Utility-Scale Solar Photovoltaic Power Plants a Project Developer’S Guide

Total Page:16

File Type:pdf, Size:1020Kb

Utility-Scale Solar Photovoltaic Power Plants a Project Developer’S Guide Utility-Scale Solar Photovoltaic Power Plants A Project Developer’s GuIDE IN PARTNERSHIP WITH © International Finance Corporation 2015 All rights reserved. 2121 Pennsylvania Avenue, N.W. Washington, D.C. 20433 ifc.org The material in this work is copyrighted. Copying and/or transmitting portions or all of this work without permission may be a violation of applicable law. IFC does not guarantee the accuracy, reliability or completeness of the content included in this work, or for the conclusions or judgments described herein, and accepts no responsibility or liability for any omissions or errors (including, without limitation, typographical errors and technical errors) in the content whatsoever or for reliance thereon. Cover Image: SunEdison Amanecer project in Chile, by Juan Payeras/IFC Table of Contents FOREWORD . 1 ACKNOWLEDGEMENTS . 2 1 EXECUTIVE SUMMARY . 3 2 PHOTOVOLTAIC (PV) PROJECT DEVELOPMENT . 9 3 SOLAR PV TECHNOLOGY . 23 4 THE SOLAR RESOURCE . 42 5 ENERGY YIELD PREDICTION . 51 6 SITE SELECTION . 58 7 PLANT DESIGN . 66 8 PERMITS, LICENSING AND ENVIRONMENTAL CONSIDERATIONS . 94 9 EPC CONTRACTS . 103 10 CONSTRUCTION . 112 11 OPERATION AND MAINTENANCE . .. 125 12 POLICIES AND SUPPORT MECHANISMS FOR SOLAR PV .. 135 13 POWER PURCHASE AGREEMENTS . 149 14 FINANCING SOLAR PV POWER PROJECTS . 159 15 FINANCIAL ANALYSIS – PROJECT COSTS AND REVENUE . 173 ANNEX 1: COMMON CONSTRUCTION MISTAKES . 182 ANNEX 2: EPC CONTRACT HEADS OF TERMS . 187 ANNEX 3: O&M CONTRACT HEADS OF TERMS . 192 ANNEX 4: ROOFTOP PV SYSTEMS . 195 Table of Contents i List of Figures Figure 1: Project Development Stages . 10 Figure 2: Overview of Solar PV Power Plant . 24 Figure 3: PV Technology Classes . 26 Figure 4: Development of Research Cell Efficiencies . .. 31 Figure 5: PV Array Tilt and Azimuth . 31 Figure 6: Benefit of Dual Axis Tracking System . 34 Figure 7: PV System Configurations . 35 Figure 8: Transformer and Transformerless Inverter Schematic . 37 Figure 9: Efficiency Curves of Low, Medium and High Efficiency Inverters as Functions of the Input Power to Inverter Rated Capacity Ratios. 38 Figure 10: Effect of Tilt on Solar Energy Capture . 43 Figure 11: Pyranometer Measuring GHI Image . 44 Figure 12: Annual Sum of GHI, average 1994-2010 . 46 Figure 13: Annual Share of DHI to GHI, average 1994-2010 . 46 Figure 14: Inter-annual Variability in GHI (relative standard deviation) 1994-2010 . 47 Figure 15: Uncertainty in Energy Yield Prediction . 55 Figure 16: Shading Angle Diagram . 68 Figure 17: Voltage and Power Dependency Graphs of Inverter Efficiency . 77 Figure 18: Typical Transformer Locations and Voltage Levels in a Solar Plant where Export to Grid is at HV . 82 Figure 19: PV System Monitoring Schematic . 89 Figure 20: Typical EPC Construction Phase and Handover Protocol . 106 Figure 21: O&M Workers at a Large-scale Solar PV Plant . 113 ii A Project Developer’s Guide to Utility-scale Solar Photovoltaic Power Plants Figure 22: Spacing between Module Rows . 119 Figure 23 Module Installation on a Large Tracking System . 120 Figure 24: Module Cleaning Using Crane . 126 Figure 25 Module Cleaning Using Brush Trolley . 127 Figure 26: Module Cleaning Using Dust Broom . 127 Figure 27: Corporate Financing . 160 Figure 28: Equity Financing . 161 Figure 29: Project Financing . 162 Figure 30: Project Risk versus Project Definition . 163 Figure 31: Forecasted Average Capex Costs for Multi-MW Solar PV Park, 2010–2020. 174 Figure 32: Average Breakdown Costs for a Ground-mounted Solar PV Project . 175 Figure 33: Small-scale PV System Schematic . 196 Figure 34: Non-domestic PV Rooftop Schematic . 197 Figure 35: BAPV (Left) and BIPV (Right) Systems . 198 Figure 36: Reduction in Module Efficiency with Average Temperature Coefficient . 