Investigating the Effects of Changes in Light Quality on Different Life History Stages of Seagrasses

Total Page:16

File Type:pdf, Size:1020Kb

Investigating the Effects of Changes in Light Quality on Different Life History Stages of Seagrasses Edith Cowan University Research Online Theses: Doctorates and Masters Theses 2017 Investigating the effects of changes in light quality on different life history stages of seagrasses Simone Strydom Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/theses Part of the Ecology and Evolutionary Biology Commons, and the Marine Biology Commons Recommended Citation Strydom, S. (2017). Investigating the effects of changes in light quality on different life history stages of seagrasses. https://ro.ecu.edu.au/theses/1995 This Thesis is posted at Research Online. https://ro.ecu.edu.au/theses/1995 Edith Cowan University Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. Where the reproduction of such material is done without attribution of authorship, with false attribution of authorship or the authorship is treated in a derogatory manner, this may be a breach of the author’s moral rights contained in Part IX of the Copyright Act 1968 (Cth). Courts have the power to impose a wide range of civil and criminal sanctions for infringement of copyright, infringement of moral rights and other offences under the Copyright Act 1968 (Cth). Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. I Investigating the effects of changes in light quality on different life history stages of seagrasses Simone Strydom Bachelor of Environmental Science (Hons) This thesis is presented in fulfilment of the requirements for the degree of Doctor of Philosophy Centre for Marine Ecosystem Services School of Science Edith Cowan University 2017 Use of Thesis This copy is the property of Edith Cowan University. However the literary rights of the author must also be respected. If any passage from this thesis is quoted or closely paraphrased in a paper or written work prepared by the user, the source of the passage must be acknowledged in the work. If the user desires to publish a paper or written work containing passages copied or closely paraphrased from this thesis, which passages would in total constitute an infringing copy for the purposes of the Copyright Act, he or she must first obtain the written permission of the author to do so. Declaration I certify that this thesis does not, to the best of my knowledge and belief: i.Incorporate without acknowledgment any material previously submitted for a degree or diploma in any institution of higher education; ii. Contain any material previously published or written by another person except where due reference is made in the text of this thesis; or iii. Contain any defamatory material. Signature: Date: 28th April 2017 II Acknowledgements I am grateful to the Australian Postgraduate Award Scheme and the Western Australia Marine Science Institution for the generous scholarships they awarded. Funding from the Western Australian Marine Science Institution (WAMSI, Dredging Science Node), Woodside Energy, Chevron Australia, and BHP Billiton as environmental offsets and by co-investment from the WAMSI Joint Venture partners provided crucial funds that were used to build, maintain and run all experiments throughout this project. The commercial investors had no role in the data analysis, data interpretation, and the decision to publish or in the preparation of any part of this thesis. I would also like to thank Hillarys Rotary Marine Club, Holsworth Wildlife Research Endowment (Equity Trust), Graduate Women of Western Australia, In-Situ Marine Optics, World Seagrass Association, Edith Cowan University School of Science and the Centre for Marine Ecosystems Research for their support and funding towards conference attendance, equipment purchases, sample analysis and field costs associated this project. I am also particularly grateful to Kathryn McMahon and Paul Lavery for providing a writing up scholarship towards the end of my degree. I am indebted to Caitlin Rae, Roisin McCallum, Nicole Said, Natasha Dunham and Paul Armstrong for their help with field, laboratory and aquarium work. I would also like to respectfully acknowledge Catherine Collier for passing on her well-developed laboratory protocols, and to Michael Durako and Michael Rasheed for providing exceptionally valuable feedback on my PhD proposal. I was fortunate enough to have the ultimate supervisory panel: Dr. Kathryn McMahon, Prof. Paul Lavery, Prof. Gary Kendrick and Dr. John Statton. Together they provided a far-reaching breadth of expertise and I learned a great deal from each and every one of them. I would specifically like to thank Kathryn and Paul for providing unwavering support and encouragement throughout my degree; I will miss our weekly fruitful discussions. Kathryn, I