Rethinking Innovation in Industrial Manufacturing Are You up for the Challenge?

Total Page:16

File Type:pdf, Size:1020Kb

Rethinking Innovation in Industrial Manufacturing Are You up for the Challenge? Rethinking innovation in industrial manufacturing Are you up for the challenge? www.pwc.com/innovationsurvey In our work with industrial manufacturing clients, we see the critical impact of innovation up close every day. It’s one sector where innovation has a dramatic Foreword impact on not just the bottom line of individual companies, but also on the productivity of entire sectors like mining, construction or agriculture. And it has a dramatic impact on company competitiveness. The most innovative manufacturing companies managed a 38% increase in revenues over the past three years. That’s nearly four times the rate of growth of the least innovative companies in the sector. Most of our industrial manufacturing clients already recognise the importance of innovation. But they’re not always getting the benefits they could be from their investments. That’s where this paper comes in. It’s not easy to build a strong innovative culture, but the payoffs are high for those companies that succeed. Perhaps some of the biggest challenges for industrial manufacturing companies lie in finding the right talent, pursuing the right partners and getting the right metrics in place to measure innovation progress. Barry Misthal [email protected] In this report we look at these challenges and urge you to start asking yourself some key questions to sharpen the innovation focus at your company. Barry Misthal Steve Eddy Global Industrial Global Industrial Manufacturing Leader Manufacturing Advisory Leader Steve Eddy [email protected] Contents Industrial manufacturing needs innovation to spur growth 3 Starting with a solid strategy 5 Balancing the innovation portfolio 8 Focusing on culture and talent 12 Expanding collaboration 15 Measuring success 18 Where next for your business? 19 Want to find out more? 20 PwC’s Global Innovation Survey 2013: Industrial manufacturing perspectives 1 About this report 249 Executives from Rethinking innovation in industrial To find the answers we drew on insights the industrial manufacturing: are you up to the from interviews with 1,757 C-suite and manufacturing challenge?, is a companion paper to executive-level respondents across more industry respondents PwC’s thorough survey report on than 25 countries and 30 industries innovation, Breakthrough innovation who are responsible for overseeing From 20 and growth. It explores the impact that innovation within their company. Our countries innovation has on growth and examines sample included 249 executives from the how leading companies are making industrial manufacturing industry from 20 innovation work for their organisations. 20 countries. Their responses form the Breakthrough innovation and growth basis for this companion paper. explores three key questions: Rethinking innovation in industrial How are companies using manufacturing shows why industrial innovation to drive growth manufacturing executives should take 1 and what is the return on a fresh look at their innovation strategy. this investment? To lead on innovation, manufacturers need to broaden their innovation efforts How are approaches to beyond products, focus on a strong innovation changing, culture to attract and motivate talent, 2 particularly in light of a enhance collaboration and look for trend towards more meaningful ways to measure innovation disciplined innovation? success. What are the leading practices and critical success factors 3 that deliver tangible business results? 2 Rethinking innovation in industrial manufacturing Industrial manufacturing needs innovation to spur growth PwC’s Global Innovation Survey 2013: Industrial manufacturing perspectives 3 The most innovative companies overall are growing significantly faster than the least innovative In past years, the general public hasn’t often seen machinery and 38% 10% equipment makers as leading innovators. And yet, over the years, innovation in industrial manufacturing has had an enormous impact on society. Agricultural equipment has 20% most 20% least made farming vastly more efficient. innovative companies innovative companies Automation has transformed factory (11.3% year-on-year) (3.2% year-on-year) floors and made it cheaper and faster to produce everything from cars to TV’s. is dramatic. The sector’s most Why does making And now new technologies for wind innovative companies grew 38% innovation a priority have turbines and electrical grids are forming over the last three years—nearly such a major impact? the foundation for a shift to cleaner 12% per year—while the least The answer is simple: top innovators sources of energy. innovative managed just 10% growth are getting three times as many over the same period. revenues from new products or services. In our research across industries, The least innovative group of industrial we’ve found a clear correlation between Looking forward, the sector’s top manufacturing companies only innovation and success in growing innovators have somewhat more generated 7.1% of their revenues from revenues. In Breakthrough innovation modest expectations, but they’re still new products and services launched in and growth, we report that the most targeting annual growth of 6.9%, while the last year, while the top innovators innovative companies overall are the least innovative companies expect managed a revenue boost of 22.8%. growing significantly faster than the to manage just 3.6%. Over the course least innovative. The difference for of five years, that will create a major Most industrial manufacturing industrial manufacturing companies gap (see Figure 1). executives expect that they’ll need to generate the