDLA, Santhoshi; Life Technolo 62/092,898 17 December 2014 (17. 12.2014) us gies Corporation, c/o IP Legal Department Docketing, 5791 Van Allen Way, Carlsbad, California 92008 (US). [Continued on nextpage] (54) Title: GENE FUSIONS AND GENE VARIANTS ASSOCIATED WITH CANCER (57) Abstract: The disclosure provides gene fusions, gene variants, and novel as RNASeq sociations with disease states, as well as kits, probes, and methods of using the (.bam) same.
    [Show full text]
  • The Genetic Aetiology of Otosclerosis in the Population of Newfoundland and Labrador
    The Genetic Aetiology of Otosclerosis in the Population of Newfoundland and Labrador By © Nelly Abdelfatah A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy Discipline of Genetics, Faculty of Medicine Memorial University of Newfoundland Oct, 2014 St. John’s Newfoundland and Labrador Abstract Background Otosclerosis is a common form of conductive and mixed hearing loss in Caucasian populations, with an estimated prevalence of 0.3-0.4%. Since 1998, eight loci have been mapped to otosclerosis in families with apparent autosomal dominant (AD) otosclerosis but none of the causative genes have been identified. Objective As no otosclerosis gene has yet been identified, the main objective of this thesis was to identify otosclerosis-disease causing genes by studying Newfoundland (NL) families. Methods Families with familial otosclerosis were identified and chracterized clinically. Those which fit the diagnostic criteria for otosclerosis were recurited for this study. Molecular genetic analyses of these families were carried out by genotyping, haplotyping, Sanger sequencing of candidate genes in linked regions and exome sequencing. Results One Family (2081) was solved through identification of a pathogenic variant (FOXL1c.976_990hetdel) in the FOXL1 gene at chromosome (Chr) 16q that was present in all affected individuals. The 15 base pair (bp) deletion was also identified in a second family from Ontario (ON) and the possible pathways involving FOXL1 in the pathogenesis of otosclerosis were suggested. In the second otosclerosis family, three II candidate variants were identified through exome sequencing of the candidate regions under a dominant model. Conclusion I have identified the first otosclerosis gene, FOXL1, a transcription factor involved in the disease pathogenicity.
    [Show full text]