am grateful for being given the opportunity to observe and learn from your comprehensive seagrass biology knowledge, systematic problem solving and critical thinking skills. I am in awe of how you conduct yourself with sincere equanimity whilst maintaining your wonderful, genuine nature. You are an inspiration and I can only strive to amount to half the scientist you are one day. Thank you Paul for greeting me and every other student, who incessantly knocked on your office door, with a smile. Your patience, eagerness, passion and knack for explaining concepts in “student language” are unparalleled. You were the first academic I felt comfortable “challenging” and from that, I have learned diplomacy – an unexpected, but necessary skill in research. I would also like to express my gratitude towards John Statton for his practical advice on all seed, aquarium and PAM related III issues. Your approachable demeanour always made our interactions a breeze and I am really appreciative that you never made me feel like I asked a stupid question (which I definitely did). Only someone with such a light-hearted nature and great sense of humour could turn three days of moving five tonnes of sand by hand into a joyous occasion. I am grateful also to Gary Kendrick for his challenging yet supportive method of supervision. You always made me feel part of the UWA team and your ability to think outside the box always led to such insightful conversation. And if there was a spanner readily available to throw in the works, it often came hurtling from Gary’s general direction – I am a better scientist for it, thank you. On a personal note, I would like to thank Jeramie Putman for your unprecedented patience, encouragement and for lending me the use of your steadfast logical brain during times when my fatigued grey matter would cooperate no longer. I am ever-grateful for your endurance of the chilly Perth water in the name of saving seagrasses. I thank you for helping me with data entry, weighing samples, moving aquaria, counting seeds, tagging ramets, cleaning aquariums and your mind reading skills when it came to coffee making. To have made this journey with you at my side has been the greatest gift of all – I owe you more than I could ever hope to repay. Lastly, I am indebted to Sandra Warren for taking a truly difficult leap to immigrate to this beautiful country which supported my tertiary education. That one action facilitated the fulfilment of a tenacious six year old girls’ dream of one day becoming a marine biologist. Whilst we were always separated by distance, your life lessons, the good and the bad, were never far from my mind. IV Abstract Seagrass meadows provide crucial ecosystem services to the coastal zone but globally are threatened. Seagrass loss to date has mainly been attributed to anthropogenic activities that reduce light quantity, such as dredging, declining water quality from urban and agricultural run- off and eutrophication. However, light quality (wavelengths of light) is also altered by these anthropogenic stressors as well as natural events. This study consisted of three main components: (1) characterising light quality to which seagrasses are exposed across a local natural estuarine-ocean gradient and with a human impact pressure; (2) the influence of monochroma -2 -1 nm wavelengthstic light and quality full- (blue λ=451 nm; green– 700λ=522 nm, nm; at yellow 200 µmol λ=596 photons nm and m red sλ=673) on Halophila ovalis and Posidoniaspectrum australis light at differentλ=400 life-history stages; and the effects of light -1 quality and quantity representative of (3) -2 -1 200 µmol photons m s ) on H. ovalis adulta commercial plants. The dredging field work operation demonstrated (15 mg thatL TSS, the quality50 and of light to which seagrasses are exposed varies along a natural gradient but the nature of the shift is also dependent on time of year. Additionally, human impact such as dredging can expose seagrasses to spectra outside of the natural range detected in this study, and the magnitude of this shift is dependent on depth and TSS concentrations. Results from the monochromatic light quality experiments demonstrated, for the first time, the seagrass responses to light quality across several plant scales as well as different life-history stages. Halophila ovalis and P. australis showed different responses, likely due to their respective growth strategies. Adult H. ovalis (a colonising species) plants were negatively impacted by monochromatic blue, green and yellow light treatments, while seeds and seedlings performed better under red and full-spectrum light. Conversely, P. australis (a persistent species) adults showed no significant responses to any of the monochromatic light quality treatments, while seedlings demonstrated a physiological acclimation to blue light.