majority of their growth Figure 1: IM’s top innovators expect to significantly outperform the rest organically going forward. While global over the next five years expansion was the biggest driver of What is your company’s annual revenue? What do you forecast your annual revenue growth for many over the past decades, will be in five years’ time? our research shows that the tide is turning and innovation now tops the 145 list. Are manufacturers up to the task? 39.8% 140 To meet their growth targets and start to catch up with the top innovators, 135 we believe industrial manufacturing 130 executives will need to define or refine 26.6% a solid innovation strategy, balance 125 their innovation portfolio, make sure 19.6% 120 they can attract and keep top talent, enhance collaboration (including public/ 115 private sector initiatives) and accurately measure what they’re getting from their 110 innovation investment. 105 100 Year 1 Year 2 Year 3 Year 4 Year 5 All IM companies 20% most innovative IM 20% least innovative IM Source: PwC, Breakthrough Innovation and Growth Base: Industrial manufacturing, 249; most innovative 20% of industrial manufacturing respondents, 46; least innovative 20% of industrial manufacturing respondents, 57 4 Rethinking innovation in industrial manufacturing Starting with a solid strategy PwC’s Global Innovation Survey 2013: Industrial manufacturing perspectives 5 92% Ninety-two percent of industrial manufacturing executives say innovation is important to future revenue growth. Figure 2: Industrial manufacturing executives view innovation as vital to future success Most of our industrial How important is innovation to the success of your company now? manufacturing respondents say innovation is important to their business (see Figure 2). And more than half Not at all important believe it’s a competitive necessity for future success. That’s higher than the Unimportant average across industries. Neither important But while 92% of industrial nor unimportant manufacturing executives say innovation is important to future Quite important revenue growth, only two-thirds of executives across the sector Very important— believe their companies already have a competitive necessity a well-defined innovation strategy. 0% 10% 20% 30% 40% 50% 60% Here, too, the difference between top Now in 5 years time innovators and laggards is dramatic (see Figure 3). That’s a serious gap Source: PwC, Breakthrough Innovation and Growth Base: Industrial Manufacturing, 249 with major implications for execution. Without a clear vision, innovation efforts aren’t likely to take off. Figure 3: Innovation leaders’ edge in strategy translates into better execution too How important is innovation to the success of your company now? And your innovation roadmap should take into account some of 100% the major trends that are re-shaping 85% the marketplace. New technologies 80% 74% like additive manufacturing and the emergence of the ‘industrial internet’ 60% 49% (or ‘Internet 4.0’) may have a significant 46% impact on the direction of innovation 40% efforts. And the changing business environment is important. Companies 20% that ignore these factors are likely to find their revenues shrinking while 0% more innovative competitors take a Our company has well-defined We have successfully implemented innovation strategy our innovation strategy thus far larger slice of the pie. 6 Rethinking innovation in industrial manufacturing If your company doesn’t yet have a focused, robust innovation strategy, it’s time to define one. And even if you’re confident in your vision, it’s important to keep evaluating what’s working and what’s not. Sticking with the status quo is a sure way to fall behind the competition. We’ve identified some fundamental questions industrial manufacturing executives need to ask themselves when taking a closer look at their company’s innovation vision: Where are we now, and where Are we collaborating
Recommended publications
  • Manufacturing
    Best Practices for Businesses to Reopen MANUFACTURING • Face coverings are encouraged but not required if an employee can isolate or separate their work area, either by PREPARE THE closing doors or using other physical PREPARE THE barriers to maintain six foot distance BUILDING from other individuals at all times, WORKFORCE • Zone the factory floor and encourage including individuals in adjacent • Train employees in current COVID-19 employees to remain in their cubicles or hallways. health and workplace guidelines designated area to the extent possible. to include procedures for social • Even when practicing social distancing, distancing, timeclock usage, use • Place partitions such as plexiglass to masks or face coverings must be worn when walking through hallways or of common areas, disinfecting separate people that work together in expectations and proper PPE usage. the production process. when two or more people are together in a space such as an office, conference Training should be included in daily • Increase ventilation rates and the room, or restroom. safety meetings to frequently remind percentage of outdoor air that employees and employers of their circulates into the system. • Face coverings are not required if responsibilities. wearing a face covering would subject • Assemble a team whose the person to an unsafe working • Offer teleworking where appropriate. responsibilities include implementing condition, as determined by federal, Give employees flexibility regarding and monitoring guidelines provided by state, or local occupational safety returning to the factory / office. the CDC, OSHA, the State, and by the regulators or workplace guidelines. For • Implement a daily screening process company. exceptions to this requirement, please for workers and other personnel which see the latest .