199 List of Figures iii List of Tables Table 1: Characteristics of some PV Technology Classes . 28 Table 2: PV Module Standards . 30 Table 3: Indicative List of Inverter-related Standards . 39 Table 4: Inter-annual Variation in Global Horizontal Irradiation as calculated from SolarGIS Database . 47 Table 5: Solar Resource Datasets . 48 Table 6: Losses in a PV Power Plant. 53 Table 7: Area Required for Megawatt-scale Solar Power Plant . 60 Table 8: PV Module Selection Criteria . .. 70 Table 9: Comparison of Module Technical Specifications at STC . 71 Table 10: Inverter Selection Criteria. 72 Table 11: Datasheet Information . 73 Table 12: Transformer Specification . 75 Table 13: Definition of Ingress Protection (IP) Ratings . 79 Table 14: Recommended Number of Pyranometers Depending on Plant Capacity . 90 Table 15: Performance Optimisation Strategies . 90 Table 16: Annotated Wiring Diagram Requirements . 91 Table 17: Typical EPC Payment Schedule . 105 Table 18: Solar PV Project Interfaces . 114 Table 19: IFC-financed, Utility-scale PV Plants in Chile . 150 Table 20: Solar PV Project Risk Matrix . 168 Table 21: 2013/14 Solar PV Capex and Opex Cost Variations . 174 Table 22: Average Benchmark Costs for Ground-mounted Solar PV Development . 176 Table 23: Key Inputs to the Financial Model . 178 iv A Guide to Utility-Scale Solar Photovoltaic Power Plants List of Abbreviations °C Degrees Centigrade EMI Electromagnetic Interference A Amp EPC Engineering, Procurement and AC Alternating Current Construction AEDP Alternative Energy Development Plan EPIA European Photovoltaic Industry Association a-Si Amorphous Silicon EPFI Equator Principles Financial Institutions BAPV Building Applied Photovoltaic ERU Emission Reduction Units BIPV Building Integrated Photovoltaic EU European Union BOO Build-Own-Operate EUA EU Allowance BoP Balance of Plant FAC Final Acceptance Certificate c-Si Crystalline Silicon FiT Feed-in Tariff CB Circuit Breaker GCR Ground Cover Ratio CDM Clean Development Mechanism GHG Greenhouse gas CdTe Cadmium Telluride GHI Global Horizontal Irradiation CE Conformance European (European Commission) GSM Global System for Mobile Communications CER Certified Emission Reduction GTI Global Tilted Irradiation CERC Central Electricity Regulatory Commission HV High Voltage CFADS Cash Flow Available for Debt Service IAC Intermediate Acceptance Certificate CIGS/CIS Copper Indium (Gallium) Di-Selenide ICC International Chamber of Commerce CIS Copper Indium Selenide ICSID International Centre for Settlement of Investment Disputes CSC Cost Settlement Center IEA International Energy Agency CSP Concentrated Solar Power IEC International Electrotechnical Commission DC Direct Current IEE Initial Environmental Examination DIN Deutsches Institut für Normung IFC International Finance Corporation DNI Direct Normal Irradiation IGBT Insulated Gate Bipolar Transistor DSCR Debt Service Coverage Ratio IP International Protection Rating or Internet DSRA Debt Service Reserve Account Protocol DSP Digital Signal Processing IPs Indigenous Peoples EHS Environmental, Health and Safety IPP Independent Power Producer EIA Environmental Impact Assessment IRENA International Renewable Energy Agency EN European Norm IRR Internal Rate of Return List of Abbreviations v List of Abbreviations (continued) ISC Short-Circuit Current PID Potential Induced Degradation JI Joint Implementation PIR Passive Infrared JNNSM Jawaharlal Nehru National Solar Mission PPA Power Purchase Agreement kWh Kilowatt Hour PR Performance Ratio LCOE Levelised Cost of Electricity PV Photovoltaic LD Liquidated Damages REC Renewable Energy Certificate LLCR Loan Life Coverage Ratio REC Renewable Energy Credit LPS Lightning Protection System REIPPP Renewable Energy Independent Power LTV Loan to Value Producer Procurement LV Low Voltage ROI Return on Investment MCB Miniature Circuit Breakers ROW Right of