Recommended publications
  • Rare Plants of Louisiana
    Rare Plants of Louisiana Agalinis filicaulis - purple false-foxglove Figwort Family (Scrophulariaceae) Rarity Rank: S2/G3G4 Range: AL, FL, LA, MS Recognition: Photo by John Hays • Short annual, 10 to 50 cm tall, with stems finely wiry, spindly • Stems simple to few-branched • Leaves opposite, scale-like, about 1mm long, barely perceptible to the unaided eye • Flowers few in number, mostly born singly or in pairs from the highest node of a branchlet • Pedicels filiform, 5 to 10 mm long, subtending bracts minute • Calyx 2 mm long, lobes short-deltoid, with broad shallow sinuses between lobes • Corolla lavender-pink, without lines or spots within, 10 to 13 mm long, exterior glabrous • Capsule globe-like, nearly half exerted from calyx Flowering Time: September to November Light Requirement: Full sun to partial shade Wetland Indicator Status: FAC – similar likelihood of occurring in both wetlands and non-wetlands Habitat: Wet longleaf pine flatwoods savannahs and hillside seepage bogs. Threats: • Conversion of habitat to pine plantations (bedding, dense tree spacing, etc.) • Residential and commercial development • Fire exclusion, allowing invasion of habitat by woody species • Hydrologic alteration directly (e.g. ditching) and indirectly (fire suppression allowing higher tree density and more large-diameter trees) Beneficial Management Practices: • Thinning (during very dry periods), targeting off-site species such as loblolly and slash pines for removal • Prescribed burning, establishing a regime consisting of mostly growing season (May-June) burns Rare Plants of Louisiana LA River Basins: Pearl, Pontchartrain, Mermentau, Calcasieu, Sabine Side view of flower. Photo by John Hays References: Godfrey, R. K. and J. W. Wooten.
    [Show full text]
  • SEAGRASS MEADOWS of TAMPA BAY - a REVIEW Roy R
    PROCEEDINGS TAMPA BAY AREA SClENTlFIC INFORMATION SYMPOaUM May 1982 Editors: Sara-Ann F, Treat Joseph L. Simon Roy R. Lewis 111 Robert L, Whitrnan, Jr. Sea Grant Project No. IR/82-2 Grant No, NASUAA-D-00038 Report Number 65 Florida Sea Grant College July 1985 Copyright O 1985 by Bellwether Press ISBN 0-8087-35787 Reproduced directiy from the author's manuscript. AII rights reserved. No part of this book may be reproduced in any form whatsoever, by pho tograplr or rnimeognph or by any other means, by broadcast or transmission, by translation into any kind of language, nor by recording electronicalIy or otherwise, without permissio~lin writing from the publisher, except by a reviewer, who may quote brief passages in critical articles and reviews. Printed in the United States of America. SEAGRASS MEADOWS OF TAMPA BAY - A REVIEW Roy R. Lewis III Mangrove Systems, Inc. Post Office Box 15759 Tampa, Fi 33684 M. 3, Durako M. D. MoffIer Florida Department of Natural Resources Marine Research Laboratory 100 8th Avenue S.E. St. Petersburg, FL 33701 R, C. Phillips Department of Biology Seattle Pacific University Seattle, WA 981 19 ABSTRACT Seagtass meadows presently cover approximately 5,750 ha of the bottom of Tampa Bay, in 81% reduction from the historical coverage of approximately 30,970 ha, Five of the seven species of seagrass occurring in Florida are found in the estuary, typically in less than 2 rn of water. These are: Thalassia testudinum Banks ex Konig (turtle grassh S rin odium filiforme Kutzing (manatee grassh Halodule wrightii Ascherson+ shoal - grass);~uppia maritirna L, (widgeon= and Halophila engelmannii Ascherson, The dominant species are turtle grass and shoal grass.
    [Show full text]
  • Seagrass Taxonomytaxonomy
    SeagrassSeagrass TaxonomyTaxonomy By Dr. Roy L. Lehman Texas A&M University - Corpus Christi TheThe InternationalInternational CodeCode ofof BotanicalBotanical NomenclatureNomenclature Rules for the use of scientific names are maintained and updated periodically at meetings of botanists called International Botanical Congress. Updated rules are published after congress in each new edition of The International Code of Botanical Nomenclature. Now can be found online as a web site. © Dr. Roy L. Lehman BackgroundBackground InformationInformation AuthorAuthor NamesNames Scientific names are often written with their author or authors, the individuals who are responsible for having given the plants their names • Lotus corniculatus L. • Lotus heermanii (Dur. & Hilg.) Greene z Both cases the generic name is Lotus, a genus in the pea family. z First specific epithet is an adjective that in Latin means “bearing a horn-like projection”. z The second was named in honor of A L. Heermann, a 19th century plant collector. z The name means Heermann’s lotus © Dr. Roy L. Lehman AuthorAuthor NamesNames The name or names of the authors follow the binomials z SurnamesSurnames areare oftenoften abbreviatedabbreviated •• asas L.L. forfor LinnaeusLinnaeus © Dr. Roy L. Lehman SecondSecond ExampleExample The second example is a little more complicated. Originally named by two naturalists: z E. M. Durand and z T. C. Hilgard z as Hosackia heermannii. Several years later, E. L. Greene concluded that the genus Hosackia should be merged with Lotus and transferred the specific epithet, heermannii from Hosackia to Lotus. © Dr. Roy L. Lehman SecondSecond ExampleExample Durand and Higard (the parenthetical authors) get credit for having published the epithet, heermannii.