    [Show full text]
  • Manufacturing Engineering Technology
    MANUFACTURING ENGINEERING TECHNOLOGY “Modern manufacturing activities have become exceedingly complex because of rapidly increasing technology. This has increased the demand for highly skilled manufacturing technologists, engineers, and managers.” – Society of Manufacturing Engineers Manufacturers in the United States account for 12.5% of the total economic output employing almost 9% of the nation’s workforce. (National Association of Manufacturers, 2015) DEGREE Top 3 Reasons to Choose BACHELOR OF SCIENCE (B.S.) Manufacturing Engineering Technology (MFET) Manufacturing Engineering Students in the major are introduced to the fundamentals of Technology engineering, materials, and production processes used within industry. AT MILLERSVILLE UNIVERSITY The program provides in-depth technical content in advanced manufacturing with an emphasis on automated manufacturing and 1. Despite misconceptions that “manufacturing is dead” or computer integrated manufacturing. Students to design, develop, and that “all manufacturing has moved overseas” the National construct projects in laboratory-based courses. Technologies Network for Manufacturing Innovation (commonly commonly used in industry are emphasized throughout the curriculum. known as Manufacturing USA) estimates that the Seniors are encouraged to participate in a cooperative education or manufacturing workforce employs approximately 12 internship experience to further enhance their knowledge in technical million people nationwide. areas within an industrial environment. 2. Manufacturers in Pennsylvania
    [Show full text]
  • Review of Innovation Practices in Small Manufacturing Companies
    Review of Innovation Practices in Small Manufacturing Companies Anthony Warren and Gerald Susman Smeal College of Business The Pennsylvania State University With the assistance of Jonathan Butz Anupam Jaiswal Prashant Jhaveri Tolga Sakman Prepared for National Institute of Standards and Technology United States Department of Commerce Table of Contents Executive Summary......................................................................................................................5 1. Background..........................................................................................................................9 2. Definition of Innovation As Applied to This Project.........................................................14 3. Models of Innovation.........................................................................................................15 4. Taxonomy Derived by Testing Factors Related to Innovation Success ............................17 4.1 Development of Primary Categories and Key Factors .............................................17 4.2 Research Methodology .............................................................................................21 4.3 Results.......................................................................................................................22 5. Support for Factors Included in the Empirically Derived Taxonomy ...............................27 5.1 Manufacturing OR Service? .....................................................................................27 5.2 The Role
    [Show full text]
  • Understanding Imaging and Metrology with the Helium Ion Microscope
    Understanding Imaging and Metrology with the Helium Ion Microscope Michael T. Postek, Andras E. Vladar and Bin Ming National Institute of Standards and Technology Frontiers of Characterization and Metrology for Nanoelectronics CNSE University at Albany May 11-14, 2009 Disclaimer • Certain commercial equipment is identified in this report to adequately describe the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the equipment identified is necessarily the best available for the purpose Nanoelectronics Manufacturing • The helium ion microscope is an exciting new technology for nanotechnology and nanomanufacturing. – Initially, appears straightforward – But, much must be understood • Especially to obtain meaningful quantitative information. • The NIST Manufacturing Engineering Laboratory (MEL) has supported “nanomanufacturing” through the development of measurements and standards since about 1999. • Semiconductor manufacturing is “nanomanufacturing” and MEL has supported SEMATECH since its inception • New magnification calibration sample Nanoelectronics Manufacturing • Development of successful nanomanufacturing is the key link between scientific discovery and commercial products • Revolutionize and possibly revitalize many industries and yield many new high-tech products • Without high-quality imaging, accurate measurements and standards at the sub- nanometer scale, nanomanufacturing cannot succeed Imaging and Measurements
    [Show full text]
  • Manufacturing Activities During the Covid-19 Public Health Emergency
    INTERIM GUIDANCE FOR MANUFACTURING ACTIVITIES DURING THE COVID-19 PUBLIC HEALTH EMERGENCY When you have read this document, you can affirm at the bottom. As of June 26, 2020 Purpose This Interim Guidance for Manufacturing Activities during the COVID-19 Public Health Emergency (“Interim COVID-19 Guidance for Manufacturing”) was created to provide owners/operators of manufacturing sites and their employees and contractors with precautions to help protect against the spread of COVID-19 as manufacturing sites reopen. These guidelines are minimum requirements only and any employer is free to provide additional precautions or increased restrictions. These guidelines are based on the best-known public health practices at the time of Phase I of the State’s reopening, and the documentation upon which these guidelines are based can and does change frequently. The Responsible Parties – as defined below – are accountable for adhering to all local, state and federal requirements relative to manufacturing activities. The Responsible Parties are also accountable for staying current with any updates to these requirements, as well as incorporating same into any manufacturing activities and/or Site Safety Plan. Background On March 7, 2020, Governor Andrew M. Cuomo issued Executive Order 202, declaring a state of emergency in response to COVID-19. Community transmission of COVID-19 has occurred throughout New York. To minimize further spread, social distancing of at least six feet must be maintained between individuals, where possible. On March 20, 2020, Governor Cuomo issued Executive Order 202.6, directing all non-essential businesses to close in-office personnel functions. Essential businesses, as defined by Empire State Development Corporation (ESD) guidance, were not subject to the in-person restriction, but were, however, directed to comply with the guidance and directives for maintaining a clean and safe work environment issued by the New York State Department of Health (DOH), and were strongly urged to maintain social distancing measures to the extent possible.