way MPP Maximum Power Point RPO Renewable Purchase Obligation MPPT Maximum Power Point Tracking SCADA Supervisory Control and Data Acquisition MRA Maintenance Reserve Account SERC State Electricity Regulatory Commission MTTF Mean Time to Failure SPV Special Purpose Vehicle MV Medium Voltage STC Standard Test Conditions MVA Mega-volt ampere TCO Total Cost of Ownership MW Megawatt TCP Transmission Control Protocol MWp Megawatt Peak TGC Tradable Green Certificate NAPCC National Action Plan on Climate Change THD Total Harmonic Distortion NCRE Non-Conventional Renewable Energy UL Underwriters Laboratories, Inc . NHSFO Non Honoring of Sovereign Financial UNFCCC United Nations Framework Convention on Obligations Climate Change NPV Net Present Value UV Ultraviolet V Open Circuit Voltage NREL National Renewable Energy Laboratory OC NVVN National Thermal Power Corporation V Volt Vidyut Vyapar Nigam VAT Value-Added Tax OECD Organisation for Economic Cooperation VDE Verband der Elektrotechnik, Elektronik und and Development Informationstechnik OEM Original Equipment Manufacturer WACC Weighted Average Cost of Capital O&M Operations and Maintenance Wp Watt Peak vi A Project Developer’s Guide to Utility-scale Solar Photovoltaic Power Plants Foreword Although it currently represents a small percentage of global power generation, installations of solar photovoltaic (PV) power plants are growing rapidly for both utility-scale and distributed power generation applications. Reductions in costs driven by technological advances, economies of scale in manufacturing, and innovations in financing have brought solar power within reach of grid parity in an increasing number of markets. Continued advancements and further cost reductions will expand these opportunities, including in developing countries where favourable solar conditions exist. Policy environments for renewable energy in the developing world are being refined, drawing
Recommended publications
  • CC22 N848AE HP Jetstream 31 American Eagle 89 5 £1 CC203 OK
    CC22 N848AE HP Jetstream 31 American Eagle 89 5 £1 CC203 OK-HFM Tupolev Tu-134 CSA -large OK on fin 91 2 £3 CC211 G-31-962 HP Jetstream 31 American eagle 92 2 £1 CC368 N4213X Douglas DC-6 Northern Air Cargo 88 4 £2 CC373 G-BFPV C-47 ex Spanish AF T3-45/744-45 78 1 £4 CC446 G31-862 HP Jetstream 31 American Eagle 89 3 £1 CC487 CS-TKC Boeing 737-300 Air Columbus 93 3 £2 CC489 PT-OKF DHC8/300 TABA 93 2 £2 CC510 G-BLRT Short SD-360 ex Air Business 87 1 £2 CC567 N400RG Boeing 727 89 1 £2 CC573 G31-813 HP Jetstream 31 white 88 1 £1 CC574 N5073L Boeing 727 84 1 £2 CC595 G-BEKG HS 748 87 2 £2 CC603 N727KS Boeing 727 87 1 £2 CC608 N331QQ HP Jetstream 31 white 88 2 £1 CC610 D-BERT DHC8 Contactair c/s 88 5 £1 CC636 C-FBIP HP Jetstream 31 white 88 3 £1 CC650 HZ-DG1 Boeing 727 87 1 £2 CC732 D-CDIC SAAB SF-340 Delta Air 89 1 £2 CC735 C-FAMK HP Jetstream 31 Canadian partner/Air Toronto 89 1 £2 CC738 TC-VAB Boeing 737 Sultan Air 93 1 £2 CC760 G31-841 HP Jetstream 31 American Eagle 89 3 £1 CC762 C-GDBR HP Jetstream 31 Air Toronto 89 3 £1 CC821 G-DVON DH Devon C.2 RAF c/s VP955 89 1 £1 CC824 G-OOOH Boeing 757 Air 2000 89 3 £1 CC826 VT-EPW Boeing 747-300 Air India 89 3 £1 CC834 G-OOOA Boeing 757 Air 2000 89 4 £1 CC876 G-BHHU Short SD-330 89 3 £1 CC901 9H-ABE Boeing 737 Air Malta 88 2 £1 CC911 EC-ECR Boeing 737-300 Air Europa 89 3 £1 CC922 G-BKTN HP Jetstream 31 Euroflite 84 4 £1 CC924 I-ATSA Cessna 650 Aerotaxisud 89 3 £1 CC936 C-GCPG Douglas DC-10 Canadian 87 3 £1 CC940 G-BSMY HP Jetstream 31 Pan Am Express 90 2 £2 CC945 7T-VHG Lockheed C-130H Air Algerie
    [Show full text]
  • 2015-SVTC-Solar-Scorecard.Pdf
