Atlantic, Southeast
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biology and Fisheries of the Shallow-Water Hake (Merluccius Capensis) and the Deep-Water Hake (M
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/283086142 Biology and fisheries of the shallow-water hake (Merluccius capensis) and the deep-water hake (M. paradoxus) in Namibia Chapter · October 2015 DOI: 10.1002/9781118568262.ch3 CITATIONS READS 8 870 7 authors, including: Margit R. Wilhelm Carola Heidrun Kirchner University of Namibia Independent Fisheries consultant 23 PUBLICATIONS 106 CITATIONS 38 PUBLICATIONS 434 CITATIONS SEE PROFILE SEE PROFILE Jean-Paul Roux Astrid Jarre University of Cape Town University of Cape Town 71 PUBLICATIONS 2,254 CITATIONS 115 PUBLICATIONS 3,048 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Identification of ecto- and endo-parasites of mariculture potential candidate, Namibian Silver Kob (Argyrosomus inodorus) View project NansClim programme View project All content following this page was uploaded by Margit R. Wilhelm on 10 October 2017. The user has requested enhancement of the downloaded file. To cite as follows: Wilhelm, M.R., Kirchner, C.H., Roux, J.-P., Jarre, A., Iitembu, J.A., 70 Kathena, J.N. and Kainge, P. 2015. Biology and fisheries of the shallow-water hake (Merluccius capensis) and the deep-water hake (M. paradoxus) in Namibia. Chapter 3 In: Hakes: biology and exploitation, pp 70-100. Ed. by H. Arancibia. John Wiley & Sons, Ltd: Chichester, UK. DOI: 10.1002/9781118568262.ch3 Chapter 3 Biology and fisheries of the shallow-water hake (Merluccius capensis) and the deep- water hake (M. paradoxus) in Namibia Wilhelm, M. R.1, 6, Kirchner, C. H.2, Roux, J-P.3, 4, Jarre, A.1, Iitembu, J. -
Specific Objective 1 Sov 3 Ross-Gillespie Phd 2016
SoV 1.3 Modelling cannibalism and inter-species predation for the Cape hake species Merluccius capensis and M. paradoxus Andrea Ross-Gillespie A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy University inof the Cape Town Department of Mathematics and Applied Mathematics University of Cape Town May 2016 Supervisor: Douglas S. Butterworth The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Declaration of Authorship I know the meaning of plagiarism and declare that all of the work in the thesis, save for that which is properly acknowledged (including particularly in the Acknowledgements section that follows), is my own. Special men- tion is made of the model underlying the equations presented in Chapter 4, which was developed by Rademeyer and Butterworth (2014b). I declare that this thesis has not been submitted to this or any other university for a degree, either in the same or different form, apart from the model underlying the equations presented in Chapter 4, an earlier version of which formed part of the PhD thesis of R. Rademeyer in 2012. ii Acknowledgements Undertaking a PhD is as much an emotional challenge and test of character as it is an intellectual pursuit. I definitely could not have done it without the support of a multitude of family, friends and colleagues. -
ASFIS ISSCAAP Fish List February 2007 Sorted on Scientific Name
ASFIS ISSCAAP Fish List Sorted on Scientific Name February 2007 Scientific name English Name French name Spanish Name Code Abalistes stellaris (Bloch & Schneider 1801) Starry triggerfish AJS Abbottina rivularis (Basilewsky 1855) Chinese false gudgeon ABB Ablabys binotatus (Peters 1855) Redskinfish ABW Ablennes hians (Valenciennes 1846) Flat needlefish Orphie plate Agujón sable BAF Aborichthys elongatus Hora 1921 ABE Abralia andamanika Goodrich 1898 BLK Abralia veranyi (Rüppell 1844) Verany's enope squid Encornet de Verany Enoploluria de Verany BLJ Abraliopsis pfefferi (Verany 1837) Pfeffer's enope squid Encornet de Pfeffer Enoploluria de Pfeffer BJF Abramis brama (Linnaeus 1758) Freshwater bream Brème d'eau douce Brema común FBM Abramis spp Freshwater breams nei Brèmes d'eau douce nca Bremas nep FBR