    [Show full text]
  • Productivity and Costs by Industry: Manufacturing and Mining
    For release 10:00 a.m. (ET) Thursday, April 29, 2021 USDL-21-0725 Technical information: (202) 691-5606 • [email protected] • www.bls.gov/lpc Media contact: (202) 691-5902 • [email protected] PRODUCTIVITY AND COSTS BY INDUSTRY MANUFACTURING AND MINING INDUSTRIES – 2020 Labor productivity rose in 41 of the 86 NAICS four-digit manufacturing industries in 2020, the U.S. Bureau of Labor Statistics reported today. The footwear industry had the largest productivity gain with an increase of 14.5 percent. (See chart 1.) Three out of the four industries in the mining sector posted productivity declines in 2020, with the greatest decline occurring in the metal ore mining industry with a decrease of 6.7 percent. Although more mining and manufacturing industries recorded productivity gains in 2020 than 2019, declines in both output and hours worked were widespread. Output fell in over 90 percent of detailed industries in 2020 and 87 percent had declines in hours worked. Seventy-two industries had declines in both output and hours worked in 2020. This was the greatest number of such industries since 2009. Within this set of industries, 35 had increasing labor productivity. Chart 1. Manufacturing and mining industries with the largest change in productivity, 2020 (NAICS 4-digit industries) Output Percent Change 15 Note: Bubble size represents industry employment. Value in the bubble Seafood product 10 indicates percent change in labor preparation and productivity. Sawmills and wood packaging preservation 10.7 5 Animal food Footwear 14.5 0 12.2 Computer and peripheral equipment -9.6 9.9 -5 Cut and sew apparel Communications equipment -9.5 12.7 Textile and fabric -10 10.4 finishing mills Turbine and power -11.0 -15 transmission equipment -10.1 -20 -9.9 Rubber products -14.7 -25 Office furniture and Motor vehicle parts fixtures -30 -30 -25 -20 -15 -10 -5 0 5 10 15 Hours Worked Percent Change Change in productivity is approximately equal to the change in output minus the change in hours worked.
    [Show full text]
  • Microscope Innovation Issue Fall 2020
    Masks • COVID-19 Testing • PAPR Fall 2020 CHIhealth.com The Innovation Issue “Armor” invention protects test providers 3D printing boosts PPE supplies CHI Health Physician Journal WHAT’S INSIDE Vol. 4, Issue 1 – Fall 2020 microscope is a journal published by CHI Health Marketing and Communications. Content from the journal may be found at CHIhealth.com/microscope. SUPPORTING COMMUNITIES Marketing and Communications Tina Ames Division Vice President Making High-Quality Masks 2 for the Masses Public Relations Mary Williams CHI Health took a proactive approach to protecting the community by Division Director creating and handing out thousands of reusable facemasks which were tested to ensure they were just as effective after being washed. Editorial Team Sonja Carberry Editor TACKLING CHALLENGES Julie Lingbloom Graphic Designer 3D Printing Team Helps Keep Taylor Barth Writer/Associate Editor 4 PAPRs in Use Jami Crawford Writer/Associate Editor When parts of Powered Air Purifying Respirators (PAPRS) were breaking, Anissa Paitz and reordering proved nearly impossible, a team of creators stepped in with a Writer/Associate Editor workable prototype that could be easily produced. Photography SHARING RESOURCES Andrew Jackson Grassroots Effort Helps Shield 6 Nebraska from COVID-19 About CHI Health When community group PPE for NE decided to make face shields for health care providers, CHI Health supplied 12,000 PVC sheets for shields and CHI Health is a regional health network headquartered in Omaha, Nebraska. The 119 kg of filament to support their efforts. combined organization consists of 14 hospitals, two stand-alone behavioral health facilities, more than 150 employed physician ADVANCING CAPABILITIES practice locations and more than 12,000 employees in Nebraska and southwestern Iowa.
