Downloaded 21 December 2009

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded 21 December 2009 anmarine evolutionary perspective ecology ^ » EDITORIAL Mar'ne Ecology-ISSN °173-9565 Marine biology in time and space Indeed for the study of long-lived organisms such as Introduction cetaceans, long-term and extensive data sets are necessary This volume comprises a number of the papers presented to derive even the most fundamental life-history traits at the 44th European Marine Biology Symposium (EMBS) (A rrigoni et al. 2011). hosted by the University of Liverpool in September 2009. It is clear that marine systems may be influenced by The theme of the science programme was ‘Marine Biology large scale environmental phenomena such as climatic in Time and Space’. The papers focused on describing pat­ variations and human activities, especially in heavily terns across a variety of spatial and temporal scales but exploited areas such as the Mediterranean Sea (Ligas et al. with the emphasis on seeking understanding and explana­ 2011). It is also becoming increasingly clear that while we tions for those patterns. Time and space define the four strive to understand the mechanisms controlling the dimensions in which scientific observations are grounded. dynamics of marine communities, the communities them­ Indeed Vito Volterra’s first model of coupled temporal selves, such as those around the UK are changing over interactions was developed by Umberto D’Ancona to time (Spencer et al. 2011). In contrast, surveys of the rel­ study the interaction between fishery stocks and fishing atively unmodified White Sea indicate an absence of sub­ effort, a moment considered by some to be the starting stantial change in the structure of benthic communities point for modern ecology (Boero 2009; Gatto 2009). during the past 50 years (Solyanko et al. 2011). It is prob­ In the 21st century, new observational techniques, from ably most important to assess the impacts of long-term DNA genetic profiling to data storage tags and remote change on species composition (Spencer et al. 2011) or sensing, have been developed to document these patterns, ecosystem functioning (Neumann & Kröncke 2011). while experimental and modelling approaches are being However, at a finer scale, species-specific studies indicated applied to develop understanding of the factors responsi­ differential variability to different sources of anthropenic- ble for them. The 44th EMBS therefore took as its theme induced change (Ligas et al. 2011), an important consid­ ‘Marine Biology in Time and Space’ with the aim of con­ eration in the management of commercially important sidering recent advances in our understanding of the driv­ species. Assessment of ecosystem functioning is an ers of long term change in marine organism communities increasingly important tool for a number of management and ecosystems, the causes of spatial patterns in ecology purposes but, for benthic systems at least, it is essential and the consequences of catastrophic phenomena in mar­ that methodologies be consistent and consider biological ine systems. Papers were presented under these three main traits as well as simple count and biomass metrics themes, though in reflection of the naturally inter-disci­ (Aarnio et al. 2011). plinary nature of marine biology, many of them contained elements from more than one theme. Theme 2: Spatial Patterns An understanding of patterns of species distribution and Theme 1: Long-Term Dynamics community composition can also be gained by studies of The University of Liverpool had previously hosted the spatial variability, and the presented papers also high­ European Marine Biology Symposium (EMBS13) in 1978. lighted the importance of considering a range of scales. At that meeting the theme was ‘Cyclic Phenomena in Designation of Marine Protected Areas (MPAs) to effec­ Marine Plants and Animals’ (Naylor & Hartnoll 1979) tively protect vulnerable habitats from exploitative activi­ and temporal dynamics reappeared as one of the themes ties and preserve biodiversity should be based on for the 44th meeting. Temporal change in marine systems knowledge of spatial factors such as distribution and dis­ occurs on long, multi-decadal, time scales. The impor­ persal (Kinlan & Gaines 2003). However MPAs will not tance of collecting and maintaining long-term data sets of be able to provide protection from extreme climatic the marine environment is well recognised (Ducklow events (Huete-Stauffer et al. 2011). et al. 2009), and several of the presented papers high­ At a regional scale, such as in the English Channel, the lighted this (e.g. Ligas et al. 2011; Spencer et al. 2011). trophic structure of benthic ecosystems appears to be Marine Ecology 32 (Suppl. 1) (2011) v-vii © 2011 Blackwell Verlag GmbH V Editorial Green, Paramor, Robinson, Spencer, W atts & Frid determined by sedimentary conditions, whatever the geo­ J. A. Green1, O. A. L. Paramor1’3, L. A. Robinson1, graphic area (Garcia et al. 2011), showing the importance M. Spencer1, P. C. Watts2 & C. L. J. Frid1 of abiotic factors. It is possible to consider how species 1 School of Environmental Sciences, University of Liverpool, distributions are controlled by spatial factors at micro to Liverpool L69 3GP, UK; 2Institute of Integrative Biology, regional scales, and their interactions, within single stud­ Biosciences Building, University of Liverpool, Liverpool L69 ies. For example, both specific frond segments and envi­ 7BX, UK; 3University of Nottingham Ningbo, China, ronmental factors of salinity and wave exposure are Environmental Sciences, 199 Taikang East Road, important in determining the composition of epiphyte Ningbo 315100, Zhejiang, P.R. China and mobile fauna communities on habitat forming macro algae (Kersen et al. 2011). At local scales such as estuarine R eferences habitats, the coexistence of sympatric and seemingly com­ petitor species can be explained by partitioning of Aarnio K., Mattila J., Tornroos A., Bonsdorff E. (2011) resources. In the case of juvenile plaice and flounder, both Zoobenthos as an environmental quality element: the flexibility and heterogeneity of diets appears to reduce ecological significance of sampling design and functional niche overlap and bring order to an apparently chaotic traits. Marine Ecology, 32(Suppl. 