Common Yukon Mushrooms a Guide to Common Yukon Mushrooms

Total Page:16

File Type:pdf, Size:1020Kb

Common Yukon Mushrooms a Guide to Common Yukon Mushrooms Wildlife Viewing Common Yukon mushrooms A guide to common Yukon mushrooms Mushrooms play an important Table of contents role in every ecosystem in Yukon. They were once The fungus among us ............ 2 thought to be very primitive Mushroom habitat .................. 4 plants, but are now recognised Mushroom morphology ......... 6 as neither plants nor animals, Mushroom identification ........ 8 but members of their own Respectful mushroom kingdom: fungi. Following viewing ...................................10 insects, fungi are the Fleshy pored mushrooms ...12 second most diverse group of organisms in the world, Toothed mushrooms ............14 and some estimate that Gilled mushrooms ................16 © Government of Yukon 2019 only 10 to 15 per cent of all Those other mushrooms ....20 ISBN 978-1-55362-828-6 North American fungi have Mushrooms in even been described. our ecosystem ......................22 For more information on For more information This guide will introduce Mushroom myths ..................24 mushrooms and other on harvesting forest you to some examples of Additional resources.............25 Yukon wildlife, contact: resources, contact: common mushrooms you Government of Yukon Government of Yukon might find along Yukon’s Wildlife Viewing Program Forest Management Branch trails. The mushrooms are Box 2703 (V-5R) Box 2703 (K-918) grouped into categories Do not rely on this Whitehorse, Yukon Y1A 2C6 Whitehorse, Yukon Y1A 2C6 based on their morphology guide to identify edible Phone: Phone: (appearance and structure), mushrooms. This booklet 867-667-8291 867-667-3999 including a photo and short will introduce you to Toll free: Toll free: description. You will likely the fungus among us, 1-800-661-0408 x 8291 1-800-661-0408 x 3999 recognise some mushrooms but there is much more Email: Email: but in order to fully identify to learn! [email protected] [email protected] one you’ll need to purchase more detailed guides. Please Yukon.ca remember that eating wild Find us on Facebook at “Yukon Wildlife Viewing” foods such as mushrooms can be dangerous and Special thanks to Steve Trudell for his contributions can result in severe to this project. illness or death. 1 The fungus among us A mushroom is like the tip of an iceberg floating on the ocean; there is much more hiding beneath the surface. A mushroom is the fruit of plants. Others specialise in a larger mold-like fungus further breaking down organic living in the soil, wood, or material mixed in the soil. other material known as the Some species of mushroom “substrate.” Fungi with these have symbiotic relationships conspicuous fruitbodies are with plants. The mushrooms Mushrooms also form part referred to as “macrofungi” act as root extensions, trading of the diet of animals such but are popularly known as nutrients and water for sugars as squirrels and caribou. mushrooms or toadstools. and other organic compounds The next time you Mushrooms play important from the plant. The fungi help encounter a squirrel roles in our ecosystems. midden in the forest, retain water and can assist look up on the lower Many are decomposers that in soil stabilisation. branches of a nearby YG/Marina Milligan help to break down dead spruce tree. Often you will find old mushrooms cached by the squirrel. Jim Crozier Jim 2 3 Timing is everything Mushroom Mushroom growth is very points in the season, different dependent on season and species of mushroom will fruit habitat weather conditions. Fungi at different times. Some arrive can lie hidden beneath early in the spring and Like plants, the surface of their are absent for the substrate for many rest of the summer, different fungi years until the others will arrive prefer different conditions are just before frost. habitats. right to produce The fun in mush- a mushroom. room viewing Generally, is learning Some grow in soil saturated a damp the habits of with water. Others prefer summer with your favourite dry, open fields. Mushrooms plenty of rainy, mushrooms, all grow on a certain type warm days will like the migration of substrate such as soil, produce bountiful patterns of a bird. decaying wood, gravel, mushroom crops. Sometimes you may or even live trees. Just like wildflowers only have a window will bloom at different of a few days to see them! Carol Foster Carol YG/Matt Clarke YG/Marina Milligan YG/Marina Milligan Shaggy Manes can be found These mushrooms prefer Russulas can be found on A mushroom growing on on residential lawns. a gravel sandbar. woodland soil and leaf litter. decaying wood. 4 5 Mushroom morphology Each mushroom will have different Mushrooms come in many different shapes and sizes, body parts that make it distinct. but