    A PROJECT OF THE SILICON VALLEY TOXICS COALITION 2015 SOLAR SCORECARD ‘‘ www.solarscorecard.com ‘‘ SVTC’s Vision The Silicon Valley Toxics Coalition (SVTC) believes that we still have time to ensure that the PV sector is safe The PV industry’s rapid growth makes for the environment, workers, and communities. SVTC it critical that all solar companies envisions a safe and sustainable solar PV industry that: maintain the highest sustainability standards. 1) Takes responsibility for the environmental and health impacts of its products throughout their life- cycles, including adherence to a mandatory policy for ‘‘The Purpose responsible recycling. The Scorecard is a resource for consumers, institutional purchasers, investors, installers, and anyone who wants 2) Implements and monitors equitable environmental to purchase PV modules from responsible product and labor standards throughout product supply chains. stewards. The Scorecard reveals how companies perform on SVTC’s sustainability and social justice benchmarks 3) Pursues innovative approaches to reducing and to ensure that the PV manufacturers protect workers, work towards eliminating toxic chemicals in PV mod- communities, and the environment. The PV industry’s ule manufacturing. continued growth makes it critical to take action now to reduce the use of toxic chemicals, develop responsible For over three decades, SVTC has been a leader in recycling systems, and protect workers throughout glob- encouraging electronics manufacturers to take lifecycle al PV supply chains. Many PV companies want to pro- responsibility for their products. This includes protecting duce truly clean and green energy systems and are taking workers from toxic exposure and preventing hazardous steps to implement more sustainable practices.
    [Show full text]
  • Renewable Energy Risking Rights & Returns
    ` RENEWABLE ENERGY RISKING RIGHTS & RETURNS: An analysis of solar, bioenergy and geothermal companies’ human rights commitments SEPTEMBER 2018 CONTENTS CONTENTS Executive summary 1 Introduction 4 Analysis 6 1. Leaders and laggards 6 2. Public commitment to human rights 12 3. Commitment to community consultations 12 4. Access to remedy 14 5. Labour rights 16 6. Supply chain monitoring 17 Recommendations 19 Annex 21 Photo credit: Andreas Gücklhorn/Unsplash EXECUTIVE SUMMARY EXECUTIVE SUMMARY Key messages Renewable energy is key for our transition to a low-carbon economy, but companies’ human rights policies and practices are not yet strong enough to ensure this transition is both fast and fair. Evidence shows failure to respect human rights can result in project delays, legal procedures and costs for renewable energy companies, underlying the urgency to strengthen human rights due diligence. We cannot afford to slow the critical transition to renewable energy with these kinds of impediments. As renewable energy investments expand in countries with weak human rights pro- tections, investors must step up their engagement to ensure projects respect human rights. Renewable energy has experienced a fourfold bioenergy and geothermal industries, increase in investment in the past decade. echoing findings from ourprevious analysis of Starting at $88 billion in 2005, new wind and hydropower companies. investments hit $349 billion in 2015.1 This eye-catching rise in investments is a welcome Alongside the moral imperative, companies trend and reflects international commitments can also avoid significant legal risks, project to combatting climate change and providing delays and financial costs by introducing access to energy in the Paris climate rigorous human rights due diligence policies agreement and the Sustainable Development and processes.
    [Show full text]
  • Commercialization and Deployment at NREL: Advancing Renewable
    Commercialization and Deployment at NREL Advancing Renewable Energy and Energy Efficiency at Speed and Scale Prepared for the State Energy Advisory Board NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Management Report NREL/MP-6A42-51947 May 2011 Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:[email protected] Available for sale to the public, in paper, from: U.S.