    [Show full text]
  • The Global Distribution and Status of Seagrass Ecosystems
    The global distribution and status of seagrass ecosystems ^^ ^^^H Discussion paper prepared for tlie UNEP-WCWIC Global Seagrass Workshop St Pete's Beach, Florida, 9 November, 2001 Prepared by: Mark D. Spalding, Michelle L. Taylor, Sergio Martins, Edmund P. Green, and Mary Edwards WA.. WORLD CONSERVATION MONITORING CENTRE Digitized by tine Internet Archive in 2010 witii funding from UNEP-WCIVIC, Cambridge Iittp://www.archive.org/details/globaldistributi01spal The global distribution and status of seagrass ecosystems Discussion paper prepared for tlie UNEP-WCIVIC Global Seagrass Workshop St Pete's Beach, Florida, 9 November, 2001 Prepared by: Mark D. Spalding, Michelle L. Taylor, Sergio Martins, Edmund P. Green, and Mary Edwards With assistance from: Mark Taylor and Corinna Ravilious Table of Contents Introduction to the workshop 2 The global distribution and status of seagrass ecosystems 3 Introduction 3 Definitions 3 The diversity of seagrasses 3 Species distribution 4 Associated Species 6 Productivity and biomass 7 The distribution and area of seagrass habitat 8 The value of seagrasses 13 Threats to seagrasses 13 Management Interventions 14 Bibliography; 16 29 Annex 1 : Seagrass Species Lists by Country Annex 2 - Species distribution maps 34 Annex 3 - Seagrass distribution maps 68 74 Annex 4 -Full list of MPAs by country ; /4^ ] UNEP WCMC Introduction to the workshop The Global Seagrass Workshop of 9 November 2001 has been set up with the expressed aim to develop a global synthesis on the distribution and status of seagrasses world-wide. Approximately 20 seagrass experts from 14 counu-ies, representing all of the major seagrass regions of the world have been invited to share their knowledge and expertise.
    [Show full text]
  • 1 Phylogenetic Regionalization of Marine Plants Reveals Close Evolutionary Affinities Among Disjunct Temperate Assemblages Barna
    Phylogenetic regionalization of marine plants reveals close evolutionary affinities among disjunct temperate assemblages Barnabas H. Darua,b,*, Ben G. Holtc, Jean-Philippe Lessardd,e, Kowiyou Yessoufouf and T. Jonathan Daviesg,h aDepartment of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, MA 02138, USA bDepartment of Plant Science, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa cDepartment of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, United Kingdom dQuebec Centre for Biodiversity Science, Department of Biology, McGill University, Montreal, QC H3A 0G4, Canada eDepartment of Biology, Concordia University, Montreal, QC, H4B 1R6, Canada; fDepartment of Environmental Sciences, University of South Africa, Florida campus, Florida 1710, South Africa gDepartment of Biology, McGill University, Montreal, QC H3A 0G4, Canada hAfrican Centre for DNA Barcoding, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa *Corresponding author Email: [email protected] (B.H. Daru) Running head: Phylogenetic regionalization of seagrasses 1 Abstract While our knowledge of species distributions and diversity in the terrestrial biosphere has increased sharply over the last decades, we lack equivalent knowledge of the marine world. Here, we use the phylogenetic tree of seagrasses along with their global distributions and a metric of phylogenetic beta diversity to generate a phylogenetically-based delimitation of marine phytoregions (phyloregions). We then evaluate their evolutionary affinities and explore environmental correlates of phylogenetic turnover between them. We identified 11 phyloregions based on the clustering of phylogenetic beta diversity values. Most phyloregions can be classified as either temperate or tropical, and even geographically disjunct temperate regions can harbor closely related species assemblages.
