Scripting COM Components in Haskell
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Glib/GTK+ Development Platform
The GLib/GTK+ Development Platform A Getting Started Guide Version 0.8 Sébastien Wilmet March 29, 2019 Contents 1 Introduction 3 1.1 License . 3 1.2 Financial Support . 3 1.3 Todo List for this Book and a Quick 2019 Update . 4 1.4 What is GLib and GTK+? . 4 1.5 The GNOME Desktop . 5 1.6 Prerequisites . 6 1.7 Why and When Using the C Language? . 7 1.7.1 Separate the Backend from the Frontend . 7 1.7.2 Other Aspects to Keep in Mind . 8 1.8 Learning Path . 9 1.9 The Development Environment . 10 1.10 Acknowledgments . 10 I GLib, the Core Library 11 2 GLib, the Core Library 12 2.1 Basics . 13 2.1.1 Type Definitions . 13 2.1.2 Frequently Used Macros . 13 2.1.3 Debugging Macros . 14 2.1.4 Memory . 16 2.1.5 String Handling . 18 2.2 Data Structures . 20 2.2.1 Lists . 20 2.2.2 Trees . 24 2.2.3 Hash Tables . 29 2.3 The Main Event Loop . 31 2.4 Other Features . 33 II Object-Oriented Programming in C 35 3 Semi-Object-Oriented Programming in C 37 3.1 Header Example . 37 3.1.1 Project Namespace . 37 3.1.2 Class Namespace . 39 3.1.3 Lowercase, Uppercase or CamelCase? . 39 3.1.4 Include Guard . 39 3.1.5 C++ Support . 39 1 3.1.6 #include . 39 3.1.7 Type Definition . 40 3.1.8 Object Constructor . 40 3.1.9 Object Destructor . -
Microsoft Patches Were Evaluated up to and Including CVE-2020-1587
Honeywell Commercial Security 2700 Blankenbaker Pkwy, Suite 150 Louisville, KY 40299 Phone: 1-502-297-5700 Phone: 1-800-323-4576 Fax: 1-502-666-7021 https://www.security.honeywell.com The purpose of this document is to identify the patches that have been delivered by Microsoft® which have been tested against Pro-Watch. All the below listed patches have been tested against the current shipping version of Pro-Watch with no adverse effects being observed. Microsoft Patches were evaluated up to and including CVE-2020-1587. Patches not listed below are not applicable to a Pro-Watch system. 2020 – Microsoft® Patches Tested with Pro-Watch CVE-2020-1587 Windows Ancillary Function Driver for WinSock Elevation of Privilege Vulnerability CVE-2020-1584 Windows dnsrslvr.dll Elevation of Privilege Vulnerability CVE-2020-1579 Windows Function Discovery SSDP Provider Elevation of Privilege Vulnerability CVE-2020-1578 Windows Kernel Information Disclosure Vulnerability CVE-2020-1577 DirectWrite Information Disclosure Vulnerability CVE-2020-1570 Scripting Engine Memory Corruption Vulnerability CVE-2020-1569 Microsoft Edge Memory Corruption Vulnerability CVE-2020-1568 Microsoft Edge PDF Remote Code Execution Vulnerability CVE-2020-1567 MSHTML Engine Remote Code Execution Vulnerability CVE-2020-1566 Windows Kernel Elevation of Privilege Vulnerability CVE-2020-1565 Windows Elevation of Privilege Vulnerability CVE-2020-1564 Jet Database Engine Remote Code Execution Vulnerability CVE-2020-1562 Microsoft Graphics Components Remote Code Execution Vulnerability -
The Component Object Model Specification Version 0.9 October 24, 1995
http://scottge.wordpress.com The Component Object Model Specification Version 0.9 October 24, 1995 This document contains the specification to the Component Object Model (COM), an architecture and supporting infrastructure for building, using, and evolving component software in a robust manner. This specification contains the standard APIs supported by the COM Library, the standard suites of interfaces supported or used by software written in a COM environment, along with the network protocols used by COM in support of distributed computing. This specification is still in draft form, and thus subject to change. Note: This document is an early release of the final specification. It is meant to specify and accompany software that is still in development. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the functionality of the final specification or software. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies. Microsoft may have trademarks, copyrights, patents or pending patent applications, or other intellectual property rights covering subject matter in this document. The furnishing of this document does not give you a license to these trademarks, copyrights, patents, or other intellectual property rights. Copyright ? 1992-95 Microsoft Corporation. All Rights Reserved The Component Object Model Specification The Component Object Model The Component Object Model Specification Draft Version 0.9, October 24, 1995 Microsoft Corporation and Digital Equipment Corporation Copyright ? 1992-95 Microsoft Corporation. Microsoft does not make any representation or warranty regarding the Specification or any product or item developed based on the Specification. -
Reading for Monday