1), 58-71. habitat (Mariani et a í 2011). Finally, a key requirement in Arrigoni M., Manfredi P., Panigada S., Bramanti L., examining spatial effects is the establishment of discrete Santangelo G. (2011) Life-history tables of the Mediterranean populations, a process which is rapidly being facilitated by fin whale from stranding data. Marine Ecology, 32(Suppl. 1), molecular techniques (Luis et a í 2011). 1-9. Boero F. (2009) Recent innovations in marine biology. Marine Ecology, 30, 1-12. Theme 3: Consequences of Catastrophic Events Cerrano C., Bavestrello G. (2009) Mass mortalities and extinc­ tions. In: Wahl M. (Ed.), Marine Hard Bottom Communities. Finally, both temporal and spatial factors collide when Springer, Berlin: 295-307. considering the impacts and influence of catastrophic Ducklow H.W., Doney S.C., Steinberg D.K. (2009) Contribu­ events. This will become increasing important if the inci­ tions of long-term research and time-series observations to dence of these events continues to increase in frequency marine ecology and biogeochemistry. Annual Review of Mar­ and/or magnitude (Cerrano & Bavestrello 2009). Mass ine Science, 1(1), 279-302. mortality events can lead to change in ecosystem structure Garcia C., Chardy P., Dewarumez J.M., Dauvin J.C. (2011) As- and function, particularly if the subjects affected are eco­ sessement of benthic ecosystem functioning through trophic system engineers (Huete-Stauffer et a í 2011). In the case web modelling: the example of the eastern basin of the Eng­ of Mediterranean corals, high temperature appeared to lish Channel and the Southern Bight of the North Sea. Mar­ precipitate a mass-extinction event which was exacerbated ine Ecology, 32(Suppl. 1), 72-86. by opportunistic bacterial infection (Huete-Stauffer et a í Gatto M. (2009) On Volterra 8c D’Ancona’s footsteps: the tem­ 2011). Catastrophic events may of course also be predict­ poral and spatial complexity of ecological interactions and able and avoidable. On tidal mudflats, commercial dredg­ networks. Italian Journal of Zoology, 76(1), 3-15. ing for cockles can cause disruption of benthic Huete-Stauffer C., Vielmini I., Palma M., Navone A., Panzalis communities. However these systems can recover to their P., Vezulli L., Misic C., Cerrano C. (2011) Paramuricea clav­ original state if dredging occurs at an appropriate inten­ ata (Anthozoa, Octoralia) loss in the Marine Protected Area sity and frequency (Wijnhoven et al. 2011). of Tavolara (Sardinia, Italy) due to a mass mortality event. Marine Ecology, 32(Suppl. 1), 107-116. Kersen P., Kotta J., Martynas B., Kolesova N., Dekere Z. Perspectives (2011) Epiphytes and associated fauna on the brown alga Fucus vesiculosus in the Baltic and the North Seas in relation As ever in the study of biology, it is worth considering the to different abiotic and biotic variables. Marine Ecology, work of Charles Darwin. As well as his more widely-publi­ 32(Suppl. 1), 87-95. cised work, Darwin’s studies of barnacles remain authorita­ Kinlan B.P., Gaines S.D. (2003) Propagule dispersal in marine tive (Rainbow 2011). In the bicentennial of his birth, a and terrestrial environments: a community perspective. Ecol­ consideration of the influence of marine biology on the ogy, 84(8), 2007-2020. work of Darwin reveals the importance of detailed observa­ Ligas A.,
Recommended publications
  • Feral Breeds in Italy
    Feral breeds in Italy Daniele Bigi RARE Association University of Bologna 6 feral populations in Italy • Giara Horse • Asinara Donkeys • Asinara Horses • Asinara Goat SARDINIA • Tavolara Goat • Caprera Goat • Molara Goat • Montecristo Goat TUSCANY • Tremiti Goat PUGLIA ? Feral and wild populations on the Asinara Island • Donkeys: – White donkey (Asino dell’Asinara) (150 amimals) – Grey donkey (250 animals) • Goats > 1000 (6000 have been already removed from the Island). • Horses 100 • Mouflons (number unknown) Asinara Island – The Island is 52 km 2 in area. – The name is Italian for "donkey-inhabited“. – The island is located off the north-western tip of Sardinia. – The Island is mountainous in geography with steep, rocky coast. Trees are sparse and low scrub is the predominant vegetation. – It’s part of the national parks system of Italy, in 2002 the island was converted to a wildlife and marine preserve. – In 1885 the island became a Lazaretto and an agricultural penal colony (till 1998). About 100 families of Sardinian farmers and Genoese fishermen who lived on Asinara were obliged to move to Sardinia, where they founded the village of Stintino. Asino dell’Asinara (Asinara Donkey) Origins: - Uncertain but oral records report the presence of white donkeys on the island since the end of XIX century. - the appearance of the white coat in more recent times is probably due to a random mutation that spread to all the population. Morphology: it is small and the size is similar to the Sardinian donkey; the most important difference is the white coat, that probably belongs to a form of incomplete albinism .