    [Show full text]
  • Energies for the 21St Century
    THE collEcTion 1 w The atom 2 w Radioactivity 3 w Radiation and man 4 w Energy 5 w Nuclear energy: fusion and fission 6 w How a nuclear reactor works 7 w The nuclear fuel cycle 8 w Microelectronics 9 w The laser: a concentrate of light 10 w Medical imaging 11 w Nuclear astrophysics 12 w Hydrogen 13 w The Sun 14 w Radioactive waste 15 w The climate 16 w Numerical simulation 17 w Earthquakes 18 w The nanoworld 19 w Energies for the 21st century © French Alternative Energies and Atomic Energy Commission, 2010 Communication Division Head Office 91191 Gif-sur-Yvette cedex - www.cea.fr ISSN 1637-5408. w Low-carbon energies for a sustainable future FROM RESEARCH TO INDUSTRY 19 w energies for the 21st century InnovatIng for nuclear energy DomestIcatIng solar power BIofuel proDuctIon DevelopIng BatterIes anD fuel cells thermonuclear fusIon 2 w contents century © Jack Star/PhotoLink st Innovating for nuclear ENERgY 6 The beginnings of nuclear energy in France 7 The third generation 8 Generation IV: new concepts 10 DEveloping batteries and fuel cells 25 Domesticating solar Lithium-ion batteries 26 pOwer 13 A different application for Thermal solar power 15 each battery 27 Photovoltaic solar power 16 Hydrogen: an energy carrier 29 Concentrated solar power 19 Thermonuclear fusion 31 BIOFUEL production 20 Tokamak research 33 Biomass 21 ITER project 34 Energies for the 21 2nd generation biofuels 22 Designed and produced by: MAYA press - Printed by: Pure Impression - Cover photo: © Jack Star/PhotoLink - Illustrations : YUVANOE - 09/2010 Low-carbon energies for a sustainable future 19 w Energies for the 21st century w> IntroIntroDuctIon 3 The depletion of fossil resources and global warming are encoura- ging the development of research into new energy technologies (on the left, Zoé, France’s first nuclear reactor, on the right, the national institute for solar power).
    [Show full text]
  • Photovoltaic Power Generation
    Photovoltaic Power Generation * by Tom Penick and Bill Louk *Photo is from “Industry-Photovoltaic Power Stations1,” http://www.nedo.go.jp/nedo-info/solarDB/photo2/1994- e/4/4.6/01.html, December 1, 1998. PHOTOVOLTAIC POWER GENERATION Submitted to Gale Greenleaf, Instructor EE 333T Prepared by Thomas Penick and Bill Louk December 4, 1998 ABSTRACT This report is an overview of photovoltaic power generation. The purpose of the report is to provide the reader with a general understanding of photovoltaic power generation and how PV technology can be practically applied. There is a brief discussion of early research and a description of how photovoltaic cells convert sunlight to electricity. The report covers concentrating collectors, flat-plate collectors, thin-film technology, and building-integrated systems. The discussion of photovoltaic cell types includes single-crystal, poly-crystalline, and thin-film materials. The report covers progress in improving cell efficiencies, reducing manufacturing cost, and finding economic applications of photovoltaic technology. Lists of major manufacturers and organizations are included, along with a discussion of market trends and projections. The conclusion is that photovoltaic power generation is still more costly than conventional systems in general. However, large variations in cost of conventional electrical power, and other factors, such as cost of distribution, create situations in which the use of PV power is economically sound. PV power is used in remote applications such as communications, homes and villages in developing countries, water pumping, camping, and boating. Grid- connected applications such as electric utility generating facilities and residential rooftop installations make up a smaller but more rapidly expanding segment of PV use.
    [Show full text]
  • Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives
    Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 1 2 Environmental and Economic Benefits of Building Solar in California: Quality Careers—Cleaner Lives Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 3 About the Author Peter Philips (B.A. Pomona College, M.A., Ph.D. Stanford University) is a Professor of Economics and former Chair of the Economics Department at the University of Utah. Philips is a leading economic expert on the U.S. construction labor market. He has published widely on the topic and has testified as an expert in the U.S. Court of Federal Claims, served as an expert for the U.S. Justice Department in litigation concerning the Davis-Bacon Act (the federal prevailing wage law), and presented testimony to state legislative committees in Ohio, Indiana, Kansas, Oklahoma, New Mexico, Utah, Kentucky, Connecticut, and California regarding the regulations of construction labor markets.