    [Show full text]
  • Seagrasses of Florida: a Review
    Page 1 of 1 Seagrasses of Florida: A Review Virginia Rigdon The University of Florida Soil and Water Science Departments Introduction Seagrass communities are noted to be some of the most productive ecosystems on earth, as they provide countless ecological functions, including carbon uptake, habitat for endangered species, food sources for many commercially and recreationally important fish and shellfish, aiding nutrient cyling, and their ability to anchor the sediment bottom. These communites are in jeopardy and a wordwide decline can be attributed mainly to deterioration in water quality, due to anthropogenic activities. Seagrasses are a diverse group of submerged angiosperms, which grow in estuaries and shallow ocean shelves and form dense vegetative communities. These vascular plants are not true grasses; however, their “grass-like” qualities and their ability to adapt to a saline environment give them their name. While seagrasses can be found across the globe, they have relatively low taxonomic diversity. There are approximately 60 species of seagrasses, compared to roughly 250,000 terrestrial angiosperms (Orth, 2006). These plants can be traced back to three distinct seagrass families (Hydrocharitaceae, Cymodoceaceace complex, and Zosteraceae), which all evolved 70 million to 100 million years ago from a individual line of monocotyledonous flowering plants (Orth, 2006). The importance of these ecosystems, both ecologically and economically is well understood. The focus of this paper will be to discuss the species of seagrass in Florida, the components which affect their health and growth, and the major factors which threaten these precious and unique ecosystems, as well as programs which are in place to protect and preserve this essential resource.
    [Show full text]
  • Reproductive Biology of the Tropical-Subtropical Seagrasses of the Southeastern United States
    Reproductive Biology of the Tropical-Subtropical Seagrasses of the Southeastern United States Mark D. Moffler and Michael J. Durako Florida Department of Natural Resources Bureau of Marine Research 100 Eighth Ave., S.E. St. Petersburg, Florida 33701 ABSTRACT Studiesof reproductivebiology in seagrassesof the southeasternUnited States have addressed descriptive morphologyand anatomy,reproductive physiology, seed occurrence,and germination.Halodale wrightii Aschers.,Halophila engelmannii Aschers., Syringodium filiforme Kutz., and Thalassiatestudiaum Banks ex Konig are dioecious;Halophila decipiens Ostenfeld and Ruppiamaritima L. are monoecious.In Halophila johrtsoaii Eiseman, only fernale flowers are known. With the exception of R, maritima, which has hydroanemophilouspollination, these species have hydrophilous pollination. Recent reproductive-ecology studiessuggest that reproductivepatterns are due to phenoplasticresponses and/or geneticadaptation to physico-chemicalenvironmental conditions. Laboratory and field investigationsindicate that reproductive periodicityis temperaturecontrolled, but proposedmechanisms are disputed.Water temperature appears to influencefloral developmentand maybe importantin determiningsubsequent flower densities and fruit/seed production.Flowering under continuouslight in vitro suggeststhat photoperiodplays a limitedrole in floral induction.Flower expression and anthesis,however, may be influencedby photoperiod.Floral morpho- ontogeneticstudies of T. testudinumfield populationsdemonstrated the presenceof early-stageinflorescences
    [Show full text]
  • Seagrass Meadows - Encyclopedia of Earth
    Seagrass meadows - Encyclopedia of Earth http://www.eoearth.org/article/Seagrass_meadows Encyclopedia of Earth Seagrass meadows Lead Author: Carlos M. Duarte (other articles) Article Topics: Oceans and Marine ecology This article has been reviewed and approved by the following Topic Table of Contents Editor: Jean-Pierre Gattuso (other articles) 1 Introduction Last Updated: September 21, 2008 2 Adaptations to Colonize the Sea 3 Seagrass Distribution and Habitat 4 Seagrass Functions 5 Conservation Issues Introduction 6 Further Reading Seagrasses are angiosperms that are restricted to life in the sea. Seagrasses colonized the sea, from terrestrial angiosperm ancestors, about 100 million years ago, which indicates a relatively early appearance of seagrasses in angiosperm evolution. With a rather low number of species (about 50-60), seagrass comprise < 0.02% of the angiosperm flora. Seagrasses are assigned to two families, Potamogetonaceae and Hydrocharitaceae, encompassing 12 genera of angiosperms containing about 50 species (Table 1). Three of the genera, Halophila , Zostera and Posidonia , which may have evolved from lineages that appeared relatively early in seagrass evolution, comprise most (55%) of the species, while Enhalus , the most recent seagrass genus, is represented by a single species ( Enhalus acoroides , Photo 1: Posidonia oceanica meadow in the NW Table 1). Most seagrass meadows are monospecific, but Mediterranean. (Photograph by M. Sanfélix) may develop multispecies, with up to 12 species, meadows in subtropical and tropical waters. Adaptations to Colonize the Sea The colonization of the sea required a number of key adaptations including (1) blade or subulate leaves with sheaths, fitted for high-energy environments; (2) hydrophilous pollination, allowing submarine pollination (except for the genus Enhalus ) and subsequent propagule dispersal; and (3) extensive lacunar systems allowing the internal gas flow needed to maintain the oxygen supply required by their below-ground structures in anoxic sediments.