they all function to produce and disperse spores, which are like seeds in fungal reproduction. The most common mushroom shapes found along Yukon’s trails are: Cap James Lindsey/CC BY-SA 3.0 YG/Marina Milligan Ring or annulus Hymenium Cups Clubs or corals (not always present) (gills, spines, or pores) Stalk or stem Hayley McClellandHayley YG/Marina Milligan Brackets or shelves Cap and stem Foster Carol Volva (not always present) 6 7 Mushroom identification There are thousands of species of mushrooms in Yukon that even experts have difficulty identifying. Consider focusing on just three or four common mushrooms without trying to identify every fungus Nielsen Sara you find. Examples of It’s good practice to find spore prints a mushroom identification buddy with whom you can compare notes and seek a second opinion. You might see a mushroom as a rusty-red colour while your partner sees it as a brownish-orange colour, which may change how you identify it. Get a closer look The colour of the spores To make a spore print: Learning to identify mushrooms will help you identify some can be a daunting task. mushrooms. Depending 1. Cut off the stem. on the species, spores 2. Place the cap on a piece may be white, beige, rusty, of black and white paper brown, or black. If you such as this sheet. are lucky you can see accumulations of spores 3. Cover and leave beneath a mushroom overnight or for several where it is growing. hours undisturbed. More often, you will need to make a spore print 4. Gently remove the cover with a healthy, mature and cap and note the mushroom. colour of the spores left behind. 8 9 How you can Respectful STAY SAFE mushroom in bear country viewing If you wish to pick them, take only firm and robust mushrooms and leave the others to return to the soil. Mushrooms are the fruiting YG body of the fungus and are needed for reproduction. If you are harvesting an edible mushroom, cut the stem of a Always carry bear mushroom rather than ripping spray and practice out the “roots” to limit the bear safety. Look up damage done to the part of the and around you from fungus that is underground. time to time to watch However, if you are unfamiliar for signs of bear with a mushroom, you may activity in the area. need to collect the entire For more information specimen for identification. on bear safety Whether you’re photographing and pick up the above drawing the colour and variety of brochure at your YG/Brian Charles Yukon’s mushrooms, or looking for a nearest Yukon government tasty addition to dinner, it’s important office, or to have respect for the land. download it from Here are some best practices for mushroom viewing: Yukon.ca. Respect land owners and their Carry a map and wishes, and ask permission if compass or GPS you’d like to view mushrooms to keep track of on their property. your location, and be prepared Watch where you step. Avoid for sudden trampling other vegetation to weather changes. reach a mushroom. 10 11 Fleshy pored mushrooms Aspen Rough Stem Leccinum insigne King Bolete Boletus edulis This common bolete has an The King Bolete has a tan orange-reddish cap that turns brown and cap with a texture is larger than most other of soft leather, boletes. It has a massive that is almost flat stalk that is covered with age. The stalk YG/Marina Milligan with a fine white “mesh” is white when it lacking brown scales. is young, but develops It is found under conifers tiny brown bumps with age, in mid-summer and is giving it the name “rough stem.” considered by many to It is found under poplars in mid-summer, Tocekas/Own work, CC BY-SA 3.0 be the king of edible mush- often before other mushrooms have fruited. rooms. However, the flies also enjoy this mushroom and often find it first! Slippery Jack Suillus tomentosus Slippery Jacks are a Tinder Polypore common sight below Fomes fomentarius the pine trees of Many excited children have happened upon this shelf-like Yukon’s forests. Their bright yellow or “bracket” mushroom growing at the base of live YG/Marina Milligan trees or on dead logs. Its tough, caps and thick spongy woody cap makes it hymenium make incredibly durable, and the them easily stand out tough pores underneath amongst the moss are much smaller than and debris on the those of spongy boletes. forest floor. The flesh This mushroom was turns blue when it traditionally dried and has been bruised or used as tinder to cut, but not as quickly catch the spark when or noticeably as certain lighting a fire. other boletes. 12 13 Toothed mushrooms Bitter Hedgehog/ Blue-footed Scaly Tooth Sweet Tooth/ Sarcodon scabrosus Hedgehog Steve Trudell Steve This large mushroom closely Mushroom resembles the Hawkwing. Hydnum repandum The scales on the cap are not nearly so large and prominent, The underside of this pale and it has a strong odor of tan-to-caramel coloured watermelon rind.