Abramites eques (Steindachner 1878) ABQ Abudefduf luridus (Cuvier 1830) Canary damsel AUU Abudefduf saxatilis (Linnaeus 1758) Sergeant-major ABU Abyssobrotula galatheae Nielsen 1977 OAG Abyssocottus elochini Taliev 1955 AEZ Abythites lepidogenys (Smith & Radcliffe 1913) AHD Acanella spp Branched bamboo coral KQL Acanthacaris caeca (A. Milne Edwards 1881) Atlantic deep-sea lobster Langoustine arganelle Cigala de fondo NTK Acanthacaris tenuimana Bate 1888 Prickly deep-sea lobster Langoustine spinuleuse Cigala raspa NHI Acanthalburnus microlepis (De Filippi 1861) Blackbrow bleak AHL Acanthaphritis barbata (Okamura & Kishida 1963) NHT Acantharchus pomotis (Baird 1855) Mud sunfish AKP Acanthaxius caespitosa (Squires 1979) Deepwater mud lobster Langouste -
Development of Microsatellite Markers in Cape Hakes, Merluccius
Evaluating the resolution power of new microsatellites for species identification and stock delimitation in the Cape hakes Merluccius paradoxus and M. capensis (Teleostei: Merlucciidae) T. B. HOAREAU*, A. W. KLOPPER, S. M. R. DOS SANTOS, C. J. OOSTHUIZEN AND P. BLOOMER Molecular Ecology and Evolution Programme, Department of Genetics, University of Pretoria, Private bag X20, Hatfield, 0028, South Africa. *Author to whom correspondence should be addressed: Tel. +27 12 420 3871; Fax. +27 12 362 5327; email: [email protected] Abstract The utility of 15 new and 17 previously published microsatellite markers was evaluated for species identification and stock delimitation in the deep-water hake Merluccius paradoxus and the shallow-water hake Merluccius capensis. A total of 14 microsatellites was polymorphic in M. paradoxus and 10 in M. capensis. Two markers could individually discriminate the species using Bayesian clustering methods and a statistical power analysis showed that the set of markers for each species is likely to detect subtle genetic differentiation (FST < 0.006), which will be valuable to delimit and characterise genetic stocks. Key words: Bayesian methods; cross-species amplification; genetic markers; genomic library; power analysis 1 Both the shallow-water hake Merluccius capensis Castelnau, 1861 and the deep-water hake M. paradoxus Franca, 1960 are targeted by a valuable demersal fishery along the west coasts of Southern Africa (>100 million USD annually; Butterworth & Rademeyer, 2005), but the intensification of exploitation over recent decades caused a resource decline (Payne & Punt, 1995). Due to their morphological similarity and overlapping distribution, the two species are not distinguished in the commercial landings records (von der Heyden et al., 2007b) and they are combined into geographic managements units, namely Namibia, west coast and south coast of South Africa (Butterworth & Rademeyer, 2005). -
Spatio-Temporal Variability in the Cannibalistic Behaviour of European Hake Merluccius Merluccius: the Influence of Recruit Abundance and Prey Availability
CORE Metadata, citation and similar papers at core.ac.uk Provided by Repositorio Institucional Digital del IEO Journal of Fish Biology (2015) 86, 1319–1334 doi:10.1111/jfb.12642, available online at wileyonlinelibrary.com Spatio-temporal variability in the cannibalistic behaviour of European hake Merluccius merluccius: the influence of recruit abundance and prey availability I. Preciado*, A. Punzón and F. Velasco IEO Centro Oceanográfico de Santander, Promontorio San Martín, s/n, P. O. Box 240, 39080 Santander, Spain (Received 1 August 2014, Accepted 14 January 2015) Cannibalistic behaviour of European hake Merluccius merluccius was studied through the analysis of 49 836 gut contents belonging to individuals from 6 to 82 cm in total length (LT). Samples were col- lected every autumn between 1993 and 2009. The results showed that the consumption of conspecific individuals was consistent over space and time. The abundance, spatial distribution patterns and LT structure of M. merluccius recruits were the main variables