    [Show full text]
  • Supplementary Tales
    Metabarcoding reveals different zooplankton communities in northern and southern areas of the North Sea Jan Niklas Macher, Berry B. van der Hoorn, Katja T. C. A. Peijnenburg, Lodewijk van Walraven, Willem Renema Supplementary tables 1-5 Table S1: Sampling stations and recorded abiotic variables recorded during the NICO 10 expedition from the Dutch Coast to the Shetland Islands Sampling site name Coordinates (°N, °E) Mean remperature (°C) Mean salinity (PSU) Depth (m) S74 59.416510, 0.499900 8.2 35.1 134 S37 58.1855556, 0.5016667 8.7 35.1 89 S93 57.36046, 0.57784 7.8 34.8 84 S22 56.5866667, 0.6905556 8.3 34.9 220 S109 56.06489, 1.59652 8.7 35 79 S130 55.62157, 2.38651 7.8 34.8 73 S156 54.88581, 3.69192 8.3 34.6 41 S176 54.41489, 4.04154 9.6 34.6 43 S203 53.76851, 4.76715 11.8 34.5 34 Table S2: Species list and read number per sampling site Class Order Family Genus Species S22 S37 S74 S93 S109 S130 S156 S176 S203 Copepoda Calanoida Acartiidae Acartia Acartia clausi 0 0 0 72 0 170 15 630 3995 Copepoda Calanoida Acartiidae Acartia Acartia tonsa 0 0 0 0 0 0 0 0 23 Hydrozoa Trachymedusae Rhopalonematidae Aglantha Aglantha digitale 0 0 0 0 1870 117 420 629 0 Actinopterygii Trachiniformes Ammodytidae Ammodytes Ammodytes marinus 0 0 0 0 0 263 0 35 0 Copepoda Harpacticoida Miraciidae Amphiascopsis Amphiascopsis cinctus 344 0 0 992 2477 2500 9574 8947 0 Ophiuroidea Amphilepidida Amphiuridae Amphiura Amphiura filiformis 0 0 0 0 219 0 0 1470 63233 Copepoda Calanoida Pontellidae Anomalocera Anomalocera patersoni 0 0 586 0 0 0 0 0 0 Bivalvia Venerida
    [Show full text]
  • Research Article Genetic Diversity of Freshwater Leeches in Lake Gusinoe (Eastern Siberia, Russia)
    Hindawi Publishing Corporation e Scientific World Journal Volume 2014, Article ID 619127, 11 pages http://dx.doi.org/10.1155/2014/619127 Research Article Genetic Diversity of Freshwater Leeches in Lake Gusinoe (Eastern Siberia, Russia) Irina A. Kaygorodova,1 Nadezhda Mandzyak,1 Ekaterina Petryaeva,1,2 and Nikolay M. Pronin3 1 Limnological Institute, 3 Ulan-Batorskaja Street, Irkutsk 664033, Russia 2 Irkutsk State University, 5 Sukhe-Bator Street, Irkutsk 664003, Russia 3 Institute of General and Experimental Biology, 6 Sakhyanova Street, Ulan-Ude 670047, Russia Correspondence should be addressed to Irina A. Kaygorodova; [email protected] Received 30 July 2014; Revised 7 November 2014; Accepted 7 November 2014; Published 27 November 2014 Academic Editor: Rafael Toledo Copyright © 2014 Irina A. Kaygorodova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The study of leeches from Lake Gusinoe and its adjacent area offered us the possibility to determine species diversity. Asa result, an updated species list of the Gusinoe Hirudinea fauna (Annelida, Clitellata) has been compiled. There are two orders and three families of leeches in the Gusinoe area: order Rhynchobdellida (families Glossiphoniidae and Piscicolidae) and order Arhynchobdellida (family Erpobdellidae). In total, 6 leech species belonging to 6 genera have been identified. Of these, 3 taxa belonging to the family Glossiphoniidae (Alboglossiphonia heteroclita f. papillosa, Hemiclepsis marginata,andHelobdella stagnalis) and representatives of 3 unidentified species (Glossiphonia sp., Piscicola sp., and Erpobdella sp.) have been recorded. The checklist gives a contemporary overview of the species composition of leeches and information on their hosts or substrates.