Recommended publications
  • Savage Gulf Natural Area
    Savage Gulf State Natural Area, part of South Cumberland State Park Place cursor over cells with red by Cumberland Mycological Society, Crossville, TN triangles to view pictures and/or comments click on underlined species for web links to details about those species Scientific name common names (if applicable) Sep-15 Albatrellus confluens none x Albatrellus cristatus syn. Polyporus cristatus “Crested Polypore” x Aleurodiscus wakefieldiae syn. A. oakesii syn. Corticium oakesii "Oak Parchment" "Hop Hornbeam Disc" x Amanita amerifulva [often called 'Amanita fulva' -a European species] “Tawny Grisette” x Amanita amerirubescens "Blusher" x Amanita arkansana "Arkansas Slender Caesar" x(?) Amanita banningiana "Mary Banning's Slender Caesar" x Amanita bisporigera (group) "Destroying Angel" x Amanita brunnescens “Cleft foot-Amanita” x Amanita canescens "Golden Threads Lepidella" x Amanita farinosa "Powdery-cap Amanita" x Amanita flavoconia “Yellow Patches" x Amanita cf lavendula [former misapplied name =Amanita citrina ] "Citron Amanita," "False Death Cap" x Amanita multisquamosa syn. A. pantherina, var. multisquamosa "Panther" x Amanita muscaria var. guessowii syn. A. muscaria var. formosa "Yellow-orange Fly Agaric" x Amanita parcivolvata "Ringless False Fly Agaric" x Amanita polypyramis "Plateful of Pyramids Lepidella" x Amanita subcokeri Tulloss nom. prov. = Amanita species M5 "False Coker's Lepidella" x Armillaria mellea (group) syn. Armillariella mellea "Honey Mushroom" x Aureoboletus auriporus syn. Boletus auriporus syn. Boletus viridiflavus "Gold-pored Bolete" x Austroboletus gracilis var. gracilis syn. Tylopilus gracilis “Graceful Bolete” x Baorangia bicolor syn. Boletus bicolor "Two-colored Bolete" x(?) Boletellus chrysenteroides none x Boletus innixus syn. B. caespitosus, syn. Austroboletus innixus "Clustered Brown Bolete" x Boletus nobilis "Noble Bolete" x(?) Boletus pallidus "Pale Bolete" x Callistosporium luteo-olivaceum syn.
    [Show full text]
  • Field Guide to Common Macrofungi in Eastern Forests and Their Ecosystem Functions
    United States Department of Field Guide to Agriculture Common Macrofungi Forest Service in Eastern Forests Northern Research Station and Their Ecosystem General Technical Report NRS-79 Functions Michael E. Ostry Neil A. Anderson Joseph G. O’Brien Cover Photos Front: Morel, Morchella esculenta. Photo by Neil A. Anderson, University of Minnesota. Back: Bear’s Head Tooth, Hericium coralloides. Photo by Michael E. Ostry, U.S. Forest Service. The Authors MICHAEL E. OSTRY, research plant pathologist, U.S. Forest Service, Northern Research Station, St. Paul, MN NEIL A. ANDERSON, professor emeritus, University of Minnesota, Department of Plant Pathology, St. Paul, MN JOSEPH G. O’BRIEN, plant pathologist, U.S. Forest Service, Forest Health Protection, St. Paul, MN Manuscript received for publication 23 April 2010 Published by: For additional copies: U.S. FOREST SERVICE U.S. Forest Service 11 CAMPUS BLVD SUITE 200 Publications Distribution NEWTOWN SQUARE PA 19073 359 Main Road Delaware, OH 43015-8640 April 2011 Fax: (740)368-0152 Visit our homepage at: http://www.nrs.fs.fed.us/ CONTENTS Introduction: About this Guide 1 Mushroom Basics 2 Aspen-Birch Ecosystem Mycorrhizal On the ground associated with tree roots Fly Agaric Amanita muscaria 8 Destroying Angel Amanita virosa, A. verna, A. bisporigera 9 The Omnipresent Laccaria Laccaria bicolor 10 Aspen Bolete Leccinum aurantiacum, L. insigne 11 Birch Bolete Leccinum scabrum 12 Saprophytic Litter and Wood Decay On wood Oyster Mushroom Pleurotus populinus (P. ostreatus) 13 Artist’s Conk Ganoderma applanatum
    [Show full text]
  • The Secotioid Syndrome
    76(1) Mycologia January -February 1984 Official Publication of the Mycological Society of America THE SECOTIOID SYNDROME Department of Biological Sciences, Sun Francisco State University, Sun Francisco, California 94132 I would like to begin this lecture by complimenting the Officers and Council of The Mycological Society of America for their high degree of cooperation and support during my term of office and for their obvious dedication to the welfare of the Society. In addition. I welcome the privilege of expressing my sincere appreciation to the membership of The Mycological Society of America for al- lowing me to serve them as President and Secretary-Treasurer