involved in M. merluccius cannibalism. A geographical pattern was found since increasing cannibalism was observed in areas of recruit aggre- gations. The LT spectrum of recruits in autumn was also a key factor and dependent on the spawning period. When adults spawned from late spring to summer, an increasing cannibalism trend was found in autumn, due to the ideal size structure of the prey (M. merluccius recruits) for predators. Depth was also a significant variable, and a cannibal peak was detected at depths ranging between 50and 200 m, coinciding with a spatial overlap of predator (pre-adults) and prey (recruits). The cannibalistic behaviour of M. -
Field Guide to the Living Marine Resources of Namibia.Pdf
FAOSPECIESIDENTIFICATIONGUIDEFORFISHERYPURPOSES ISSN 1020-6868 FIELD GUIDE TO THE LIVING MARINE RESOURCES OF NAMIBIA Food and NORAD Agriculture Organization Norwegian of Agency for the International United Nations Development FAO SPECIES IDENTIFICATION FIELD GUIDE FOR FISHERY PURPOSES THE LIVING MARINE RESOURCES OF NAMIBIA by G. Bianchi Institute of Marine Research P.O. Box 1870, N-5024 Bergen, Norway K.E. Carpenter Department of Biological Sciences Old Dominion University Norfolk, Virginia 23529 USA J.-P. Roux Ministry of Fisheries and Marine Resources P.O. Box 394 Lüderitz, Namibia F.J. Molloy Biology Departmant Faculty of Science University of Namibia Private Bag 31 Windhoek, Namibia D. Boyer and H.J. Boyer Ministry of Fisheries and Marine Resources P.O. Box 912 Swakopmund, Namibia With the financial support of NORAD Norwegian Agency for International Development INDEX FOOD AND AGRICULTURAL ORGANIZATION OF THE UNITED NATIONS ROME, 1999 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agricultural Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-40 ISBN 92-5-104345-0 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organiztion of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. -
SPECIAL PUBLICATION No
The J. L. B. SMITH INSTITUTE OF ICHTHYOLOGY SPECIAL PUBLICATION No. 14 COMMON AND SCIENTIFIC NAMES OF THE FISHES OF SOUTHERN AFRICA PART I MARINE FISHES by Margaret M. Smith RHODES UNIVERSITY GRAHAMSTOWN, SOUTH AFRICA April 1975 COMMON AND SCIENTIFIC NAMES OF THE FISHES OF SOUTHERN AFRICA PART I MARINE FISHES by Margaret M. Smith INTRODUCTION In earlier times along South Africa’s 3 000 km coastline were numerous isolated communities. Interested in angling and pursuing commercial fishing on a small scale, the inhabitants gave names to the fishes that they caught. First, in 1652, came the Dutch Settlers who gave names of well-known European fishes to those that they found at the Cape. Names like STEENBRAS, KABELJOU, SNOEK, etc., are derived from these. Malay slaves and freemen from the East brought their names with them, and many were manufactured or adapted as the need arose. The Afrikaans names for the Cape fishes are relatively uniform. Only as the distance increases from the Cape — e.g. at Knysna, Plettenberg Bay and Port Elizabeth, do they exhibit alteration. The English names started in the Eastern Province and there are different names for the same fish at towns or holiday resorts sometimes not 50 km apart. It is therefore not unusual to find one English name in use at the Cape, another at Knysna, and another at Port Elizabeth differing from that at East London. The Transkeians use yet another name, and finally Natal has a name quite different from all the rest. The indigenous peoples of South Africa contributed practically no names to the fishes, as only the early Strandlopers were fish eaters and we know nothing of their language. -
Phylogenetic Prospecting for Cryptic Species of the Genus Merluccius