    [Show full text]
  • The Making of Hollywood Production: Televising and Visualizing Global Filmmaking in 1960S Promotional Featurettes
    The Making of Hollywood Production: Televising and Visualizing Global Filmmaking in 1960s Promotional Featurettes by DANIEL STEINHART Abstract: Before making-of documentaries became a regular part of home-video special features, 1960s promotional featurettes brought the public a behind-the-scenes look at Hollywood’s production process. Based on historical evidence, this article explores the changes in Hollywood promotions when studios broadcasted these featurettes on television to market theatrical films and contracted out promotional campaigns to boutique advertising agencies. The making-of form matured in the 1960s as featurettes helped solidify some enduring conventions about the portrayal of filmmaking. Ultimately, featurettes serve as important paratexts for understanding how Hollywood’s global production work was promoted during a time of industry transition. aking-of documentaries have long made Hollywood’s flm production pro- cess visible to the public. Before becoming a staple of DVD and Blu-ray spe- M cial features, early forms of making-ofs gave audiences a view of the inner workings of Hollywood flmmaking and movie companies. Shortly after its formation, 20th Century-Fox produced in 1936 a flmed studio tour that exhibited the company’s diferent departments on the studio lot, a key feature of Hollywood’s detailed division of labor. Even as studio-tour short subjects became less common because of the restructuring of studio operations after the 1948 antitrust Paramount Case, long-form trailers still conveyed behind-the-scenes information. In a trailer for The Ten Commandments (1956), director Cecil B. DeMille speaks from a library set and discusses the importance of foreign location shooting, recounting how he shot the flm in the actual Egyptian locales where Moses once walked (see Figure 1).
    [Show full text]
  • Scanning Tunneling Microscope Control System for Atomically
    Innovations in Scanning Tunneling Microscope Control Systems for This project will develop a microelectromechanical system (MEMS) platform technology for scanning probe microscope-based, high-speed atomic scale High-throughput fabrication. Initially, it will be used to speed up, by more than 1000 times, today’s Atomically Precise single tip hydrogen depassivation lithography (HDL), enabling commercial fabrication of 2D atomically precise nanoscale devices. Ultimately, it could be used to fabricate Manufacturing 3D atomically precise materials, features, and devices. Graphic image courtesy of University of Texas at Dallas and Zyvex Labs Atomically precise manufacturing (APM) is an emerging disruptive technology precision movement in three dimensions mechanosynthesis (i.e., moving single that could dramatically reduce energy are also needed for the required accuracy atoms mechanically to control chemical and coordination between the multiple reactions) of three dimensional (3D) use and increase performance of STM tips. By dramatically improving the devices and for subsequent positional materials, structures, devices, and geometry and control of STMs, they can assembly of nanoscale building blocks. finished goods. Using APM, every atom become a platform technology for APM and deliver atomic-level control. First, is at its specified location relative Benefits for Our Industry and an array of micro-machined STMs that Our Nation to the other atoms—there are no can work in parallel for high-speed and defects, missing atoms, extra atoms, high-throughput imaging and positional This APM platform technology will accelerate the development of tools and or incorrect (impurity) atoms. Like other assembly will be designed and built. The system will utilize feedback-controlled processes for manufacturing materials disruptive technologies, APM will first microelectromechanical system (MEMS) and products that offer new functional be commercialized in early premium functioning as independent STMs that can qualities and ultra-high performance.