of the Society. It has been a long and rewarding association. Finally, it is with great pleasure and gratitude that I dedicate this lecture to Dr. Alexander H. Smith, Emeritus Professor of Botany at the University of Michigan, who, over thirty years ago in a moment of weakness, agreed to accept me as a graduate student and who has spent a good portion of the ensuing years patiently explaining to me the intricacies, inconsis- tencies and attributes of the higher fungi. Thank you, Alex, for the invaluable experience and privilege of spending so many delightful and profitable hours with you. The purpose of this lecture is to explore the possible relationships between the gill fungi and the secotioid fungi, both epigeous and hypogeous, and to present a hypothesis regarding the direction of their evolution. Earlier studies on the secotioid fungi have been made by Harkness (I), Zeller (13). Zeller and Dodge (14, 15), Singer (2), Smith (5.
    [Show full text]
  • Forest Fungi in Ireland
    FOREST FUNGI IN IRELAND PAUL DOWDING and LOUIS SMITH COFORD, National Council for Forest Research and Development Arena House Arena Road Sandyford Dublin 18 Ireland Tel: + 353 1 2130725 Fax: + 353 1 2130611 © COFORD 2008 First published in 2008 by COFORD, National Council for Forest Research and Development, Dublin, Ireland. All rights reserved. No part of this publication may be reproduced, or stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying recording or otherwise, without prior permission in writing from COFORD. All photographs and illustrations are the copyright of the authors unless otherwise indicated. ISBN 1 902696 62 X Title: Forest fungi in Ireland. Authors: Paul Dowding and Louis Smith Citation: Dowding, P. and Smith, L. 2008. Forest fungi in Ireland. COFORD, Dublin. The views and opinions expressed in this publication belong to the authors alone and do not necessarily reflect those of COFORD. i CONTENTS Foreword..................................................................................................................v Réamhfhocal...........................................................................................................vi Preface ....................................................................................................................vii Réamhrá................................................................................................................viii Acknowledgements...............................................................................................ix
    [Show full text]
  • Chapter 2 Literature Review
    CHAPTER 2 LITERATURE REVIEW 2.1. BASIDIOMYCOTA (MACROFUNGI) Representatives of the fungi sensu stricto include four phyla: Ascomycota, Basidiomycota, Chytridiomycota and Zygomycota (McLaughlin et al., 2001; Seifert and Gams, 2001). Chytridiomycota and Zygomycota are described as lower fungi. They are characterized by vegetative mycelium with no septa, complete septa are only found in reproductive structures. Asexual and sexual reproductions are by sporangia and zygospore formation respectively. Ascomycota and Basidiomycota are higher fungi and have a more complex mycelium with elaborate, perforate septa. Members of Ascomycota produce sexual ascospores in sac-shaped cells (asci) while fungi in Basidiomycota produce sexual basidiospores on club-shaped basidia in complex fruit bodies. Anamorphic fungi are anamorphs of Ascomycota and Basidiomycota and usually produce asexual conidia (Nicklin et al., 1999; Kirk et al., 2001). The Basidiomycota contains about 30,000 described species, which is 37% of the described species of true Fungi (Kirk et al., 2001). They have a huge impact on human affairs and ecosystem functioning. Many Basidiomycota obtain nutrition by decaying dead organic matter, including wood and leaf litter. Thus, Basidiomycota play a significant role in the carbon cycle. Unfortunately, Basidiomycota frequently 5 attack the wood in buildings and other structures, which has negative economic consequences for humans. 2.1.1 LIFE CYCLE OF MUSHROOM (BASIDIOMYCOTA) The life cycle of mushroom (Figure 2.1) is beginning at the site of meiosis. The basidium is the cell in which karyogamy (nuclear fusion) and meiosis occur, and on which haploid basidiospores are formed (basidia are not produced by asexual Basidiomycota). Mushroom produce basidia on multicellular fruiting bodies.