Reading for Monday Subsequent pages of this document contain the appropriate excerpts from the 3 papers, in the order of the bullet points listed below: • H/Direct: • Read sections 1 and 2: this sets up the problem and design space. – In section 2.3: focus on understanding IDL types versus Haskell types. • Read the bullets on page 157: these explain the five IDL pointer types. • Attempt to understand what marshalPoint on page 159 is doing. • Take note of the main claim on the page after page 159. • Stretching the storage manager: • Read section 4 to understand stable names and stable pointers – Read section 4.4 closely to understand some garbage collection im- plications. • Read section 5.6 to understand the memory management issue (not the solution). • Calling hell from heaven and heaven from hell: • Read the second bulleted point in the intro. • Read section 3 – Read section 3.3 closely (stable pointers) – Read section 3.5 closely (higher-order callbacks) • The Lua Registry: • Read section 27.3.1: “Lua offers a separate table, called the registry, that C code can freely use, but Lua code cannot access.” 1 H/Direct: A Binary Foreign Language Interface for Haskell Sigbjorn Finne Daan Leijen Erik Meijer University of Glasgow University of Utrecht University of Utrecht [email protected] [email protected] [email protected] Simon Peyton Jones University of Glasgow [email protected] Abstract the particular Haskell implementation. To maintain this in- dependence, H/Direct requires the implementation to sup- H/Direct is a foreign-language interface for the purely func- port a primitive foreign-language interface mechanism, ex- tional language Haskell. -
On2 Flix Engine for Linux Installation
On2 Flix Engine for Linux Installation Topics Preparing the System Java Perl PHP Python Installation Instructions 1. Accept the EULA 2. Verify Prerequisites 3. Uninstall the Previous Version 4. Verify Language Support 5. Register On2 Flix Engine 6. Configure the Installation 7. Install Files 8. Configure the System 9. Build Optional Modules 10. Installation Complete Additional Resources Preparing the System Perform the following to prepare the system for installation: 1. Read the System Overview document provided with this release. 2. Verify Linux prerequisites. a. Operating System: x86 GNU/Linux with GNU C Library (glibc) version 2.3.2 or higher, x86_64 is supported with 32-bit support libraries installed. To determine the version of glibc installed on your system, execute the following: $ /lib/ld-linux.so.2 /lib/libc.so.6 This command should produce output similar to the following (note, your output may differ, however the version number should be equal or greater). © 2009, On2 Technologies, Inc. 1 On2 Flix Engine for Linux Installation GNU C Library stable release version 2.3.2, by Roland McGrath et al. Copyright (C) 2003 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Compiled by GNU CC version 3.3.3. Compiled on a Linux 2.4.26 system on 2004-05-24. Available extensions: GNU libio by Per Bothner crypt add-on version 2.1 by Michael Glad and others linuxthreads-0.10 by Xavier Leroy BIND-8.2.3-T5B libthread_db work sponsored by Alpha Processor Inc NIS(YP)/NIS+ NSS modules 0.19 by Thorsten Kukuk Report bugs using the `glibcbug' script to <[email protected]>. -
Inferred Interface Glue: Supporting Language Interoperability with Static Analysis
Inferred Interface Glue: Supporting Language Interoperability with Static Analysis by Tristan Ravitch A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Computer Sciences) at the UNIVERSITY OF WISCONSIN–MADISON 2013 Date of final oral examination: 08/09/2013 The dissertation is approved by the following members of the Final Oral Committee: Ben Liblit, Associate Professor, Computer Sciences Tom Reps, Professor, Computer Sciences Susan Horwitz, Professor, Computer Sciences Somesh Jha, Professor, Computer Sciences Timothy Tautges, Adjunct Professor, Engineering Physics © Copyright by Tristan Ravitch 2013 All Rights Reserved i acknowledgments I would like to thank Aditya Thakur, Tycho Andersen, Evan Driscoll, and Steve Jackson for many productive technical discussions and valuable feedback for both practice talks and paper submissions. I would also like to thank my advisor Ben Liblit for consistent encouragement and support. Most importantly, I thank Tycho Andersen, Polina Dudnik, James Doherty, Aubrey Barnard, Erin Barnard, and Bess Berg for numerous bicycle rides and the many other things that have made Madison enjoyable. ii contents Contents ii List of Tables iv List of Figures v Abstract viii 1 Introduction 1 1.1 Preliminaries 6 2 Related Work 8 2.1 Library Binding Generation 8 2.2 FFI Checking 10 3 Error Codes 12 3.1 Algorithm 14 3.2 Related Work 30 3.3 Evaluation 31 4 Semantics of Pointer Parameters 43 4.1 Symbolic Access Paths 48 4.2 Array Parameters 50 4.3 Output Parameters 51 -
Using the Go Programming Language in Practice