    [Show full text]
  • Seagrass Communities of the Gulf Coast of Florida: Status and Ecology
    CLINTON J. DAWES August 2004 RONALD C. PHILLIPS GEROLD MORRISON CLINTON J. DAWES University of South Florida Tampa, Florida, USA RONALD C. PHILLIPS Institute of Biology of the Southern Seas Sevastopol, Crimea, Ukraine GEROLD MORRISON Environmental Protection Commission of Hillsborough County Tampa, Florida, USA August 2004 COPIES This document may be obtained from the following agencies: Tampa Bay Estuary Program FWC Fish and Wildlife Research Institute 100 8th Avenue SE 100 8th Avenue SE Mail Station I-1/NEP ATTN: Librarian St. Petersburg, FL 33701-5020 St. Petersburg, FL 33701-5020 Tel 727-893-2765 Fax 727-893-2767 Tel 727-896-8626 Fax 727-823-0166 www.tbep.org http://research.MyFWC.com CITATION Dawes, C.J., R.C. Phillips, and G. Morrison. 2004. Seagrass Communities of the Gulf Coast of Florida: Status and Ecology. Florida Fish and Wildlife Conservation Commission Fish and Wildlife Research Institute and the Tampa Bay Estuary Program. St. Petersburg, FL. iv + 74 pp. AUTHORS Clinton J. Dawes, Ph.D. Distinguished University Research Professor University of South Florida Department of Biology Tampa, FL 33620 [email protected] Ronald C. Phillips, Ph.D. Associate Institute of Biology of the Southern Seas 2, Nakhimov Ave. Sevastopol 99011 Crimea, Ukraine [email protected] Gerold Morrison, Ph.D. Director, Environmental Resource Management Environmental Protection Commission of Hillsborough County 3629 Queen Palm Drive Tampa, FL 33619 813-272-5960 ext 1025 [email protected] ii TABLE of CONTENTS iv Foreword and Acknowledgements 1 Introduction 6 Distribution, Status, and Trends 15 Autecology and Population Genetics 28 Ecological Roles 42 Natural and Anthropogenic Effects 49 Appendix: Taxonomy of Florida Seagrasses 55 References iii FOREWORD The waters along Florida’s Gulf of Mexico coastline, which stretches from the tropical Florida Keys in the south to the temperate Panhandle in the north, contain the most extensive and diverse seagrass meadows in the United States.