    [Show full text]
  • Chemical Elements in Ascomycetes and Basidiomycetes
    Chemical elements in Ascomycetes and Basidiomycetes The reference mushrooms as instruments for investigating bioindication and biodiversity Roberto Cenci, Luigi Cocchi, Orlando Petrini, Fabrizio Sena, Carmine Siniscalco, Luciano Vescovi Editors: R. M. Cenci and F. Sena EUR 24415 EN 2011 1 The mission of the JRC-IES is to provide scientific-technical support to the European Union’s policies for the protection and sustainable development of the European and global environment. European Commission Joint Research Centre Institute for Environment and Sustainability Via E.Fermi, 2749 I-21027 Ispra (VA) Italy Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC Catalogue number: LB-NA-24415-EN-C Editors: R. M. Cenci and F. Sena JRC65050 EUR 24415 EN ISBN 978-92-79-20395-4 ISSN 1018-5593 doi:10.2788/22228 Luxembourg: Publications Office of the European Union Translation: Dr. Luca Umidi © European Union, 2011 Reproduction is authorised provided the source is acknowledged Printed in Italy 2 Attached to this document is a CD containing: • A PDF copy of this document • Information regarding the soil and mushroom sampling site locations • Analytical data (ca, 300,000) on total samples of soils and mushrooms analysed (ca, 10,000) • The descriptive statistics for all genera and species analysed • Maps showing the distribution of concentrations of inorganic elements in mushrooms • Maps showing the distribution of concentrations of inorganic elements in soils 3 Contact information: Address: Roberto M.
    [Show full text]
  • Toxic Fungi of Western North America
    Toxic Fungi of Western North America by Thomas J. Duffy, MD Published by MykoWeb (www.mykoweb.com) March, 2008 (Web) August, 2008 (PDF) 2 Toxic Fungi of Western North America Copyright © 2008 by Thomas J. Duffy & Michael G. Wood Toxic Fungi of Western North America 3 Contents Introductory Material ........................................................................................... 7 Dedication ............................................................................................................... 7 Preface .................................................................................................................... 7 Acknowledgements ................................................................................................. 7 An Introduction to Mushrooms & Mushroom Poisoning .............................. 9 Introduction and collection of specimens .............................................................. 9 General overview of mushroom poisonings ......................................................... 10 Ecology and general anatomy of fungi ................................................................ 11 Description and habitat of Amanita phalloides and Amanita ocreata .............. 14 History of Amanita ocreata and Amanita phalloides in the West ..................... 18 The classical history of Amanita phalloides and related species ....................... 20 Mushroom poisoning case registry ...................................................................... 21 “Look-Alike” mushrooms .....................................................................................