MASTER’S THESIS | LUND UNIVERSITY 2014 Using the Go Programming Language in Practice Fredrik Pettersson, Erik Westrup Department of Computer Science Faculty of Engineering LTH ISSN 1650-2884 LU-CS-EX 2014-19 Using the Go Programming Language in Practice Erik Westrup Fredrik Pettersson <[email protected]> <[email protected]> <[email protected]> <[email protected]> June 5, 2014 Master’s thesis work carried out at Axis Communications AB for the Department of Computer Science, Lund University. Supervisors: Jonas Skeppstedt <[email protected]> Mathias Bruce <[email protected]> Robert Rosengren <[email protected]> Examiner Jonas Skeppstedt Abstract When developing software today, we still use old tools and ideas. Maybe it is time to start from scratch and try tools and languages that are more in line with how we actually want to develop software. The Go Programming Language was created at Google by a rather famous trio: Rob Pike, Ken Thompson and Robert Griesemer. Before introducing Go, the company suffered from their development process not scaling well due to slow builds, uncontrolled dependencies, hard to read code, poor documenta- tion and so on. Go is set out to provide a solution for these issues. The purpose of this master’s thesis was to review the current state of the language. This is not only a study of the language itself but an investigation of the whole software development process using Go. The study was carried out from an embedded development perspective which includes an investigation of compilers and cross-compilation. We found that Go is exciting, fun to use and fulfills what is promised in many cases. -
Extending PCL for Use with Python: Bindings Generation Using Pybind11
Extending PCL for use with Python: Bindings generation using Pybind11 (Proposal for Google Summer of Code, 2020) Name and Contact Information Name: Divyanshu Madan Github: divmadan Gitter: divmadan Email: [email protected] Postal Address: 4-Cha-18, Jawahar Nagar, Jaipur, Rajasthan Country: India Phone: (+91) 9261700477 Primary Language: English About the document This document is very extensive and requires a section about itself, to stay sane. A few points: ● It documents various tools, existing solutions, other project’s solutions etc. along with my proposal, how to tackle insufficiencies, timeline, etc. ● The “research” part (existing solutions, analysis, etc) is very extensive, difficult to structure in tabular form, and hard to summarize. Thus, it takes up a lot of space in the document. ● I have tried to make the sections independent of each other, so you can safely skip parts of the document, in case you want to. ● I have limited the headings up to 3 levels (H2, H3, H4). A simplified skeleton or structure of the document: C++ and Python Motivation: why create bindings for PCL? Existing binding solutions (for PCL) |_Pcl.py … Analysis of other open-source projects’ bindings |_OpenCV-Python … Analysis of available support tools and libraries for binding generation |_Why use tools? ... The Proposal |_The idea … Stretch Goals |_Jupyter Visualization … Timeline Biographical Information Table of Contents Extending PCL for use with Python: Bindings generation using Pybind11 1 Name and Contact Information -
Application Programming Interface (API) Is a Specification Intended to Be Used As an Interface by Software Components to Communicate with Each Other
Application programming interface 1 Application programming interface An application programming interface (API) is a specification intended to be used as an interface by software components to communicate with each other. An API may include specifications for routines, data structures, object classes, and variables. An API specification can take many forms, including an International Standard such as POSIX or vendor documentation such as the Microsoft Windows API, or the libraries of a programming language, e.g. Standard Template Library in C++ or Java API. An API differs from an application binary interface (ABI) in that the former is source code based while the latter is a binary interface. For instance POSIX is an API, while the Linux Standard Base is an ABI.[1] Language used An API can be: • language-dependent, meaning it is only available by using the syntax and elements of a particular language, which makes the API more convenient to use. • language-independent, written so that it can be called from several programming languages. This is a desirable feature for a service-oriented API that is not bound to a specific process or system and may be provided as remote procedure calls or web services. For example, a website that allows users to review local restaurants is able to layer their reviews over maps taken from Google Maps, because Google Maps has an API that facilitates this functionality. Google Maps' API controls what information a third-party site can use and how they can use it. The term API may be used to refer to a complete interface, a single function, or even a set of APIs provided by an organization. -
A Software Architecture for Embedded Telematics Devices on Linux Master of Science Thesis in Secure and Dependable Computer Systems