    [Show full text]
  • Flowering Rush Biocontrol: Future Funding and Research CABI
    Flowering Rush Biocontrol: Future Funding and Research CABI Needs Jennifer Andreas*, Hariet L. Hinz, Patrick Häfliger, Jenifer Parsons, Greg Haubrich, Peter Rice, Susan Turner * [email protected], (253) 651-2197, www.invasives.wsu.edu Flowering Rush Biocontrol Consortium © 2004, Ben • Began in 2012 Legler • Partnership between WA, MT, ID, B.C., AB, © 2004, Ben CABI, MN, MS… • Updates provided to Legler distribution list • Outline – impact data needs © 2004, Ben – test plant list Legler – funding Flowering Rush Impacts Mackey, Chelan Chelan Mackey, CNWCB • FR impact data needed – strengthen biocontrol petition – increase likelihood of additional funding • Economic impact – herbicide, mechanical costs • Ecological impact – system impacts? – salmonid impacts?!?!? Österberg Marcus • Human health/ recreational impacts /SXC Flowering Rush Taxonomy • FR in subclass Alismatidae • Mobot: – Order: Alismatales – 2 families closely related: Hydrocharitaceae & Alismataceae (includes Limnocharitaceae) • USDA PLANTS Database – 3 orders: Alismatales, Hydrocharitales, Najadales – 3 families closely related Mobot, verrsion 12, Stevens, P.F. 2001 onward; http://www.mobot.org/MOBOT/research/APweb/orders/alismatalesweb.htm Draft Test Plant List • 42 test plant species selected • Category 1: genetic types of target weed species in North America – test at least most common genotype for both cytotypes • Category 2: NA species in same genus – does not apply • Category 3: NA species in other genera in same family – does not apply Draft Test Plant List • Category
    [Show full text]
  • Distribution and Abundance of Nearshore Fishes in the Anclote River Estuary, West-Central Florida Stephen T
    Northeast Gulf Science Volume 12 Article 10 Number 1 Number 1 11-1991 Distribution and Abundance of Nearshore Fishes in the Anclote River Estuary, West-Central Florida Stephen T. Szedlmayer Auburn University DOI: 10.18785/negs.1201.10 Follow this and additional works at: https://aquila.usm.edu/goms Recommended Citation Szedlmayer, S. T. 1991. Distribution and Abundance of Nearshore Fishes in the Anclote River Estuary, West-Central Florida. Northeast Gulf Science 12 (1). Retrieved from https://aquila.usm.edu/goms/vol12/iss1/10 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Szedlmayer: Distribution and Abundance of Nearshore Fishes in the Anclote Riv Northeast Gulf Science Vol. 12, No. 1 November 1991 75 DISTRIBUTION AND ABUNDANCE sive patches of seagrasses (Thalassia OF NEARSHORE FISHES testudinum, Syringodium filiforme, Halo­ IN THE ANCLOTE RIVER ESTUARY, dule wrightii, Halophila engelmannii, Rup­ WEST-CENTRAL FLORIDA pia maritima), mangroves, and oyster bars. Station 2, was a mesohaline habitat Fish species use estuarine areas as located 6.5 km from the mouth of the nurseries for their young (Gunter 1967). Anclote River. This station was character­ This facet of west Florida estuaries has ized by lack of rooted aquatic vegetation long been suggested (Reid 1954; Kilby and a shoreline with extensive stands of 1955; Springer and Woodburn 1960; Sykes black rush, Juncus roemerianus. Station and Finucane 1966), and subsequent trawl 3, was an oligohaline habitat located surveys have supported this phenomenon 9.6 km from the river mouth.
    [Show full text]
  • What Are Seagrasses? Florida's Seagrasses
    What are seagrasses? Seagrasses are grass-like flowering plants that live completely submerged in marine and estuarine waters. Although seagrasses occur throughout the coastal areas of Florida, they are most abundant in Florida Bay and from Tarpon Springs northward to Apalachee Bay in the Gulf. Seagrasses occur in protected bays and lagoons and also in deeper waters along the continental shelf in the Gulf of Mexico. The depth at which seagrasses are found is limited by water clarity because some species require higher levels of light. However, some species tolerate lower light levels than others and can grow at greater depths. Florida’s approximately 2,000,000 acres of sea- on Phillips on Phillips R grasses perform many significant functions: R • they help maintain water clarity by trapping fine Shoal-grass, Halodule wrightii Manatee-grass, Syringodium filiforme sediments and particles with their leaves; • they stabilize the bottom with their roots and Florida’s seagrasses rhizomes; • they provide shelter for fishes, crustaceans, and Although approximately 52 species of seagrasses exist Manatee-grass, Syringodium filiforme, is easily shellfish; and worldwide, only seven species are found in Florida’s recognizable because its leaves are cylindrical instead • they and the organisms that grow on them are food marine waters. Six of these are widespread in Florida of ribbon-like and flat like many other seagrass species. for many marine animals and water birds. and extend beyond its borders. The species of Halophila found in Florida are Star- The canopy of seagrass leaves protects young marine Widgeon-grass, Ruppia maritima, grows in both grass, Halophila engelmannii; Paddle-grass, Halophila animals from larger predators.
    [Show full text]