    [Show full text]
  • Trail Key to Common Agaricus Species of the Central California Coast
    Trial Key to Common Agaricus Species of the Central California Coast* By Fred Stevens A. Cap and stipe lacking color changes when cut or bruised, odors not distinctive; not yellowing with KOH (3% potassium hydroxide). Also keyed out here are three species with faint or atypical color reactions: Agaricus hondensis and A. californicus which yellow faintly when bruised or with KOH, and Agaricus subrutilescens, which has a cap context that turns greenish with KOH. ......................Key A AA. Cap and stipe flesh reddening or yellowing when bruised or injured, the yellowing reaction enhanced with KOH; odors variable from that of anise, phenol, brine, to that of “mushrooms.” ........ B B. Cap and stipe context reddish-brown, orange-brown to pinkish- brown when cut or injured; not yellowing in KOH with one exception: the cap and context of Agaricus arorae, turns pinkish-brown when cut, but also yellows faintly with KOH, this species is also keyed out here. ...Key B BB. Cap and stipe yellowing when bruised, either rapidly or slowly; yellowing also with KOH; odor either pleasant of anise or almonds, or unpleasant, like that of phenol ............................... C C. Cap margin and/or stipe base yellowing rapidly when bruised, but soon fading; odor unpleasant, phenolic or like that of library paste; yellowing reaction enhanced with KOH, but not strong in Agaricus hondensis and A. californicus; .........................Key C CC. Cap and stipe yellowing slowly when bruised, the color change persistent; odor pleasant: of anise, almonds, or “old baked goods;” also yellowing with KOH; .............................. Key D 1 Key A – Species lacking obvious color changes and distinctive odors A.
    [Show full text]
  • Welsh Dune Fungi: Data Collation, Evaluation and Conservation Priorities
    Welsh Dune Fungi: Data Collation, Evaluation and Conservation Priorities S.E. Evans & P.J. Roberts Evidence Report No 134 About Natural Resources Wales Natural Resources Wales is the organisation responsible for the work carried out by the three former organisations, the Countryside Council for Wales, Environment Agency Wales and Forestry Commission Wales. It is also responsible for some functions previously undertaken by Welsh Government. Our purpose is to ensure that the natural resources of Wales are sustainably maintained, used and enhanced, now and in the future. We work for the communities of Wales to protect people and their homes as much as possible from environmental incidents like flooding and pollution. We provide opportunities for people to learn, use and benefit from Wales' natural resources. We work to support Wales' economy by enabling the sustainable use of natural resources to support jobs and enterprise. We help businesses and developers to understand and consider environmental limits when they make important decisions. We work to maintain and improve the quality of the environment for everyone and we work towards making the environment and our natural resources more resilient to climate change and other pressures. Page 2 of 57 www.naturalresourceswales.gov.uk Evidence at Natural Resources Wales Natural Resources Wales is an evidence based organisation. We seek to ensure that our strategy, decisions, operations and advice to Welsh Government and others are underpinned by sound and quality-assured evidence. We recognise that it is critically important to have a good understanding of our changing environment. We will realise this vision by: Maintaining and developing the technical specialist skills of our staff; Securing our data and information; Having a well resourced proactive programme of evidence work; Continuing to review and add to our evidence to ensure it is fit for the challenges facing us; and Communicating our evidence in an open and transparent way.
    [Show full text]
  • AR TICLE New Sequestrate Fungi from Guyana: Jimtrappea Guyanensis
    IMA FUNGUS · 6(2): 297–317 (2015) doi:10.5598/imafungus.2015.06.02.03 New sequestrate fungi from Guyana: Jimtrappea guyanensis gen. sp. nov., ARTICLE Castellanea pakaraimophila gen. sp. nov., and Costatisporus cyanescens gen. sp. nov. (Boletaceae, Boletales) Matthew E. Smith1, Kevin R. Amses2, Todd F. Elliott3, Keisuke Obase1, M. Catherine Aime4, and Terry W. Henkel2 1Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA 2Department of Biological Sciences, Humboldt State University, Arcata, CA 95521, USA; corresponding author email: Terry.Henkel@humboldt. edu 3Department of Integrative Studies, Warren Wilson College, Asheville, NC 28815, USA 4Department of Botany & Plant Pathology, Purdue University, West Lafayette, IN 47907, USA Abstract: Jimtrappea guyanensis gen. sp. nov., Castellanea pakaraimophila gen. sp. nov., and Costatisporus Key words: cyanescens gen. sp. nov. are described as new to science. These sequestrate, hypogeous fungi were collected Boletineae in Guyana under closed canopy tropical forests in association with ectomycorrhizal (ECM) host tree genera Caesalpinioideae Dicymbe (Fabaceae subfam. Caesalpinioideae), Aldina (Fabaceae subfam. Papilionoideae), and Pakaraimaea Dipterocarpaceae (Dipterocarpaceae). Molecular data place these fungi in Boletaceae (Boletales, Agaricomycetes, Basidiomycota) ectomycorrhizal fungi and inform their relationships to other known epigeous and sequestrate taxa within that family. Macro- and gasteroid fungi micromorphological characters, habitat, and multi-locus DNA sequence data are provided for each new taxon. Guiana Shield Unique morphological features and a molecular phylogenetic analysis of 185 taxa across the order Boletales justify the recognition of the three new genera. Article info: Submitted: 31 May 2015; Accepted: 19 September 2015; Published: 2 October 2015. INTRODUCTION 2010, Gube & Dorfelt 2012, Lebel & Syme 2012, Ge & Smith 2013).