www.nature.com/scientificreports OPEN Phylogenetic prospecting for cryptic species of the genus Merluccius (Actinopterygii: Merlucciidae) Montse Pérez1, María Fernández‑Míguez1,2, Jesús Matallanas3, Domingo Lloris4 & Pablo Presa2* Hakes of the genus Merluccius include 11 valid species as well a number of rare morphotypes suspected to be “cryptic species”. Concatenated nucDNA ITS1‑rDNA and mtDNA cyt b sequences plus nested ITS1Nes sequences allowed to ascribe 14 specimens of nine rare morphotypes from the South Pacifc and the South Atlantic to the phylogenetic backbone of this genus. Bayesian analyses pointed to M. bilinearis and M. albidus as the oldest species of the genus and the New World cluster, respectively. The phylogenetic status of M. angustimanus from the upper Gulf of California suggests its hybrid origin between M. gayi and M. productus from about 0.25 MYA, although an ever since confnement of a subset of those species cannot be ruled out. The molecular phylodiagnostic test suggests a common origin of all rare morphotypes and the absence of cryptic hake species in the Southern Cone. The molecular background of the morphotypes distributed between the Western Pacifc South of New Zealand and the western Atlantic South of Argentina is compatible with their hybrid origin between M. gayi and both, M. australis or M. hubbsi, respectively. Te genus Merluccius comprises 11 valid species that occur on most temperate and tropical continental shelves except the Asian shores of the Pacifc Ocean1. Hakes show an anti-tropical distribution in the Atlantic Ocean and the Eastern Pacifc and a latitudinal bathymetric overlap between isotherms 7 °C and 23 °C2–4. -
Biochemical and Mitochondrial Population Studies of Southern African Hake, Merlucc/Us Capens/S and Merlucc/Us Paradoxus
BIOCHEMICAL AND MITOCHONDRIAL POPULATION STUDIES OF SOUTHERN AFRICAN HAKE, MERLUCC/US CAPENS/S AND MERLUCC/US PARADOXUS by Inga Isabel Becker University of Cape Town A dissertation submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in the Faculty of Science, University of Cape Town. Cape Town, October 1987 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town CERTIFICATION OF SUPERVISORS In terms of paragraph 9 of "General regulations for the Degree of PhD" we as supervisors of the canidate I.I. Becker, certify that we approve of the incorporation in this thesis of material that has already been published or submitted for publication. Associate Professor F.T. Robb Department of Microbiology Dr. R. Kirby Department of Microbiology FOR MEINE ELTERN 1 CONTENTS PAGE DECLARA.TION, , , , . , , , .... , , , . , . , , , .. , ...... , 2 ACKNOWLEDGEMENTS .......................... 3 ABSTRACT . •• , .• , , •. , . , • , , , , , , .. , . , ..• , , • , .. 5 CHAPTER 1 GENERAL INTRODUCTION ...................... 9 CHAPTER 2 PROTEIN ELECTROPHORETIC ANALYSIS OF MERWCCIUS CAPENS IS AND M. PARADOXUS ••••• 23 CHAPTER 3 RESTRICTION FRAGMENT ANALYSIS OF THE MITOCHONDRIAL DNA FROMMERWCCIUS CAPENSIS AND M. P ARADOXU S • • • • , • , • • • • • • • • • • • • • , • • • 5 3 CHAPTER 4 CLONING AND CHARACTERISATION OF THE MITOCHONDRIAL DNA OFMERWCCIUS CAPENSIS AND M. PARADOXUS AND MEASUREMENT OF GENETIC DIVERGENCE BETWEEN THESE SPECIES AND M. AUSTRALIS, FROM NEW ZEALAND .......... 112 CHAPTER 5 SEQUENCING PARTS OF THE MITOCHONDRIAL DNA OF MERWCC !US CAP ENS IS ANDM. -
Specific Objective 2 Sov 6 Paulus Et Al. 2016
SoV 2.6 REPUBLIC OF NAMIBIA MINISTRY OF FISHERIES AND MARINE RESOURCES DIRECTORATE RESOURCE MANAGEMENT Cruise Report No 1/2016 RV Mirabilis Surveys of the Hake Stocks Survey No. 2016901: 11 January – 21 February 2016 Compiled by S. Paulus, Johannes Kathena ,Tobias Endjambi, Ester Nangolo A. van der Plas & P. Kainge National Marine Information and Research Centre (NatMIRC) Swakopmund, 2016 1 Hake Research, Demersal Subdivision National Marine Information and Research Centre (NatMIRC) P.O. Box 912 Swakopmund Namibia 2 TABLE OF CONTENTS Abstract ............................................................................................................................................. 5 1. Introduction ................................................................................................................................... 