    [Show full text]
  • Fulfilling the Promise of Concentrating Solar Power Low-Cost Incentives Can Spur Innovation in the Solar Market
    AGENCY/PHOTOGRAPHER ASSOCIATED PRESS ASSOCIATED Fulfilling the Promise of Concentrating Solar Power Low-Cost Incentives Can Spur Innovation in the Solar Market By Sean Pool and John Dos Passos Coggin June 2013 WWW.AMERICANPROGRESS.ORG Fulfilling the Promise of Concentrating Solar Power Low-Cost Incentives Can Spur Innovation in the Solar Market By Sean Pool and John Dos Passos Coggin May 2013 Contents 1 Introduction and summary 3 6 reasons to support concentrating solar power 5 Concentrating solar power is a proven zero-carbon technology with high growth potential 6 Concentrating solar power can be used for baseload power 7 Concentrating solar power has few impacts on natural resources 8 Concentrating solar power creates jobs Concentrating solar power is low-cost electricity 9 Concentrating solar power is carbon-free electricity on a budget 11 Market and regulatory challenges to innovation and deployment of CSP technology 13 Low-cost policy solutions to reduce risk, promote investment, and drive innovation 14 Existing policy framework 15 Policy reforms to reduce risk and the cost of capital 17 Establish an independent clean energy deployment bank 18 Implement CLEAN contracts or feed-in tariffs Reinstate the Department of Energy’s Loan Guarantee Program 19 Price carbon Policy reforms to streamline regulation and tax treatment 20 Tax reform for capital-intensive clean energy technologies Guarantee transmission-grid connection for solar projects 21 Stabilize and monetize existing tax incentives 22 Further streamline regulatory approval by creating an interagency one-stop shop for solar power 23 Regulatory transparency 24 Conclusion 26 About the authors 27 Endnotes Introduction and summary Concentrating solar power—also known as concentrated solar power, concen- trated solar thermal, and CSP—is a cost-effective way to produce electricity while reducing our dependence on foreign oil, improving domestic energy-price stabil- ity, reducing carbon emissions, cleaning our air, promoting economic growth, and creating jobs.
    [Show full text]
  • The Economics of Solar Power
    The Economics of Solar Power Solar Roundtable Kansas Corporation Commission March 3, 2009 Peter Lorenz President Quanta Renewable Energy Services SOLAR POWER - BREAKTHROUGH OR NICHE OPPORTUNITY? MW capacity additions per year CAGR +82% 2000-08 Percent 5,600-6,000 40 RoW US 40 +43% Japan 10 +35% 2,826 Spain 55 1,744 1,460 1,086 598 Germany 137 241 372 427 2000 01 02 03 04 05 06 07 2008E Demand driven by attractive economics • Strong regulatory support • Increasing power prices • Decreasing solar system prices • Good availability of capital Source: McKinsey demand model; Solarbuzz 1 WE HAVE SEEN SOME INTERESTING CHANGES IN THE U.S. RECENTLY 2 TODAY’S DISCUSSION • Solar technologies and their evolution • Demand growth outlook • Perspectives on solar following the economic crisis 3 TWO KEY SOLAR TECHNOLOGIES EXIST Photovoltaics (PV) Concentrated Solar Power (CSP) Key • Uses light-absorbing material to • Uses mirrors to generate steam characteristics generate current which powers turbine • High modularity (1 kW - 50 MW) • Low modularity (20 - 300 MW) • Uses direct and indirect sunlight – • Only uses direct sunlight – specific suitable for almost all locations site requirements • Incentives widely available • Incentives limited to few countries • Mainly used as distributed power, • Central power only limited by some incentives encourage large adequate locations and solar farms transmission access ~ 10 Global capacity ~ 0.5 GW, 2007 Source: McKinsey analysis; EPIA; MarketBuzz 4 THESE HAVE SEVERAL SUB-TECHNOLOGIES Key technologies Sub technologiesDescription
    [Show full text]
  • Analysis of Solar Community Energy Storage for Supporting Hawaii's 100% Renewable Energy Goals Erin Takata [email protected]
    The University of San Francisco USF Scholarship: a digital repository @ Gleeson Library | Geschke Center Master's Projects and Capstones Theses, Dissertations, Capstones and Projects Spring 5-19-2017 Analysis of Solar Community Energy Storage for Supporting Hawaii's 100% Renewable Energy Goals Erin Takata [email protected] Follow this and additional works at: https://repository.usfca.edu/capstone Part of the Natural Resources Management and Policy Commons, Oil, Gas, and Energy Commons, and the Sustainability Commons Recommended Citation Takata, Erin, "Analysis of Solar Community Energy Storage for Supporting Hawaii's 100% Renewable Energy Goals" (2017). Master's Projects and Capstones. 544. https://repository.usfca.edu/capstone/544 This Project/Capstone is brought to you for free and open access by the Theses, Dissertations, Capstones and Projects at USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. It has been accepted for inclusion in Master's Projects and Capstones by an authorized administrator of USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. For more information, please contact [email protected]. This Master's Project Analysis of Solar Community Energy Storage for Supporting Hawaii’s 100% Renewable Energy Goals by Erin Takata is submitted in partial fulfillment of the requirements for the degree of: Master of Science in Environmental Management at the University of San Francisco Submitted: Received: ...................................……….. ................................………….