    [Show full text]
  • Boletaceae), First Report of a Red-Pored Bolete
    A peer-reviewed open-access journal MycoKeys 49: 73–97Neoboletus (2019) antillanus sp. nov. (Boletaceae), first report of a red-pored bolete... 73 doi: 10.3897/mycokeys.49.33185 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Neoboletus antillanus sp. nov. (Boletaceae), first report of a red-pored bolete from the Dominican Republic and insights on the genus Neoboletus Matteo Gelardi1, Claudio Angelini2,3, Federica Costanzo1, Francesco Dovana4, Beatriz Ortiz-Santana5, Alfredo Vizzini4 1 Via Angelo Custode 4A, I-00061 Anguillara Sabazia, RM, Italy 2 Via Cappuccini 78/8, I-33170 Pordenone, Italy 3 National Botanical Garden of Santo Domingo, Santo Domingo, Dominican Republic 4 Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, I-10125 Torino, Italy 5 US Forest Service, Northern Research Station, Center for Forest Mycology Research, One Gifford Pinchot Drive, Madison, Wisconsin 53726, USA Corresponding author: Alfredo Vizzini ([email protected]) Academic editor: M.P. Martín | Received 18 January 2019 | Accepted 12 March 2019 | Published 29 March 2019 Citation: Gelardi M, Angelini C, Costanzo F, Dovana F, Ortiz-Santana B, Vizzini A (2019) Neoboletus antillanus sp. nov. (Boletaceae), first report of a red-pored bolete from the Dominican Republic and insights on the genus Neoboletus. MycoKeys 49: 73–97. https://doi.org/10.3897/mycokeys.49.33185 Abstract Neoboletus antillanus sp. nov. appears to be the only red-pored bolete known from the Dominican Repub- lic to date. It is reported as a novel species to science based on collections gathered in a neotropical lowland mixed broadleaved woodland.
    [Show full text]
  • MUSHROOMS of the OTTAWA NATIONAL FOREST Compiled By
    MUSHROOMS OF THE OTTAWA NATIONAL FOREST Compiled by Dana L. Richter, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI for Ottawa National Forest, Ironwood, MI March, 2011 Introduction There are many thousands of fungi in the Ottawa National Forest filling every possible niche imaginable. A remarkable feature of the fungi is that they are ubiquitous! The mushroom is the large spore-producing structure made by certain fungi. Only a relatively small number of all the fungi in the Ottawa forest ecosystem make mushrooms. Some are distinctive and easily identifiable, while others are cryptic and require microscopic and chemical analyses to accurately name. This is a list of some of the most common and obvious mushrooms that can be found in the Ottawa National Forest, including a few that are uncommon or relatively rare. The mushrooms considered here are within the phyla Ascomycetes – the morel and cup fungi, and Basidiomycetes – the toadstool and shelf-like fungi. There are perhaps 2000 to 3000 mushrooms in the Ottawa, and this is simply a guess, since many species have yet to be discovered or named. This number is based on lists of fungi compiled in areas such as the Huron Mountains of northern Michigan (Richter 2008) and in the state of Wisconsin (Parker 2006). The list contains 227 species from several authoritative sources and from the author’s experience teaching, studying and collecting mushrooms in the northern Great Lakes States for the past thirty years. Although comments on edibility of certain species are given, the author neither endorses nor encourages the eating of wild mushrooms except with extreme caution and with the awareness that some mushrooms may cause life-threatening illness or even death.
    [Show full text]