    [Show full text]
  • Aerospace Manufacturing a Growth Leader in Georgia
    Aerospace Manufacturing A Growth Leader in Georgia In this study: 9. Research Universities 10. GTRI and GTMI 1. Industry Snapshot 11. High-Tech Talent 3. A Top Growth Leader 12. Centers of Innovation 4. Industry Mix 13. World-Class Training Programs 6. Industry Wages and Occupational 15. Strong Partnerships and Ready Workforce Employment 16. Transportation Infrastructure 7. Pro-Business State 17. Powering Your Manufacturing Facility Community and Economic Development 8. Unionization 18. Aerospace Companies Aerospace Manufacturing A Growth Leader in Georgia Aerospace is defined as Aerospace Products and Parts Manufacturing as well as Other Support Activities for Air Transportation. Aerospace Georgia is the ideal home for aerospace include Pratt & Whitney’s expansion in companies with ¨¦§75 ¨¦§575 25+ employees companies. With the world’s most traveled Columbus in both 2016 and 2017, Meggitt «¬400 ¨¦§85 ¨¦§985 airport, eight regional airports, prominent Polymers & Composites’ expansion in military bases and accessibility to the Rockmart and MSB Group’s location in ¨¦§20 ¨¦§20 country’s fastest-growing major port, Savannah. For a complete list of new major ¨¦§85 Georgia’s aerospace industry serves a locations and expansions, see page 2. ¨¦§185 global marketplace. Georgia is also home to a highly-skilled workforce and world- ¨¦§16 Why Georgia for Aerospace? class technical expertise geared toward promoting the success of the aerospace • Highly skilled workers ¨¦§75 ¨¦§95 industry. Georgia’s business climate is • World-class technical expertise consistently ranked as one of the best • Renowned workforce training program in the country, with a business-friendly tax code and incentives that encourage • Increasing number of defense manufacturing growth for existing and personnel newly arriving companies.
    [Show full text]
  • The Relationship Between Innovation and Tourism: the Case of Smart Tourism
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 23 (2017) pp. 13861-13867 © Research India Publications. http://www.ripublication.com The Relationship between Innovation and Tourism: The Case of Smart Tourism Dr. Demet Tüzünkan Assistant Professor Woosong College Sol International Hotel & Foodservice Department. 171, Dongdaejeon-ro, Dong-gu, Daejeon, Korea, 34606. 0000-0003-0440-294X Abstract Innovation can be an idea, practice, process, or product that turns a problem-solving idea into practice (Ottenbacher and Innovation, derived from the Latin word "innovatus", means Gnoth, 2005: 206). Indeed, Drucker considers innovation as to turn an idea into a product that can be sold or developed an opportunity (Sipe and Testa, 2009: 2). Therefore, (goods or services) (TÜSİAD, 2003:53). Innovation means to innovation is not just a concept for concrete products, but also start using new methods in the social, cultural and for businesses that provide services to customers, such as administrative environment and it is covered with words such restaurant or hotel management. as renovation or renewal. However, the meaning of innovation is too broad to be expressed in a single word. According to the In today's increasingly competitive environment, scientists, Oslo Guide, innovation is the implementation of a new or researchers and practitioners focus on the necessity and significantly improved product (good or service), or process, a importance of innovation to achieve sustainable competitive new marketing method, or a new organizational method in advantage and focus on improving products, processes, business practices, workplace organization or external techniques or procedures and constantly changing their relations and thus transforming it into economic and social managerial understandings (Oerlemans, Buys and Pretorius, benefits (Demirkaya ve Zengin, 2014:107).
    [Show full text]
  • Strategic Innovation in Tourism. a Conceptual and Review Approach
    International Journal of Research in Tourism and Hospitality (IJRTH) Volume 2, Issue 4, 2016, PP 5-10 ISSN 2455-0043 http://dx.doi.org/10.20431/2455-0043.0204002 www.arcjournals.org Strategic Innovation in Tourism. A Conceptual and Review Approach Almaz Sandybayev Faculty Member, Business Administration Department, Abu Dhabi Men’s College, Higher Colleges of Technology, UAE Abstract: Tourism is one of the fastest growing and promising areas of management with a high economic and social importance for the economy of many countries. Current conditions of tough competition in the tourist market, economic and political instability in many regions, the fast-growing needs and demands of tourists are proposing a new challenge of transition to an innovative path of tourism development industry. The article discusses the issues of strategic innovative activity in the sphere of tourism and presents the main areas of innovation in the tourism sector, as well as factors affecting the innovative development of tourism. According to the author, the number of factors underlying features of innovative activity in the sphere of tourism includes specific properties of the tourism product, producers and consumers of tourism services. The purpose of the article is to describe the principles and basic requirements for the management system of innovation in tourism in the macro- and microeconomic levels. Keywords: tourism, innovation, innovation in tourism, management. 1. INTRODUCTION Innovation is considered as a major source of competitive advantage and economic growth (Porter and Ketels, 2003). Innovation is a set of scientific, technological, organizational, financial and commercial activities aimed at commercialization of existing knowledge, technologies and equipment.
    [Show full text]