    [Show full text]
  • Oraşe Inteligente – Experienţă Şi Practică La
    Regneală H. S. SOLAR ENERGY FIELD WELCOMES NEW TRENDS IN THE EUROPEAN UNION. CASE STUDY: ROMANIA SOLAR ENERGY FIELD WELCOMES NEW TRENDS IN THE EUROPEAN UNION. CASE STUDY: ROMANIA Horaţiu Sorin REGNEALĂ The Bucharest University of Economic Studies, Romania regnealăhoraţ[email protected] 5 Abstract In 2012 and 2013, solar energy has become the most important source of renewable energy in the European 201 Union, whose main role is to produce electric power. Business models in the solar energy field, as well as the perception on the legal context, that is a major source of influence for the companies in the field, have been a main subject of debate in Romania and the European Union, but have not been scientifically researched. The purpose of this paper is to develop a comparative study on the situation of business models in the Romanian field of solar energy, between the years 2013 and 2014, as well as the development of photovoltaic industry forecasts June / 2 in Romania in the coming years. In order to perform this study, we used the method of Delphi based on questionnaires and interviews with experts in this field of activity. This study is a continuation of the research carried out last year (Tanţău et al., 2014) and illustrate the major changes in the Romanian field of photovoltaic Issue Issue energy, after modifying the law No. 220/2008 by Emergency Ordinance of the Romanian Government No. 57/2013 and the appearance of Decision of the Government No. 994/2013. The study treats the new directions in the field 5 of photovoltaic energy in Romania representing the basic pylon of the future trends of business models in the photovoltaic industry, that were not previously provided in the scientific literature.
    [Show full text]
  • Recent Developments in Heat Transfer Fluids Used for Solar
    enewa f R bl o e ls E a n t e n r e g Journal of y m a a n d d n u A Srivastva et al., J Fundam Renewable Energy Appl 2015, 5:6 F p f p Fundamentals of Renewable Energy o l i l ISSN: 2090-4541c a a n t r i DOI: 10.4172/2090-4541.1000189 o u n o s J and Applications Review Article Open Access Recent Developments in Heat Transfer Fluids Used for Solar Thermal Energy Applications Umish Srivastva1*, RK Malhotra2 and SC Kaushik3 1Indian Oil Corporation Limited, RandD Centre, Faridabad, Haryana, India 2MREI, Faridabad, Haryana, India 3Indian Institute of Technology Delhi, New Delhi, India Abstract Solar thermal collectors are emerging as a prime mode of harnessing the solar radiations for generation of alternate energy. Heat transfer fluids (HTFs) are employed for transferring and utilizing the solar heat collected via solar thermal energy collectors. Solar thermal collectors are commonly categorized into low temperature collectors, medium temperature collectors and high temperature collectors. Low temperature solar collectors use phase changing refrigerants and water as heat transfer fluids. Degrading water quality in certain geographic locations and high freezing point is hampering its suitability and hence use of water-glycol mixtures as well as water-based nano fluids are gaining momentum in low temperature solar collector applications. Hydrocarbons like propane, pentane and butane are also used as refrigerants in many cases. HTFs used in medium temperature solar collectors include water, water- glycol mixtures – the emerging “green glycol” i.e., trimethylene glycol and also a whole range of naturally occurring hydrocarbon oils in various compositions such as aromatic oils, naphthenic oils and paraffinic oils in their increasing order of operating temperatures.
    [Show full text]