A software architecture for embedded telematics devices on Linux Master of Science Thesis in Secure and Dependable Computer Systems HUGO HOLGERSSON Chalmers University of Technology University of Gothenburg Department of Computer Science and Engineering Göteborg, Sweden, December 2011 The Author grants to Chalmers University of Technology and University of Gothen- burg the non-exclusive right to publish the Work electronically and in a non-commercial purpose make it accessible on the Internet. The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text, pictures or other material that violates copyright law. The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a company), acknowledge the third party about this agreement. If the Author has signed a copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she has obtained any necessary permission from this third party to let Chalmers University of Technology and University of Gothenburg store the Work electronically and make it accessible on the Internet. A software architecture for embedded telematics devices on Linux c HUGO HOLGERSSON, Göteborg, Sweden, December 2011 Examiner: Johan Karlsson, [email protected] Professor of Dependable and Robust Real-Time Systems Department of Computer Science and Engineering Chalmers University of Technology University of Gothenburg Department of Computer Science and Engineering SE-412 96 Göteborg Sweden Telephone: + 46 (0)31-772 1000 Abstract This master thesis proposes a Linux-based software architecture for modern telemat- ics devices. Our device is installed in trucks and has the purpose of forwarding collected GPS data to an online data center in a robust way. -
Automated Scanning Vulnerability Report
Automated Scanning Vulnerability Report − Classified − Automated Scanning Vulnerability Report Performed by Beyond Security's Automated Scanning Host/s Tested: 192.168.4.122 Report Generated: 05 Jun 2007 13:31 Table of Contents Introduction Host Information Executive Summary Possible Vulnerabilities What Next? Introduction We have scanned your host/s 192.168.4.122 for 4345 known security holes. This scan took place on 5 Jun 2007 13:31 and took 0 hours and 5 minutes to complete. The 'Possible Vulnerabilities' section of this report lists security holes found during the scan, sorted by risk level. Note that some of these reported vulnerabilities could be 'false alarms' since the hole is never actually exploited during the scan. Some of what we found is purely informational; It will not help an attacker to gain access, but it will give him information about the local network or hosts. These results appear in the 'Low Risk / Intelligence Gathering' section. The last section of this report ('Security Tests') lists the security tests that were performed in this scan by category of vulnerability. 1/44 Automated Scanning Vulnerability Report Executive Summary Learn more about how vulnerabilities are classified Vulnerabilities by Host and Risk Level Total IP Address High Medium Low Vulnerabilities 192.168.4.122 113 33 60 20 Vulnerabilities By Risk Level Top Vulnerabilities By Host 2/44 Automated Scanning Vulnerability Report Vulnerabilities by Service and Risk Level Service Total High Risk Medium Risk Low Risk Vulnerabilities netbios−ns (137/udp) 1 0 0 1 microsoft−ds 101 33 58 10 (445/tcp) general/tcp 8 0 1 7 ntp (123/udp) 1 0 0 1 netbios−ssn 1 0 1 0 (139/tcp) general/icmp 1 0 0 1 Top Vulnerabilities By Service Top Vulnerable Services 3/44 Automated Scanning Vulnerability Report Possible Vulnerabilities High Medium Low Risk Factor: High A Total of 33 High Risk Vulnerability/ies was/were discovered. -
Merlin Programmer for Kids Is a Simple Program to Help Kids, Ages 5
Merlin Programmer for Kids is a simple program to help kids, ages 5 - 8 (ages prior to their moving on to more advanced languages such as Scratch), learn about the concept of sequential programming by allowing them to make Merlin or any of the other Microsoft Agent characters perform actions, move, speak, listen for and make sounds in a predetermined manner. They will learn about do loops, conditional program continuation based on time, key strokes, spoken words, and more! I wrote it in 2003 for my twins, Tommy and Betsy, ages 7 then (now 16!), and although they enjoyed it most for making the characters speak naughty words and make silly sounds, they learned more. I am sure your kids will have fun with it! It is a totally FREE program. This help file is intended for you, the parents. You must explain how this program works to your child, in a manner appropriate for his/her age. Obviously, the ability to understand and work with some features in this program will depend on your child’s age. Soon enough he/she will amaze you! In order to help you, several example scripts are included. Please read the sections on Menu and Programming. They are very short, but informative. Merlin Programmer for Kids home: SciSoft Company My home page: Yale University Ear Lab Installation New! After you download <Merlin Programmer for Kids v.5.5.8.msi> into a folder, double click on it and the Merlin program will be installed. A shortcut will be placed on the desktop , and when you first double click on it additional required components will be installed and then the program will start.