6 1.1 Background .............................................................................................................................. 6 1.2 Objectives ................................................................................................................................ 7 1.3 Participation ............................................................................................................................. 7 1.4 Narrative .................................................................................................................................. 8 2. Materials and Methods ............................................................................................................... -
Molecular Cytogenetic Analysis of the European Hake Merluccius Merluccius (Merlucciidae, Gadiformes): U1 and U2 Snrna Gene Clusters Map to the Same Location
RESEARCH ARTICLE Molecular Cytogenetic Analysis of the European Hake Merluccius merluccius (Merlucciidae, Gadiformes): U1 and U2 snRNA Gene Clusters Map to the Same Location Daniel García-Souto1, Tomás Troncoso1,2, Montse Pérez2, Juan José Pasantes1* 1 Departamento de Bioquímica, Xenética e Inmunoloxía, Universidade de Vigo, Vigo, Spain, 2 Grupo de Acuicultura Marina, Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Vigo, Spain * [email protected] Abstract OPEN ACCESS The European hake (Merluccius merluccius) is a highly valuable and intensely fished spe- Citation: García-Souto D, Troncoso T, Pérez M, Pasantes JJ (2015) Molecular Cytogenetic Analysis cies in which a long-term alive stock has been established in captivity for aquaculture pur- of the European Hake Merluccius merluccius poses. Due to their huge economic importance, genetic studies on hakes were mostly (Merlucciidae, Gadiformes): U1 and U2 snRNA Gene focused on phylogenetic and phylogeographic aspects; however chromosome numbers Clusters Map to the Same Location. PLoS ONE 10 are still not described for any of the fifteen species in the genus Merluccius. In this work we (12): e0146150. doi:10.1371/journal.pone.0146150 report a chromosome number of 2n = 42 and a karyotype composed of three meta/sub- Editor: Riccardo Castiglia, Universita degli Studi di metacentric and 18 subtelo/telocentric chromosome pairs. Telomeric sequences appear Roma La Sapienza, ITALY exclusively at both ends of every single chromosome. Concerning rRNA genes, this species Received: October 20, 2015 show a single 45S rDNA cluster at an intercalary location on the long arm of subtelocentric Accepted: December 13, 2015 chromosome pair 12; the single 5S rDNA cluster is also intercalary to the long arm of chro- Published: December 30, 2015 mosome pair 4. -
HAKES of the WORLD (Family Merlucciidae)
ISSN 1020-8682 FAO Species Catalogue for Fishery Purposes No. 2 HAKES OF THE WORLD (Family Merlucciidae) AN ANNOTATED AND ILLUSTRATED CATALOGUE OF HAKE SPECIES KNOWN TO DATE (Family MERLUCCIIDAE) FAO Species Catalogue for Fishery Purposes No. 2 FIR/Cat. 2 HAKES OF THE WORLD (Family Merlucciidae) AN ANNOTATED AND ILLUSTRATED CATALOGUE OF HAKE SPECIES KNOWN TO DATE by D. Lloris Instituto de Ciencias del Mar (CMIMA-CSIC) Barcelona, Spain J. Matallanas Facultad de Ciencias Universidad Autónoma de Barcelona Bellaterra, Barcelona, Spain and P. Oliver Instituto Español de Oceanografia Palma de Mallorca, Spain FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2005 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. ISBN 92-5-104984-X All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to the Chief, Publishing Management Service, Information Division, FAO, Viale delle Terme di Caracalla, 00100 Rome, Italy by e-mail to [email protected] © FAO 2005 Hakes of the World iii PREPARATION OF THIS DOCUMENT his catalogue was prepared under the FAO Fisheries Department Regular Programme by the Species Identification and TData Programme in the Marine Resources Service of the Fishery Resources Division.