    [Show full text]
  • Polychaeta: Serpulidae) from Southeastern Australia
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Knight-Jones, E. W., P. Knight-Jones and L. C. Llewellyn, 1974. Spirorbinae (Polychaeta: Serpulidae) from southeastern Australia. Notes on their taxonomy, ecology, and distribution. Records of the Australian Museum 29(3): 106–151. [1 May 1974]. doi:10.3853/j.0067-1975.29.1974.230 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia o ~------------------~o 25-20 and above 23-17 19- 14 17- 13 ood below 20 20 40 40 ,-- 50 50 Figure I.-Top left, collecting sites near Adelaide; top right, ditto near Sydney; bottom, collecting locations inset, showing also currents of warm, cool (interrupted lines) and cold water (dotted lines). A second smaller arrow-head indicates that the current occasionally reverses. Coastal water types and the mean position of the subtropical convergence (see p. 147) modified from Knox (1963), with mean summer (February) and winter (August) temperatures in degreesC. SPIRORBINAE (POLYCHAETA: SERPULIDAE) FROM SOUTHEASTERN AUSTRALIA. Notes on their Taxonomy, Ecology, and Distribution By E. W. KNIGHT-jONES and PHYLLIS KNIGHT-jONES University College of Swansea, U.K. and L. C. LLEWELLYN, New South Wales State Fisheries, Sydney, Australia Figures 1-14 Manuscript received, 1st September, 1972 SUMMARY Fifteen species belonging to seven genera are described, with pictorial and dichotomous keys to identification and notes on their distribution in other regions. All occur on or adjoining the shore, or on seaweeds cast ashore.
    [Show full text]
  • Updated Chronology of Mass Mortality Events Hitting Gorgonians in the Western Mediterranean Sea (Modified and Updated from Calvo Et Al
    The following supplement accompanies the article Mass mortality hits gorgonian forests at Montecristo Island Eva Turicchia*, Marco Abbiati, Michael Sweet and Massimo Ponti *Corresponding author: [email protected] Diseases of Aquatic Organisms 131: 79–85 (2018) Table S1. Updated chronology of mass mortality events hitting gorgonians in the western Mediterranean Sea (modified and updated from Calvo et al. 2011). Year Locations Scale Depth range Species References (m) 1983 La Ciotat (Ligurian Sea) Local 0 to 20 Eunicella singularis Harmelin 1984 Corallium rubrum 1986 Portofino Promontory (Ligurian Local 0 to 20 Eunicella cavolini Bavestrello & Boero 1988 Sea) 1989 Montecristo Island (Tyrrhenian Local - Paramuricea clavata Guldenschuh in Bavestrello et al. 1994 Sea) 1992 Medes Islands (north-western Local 0 to 14 Paramuricea clavata Coma & Zabala 1992 Mediterranean Sea), Port-Cros 10 to 45 Harmelin & Marinopoulos 1994 National Park 1993 Strait of Messina (Tyrrhenian Local 20 to 39 Paramuricea clavata Mistri & Ceccherelli 1996 Sea), Portofino Promontory Bavestrello et al. 1994 (Ligurian Sea) 1999 Coast of Provence and Ligurian Regional 0 to 45 Paramuricea clavata Cerrano et al. 2000 Sea, Balearic Islands (north- Eunicella singularis Perez et al. 2000 western Mediterranean Sea), Eunicella cavolini Garrabou et al. 2001 Gulf of La Spezia, Port-Cros Eunicella verrucosa Linares et al. 2005 National Park, coast of Calafuria Corallium rubrum Bramanti et al. 2005 (Tyrrhenian Sea) Leptogorgia Coma et al. 2006 sarmentosa Cupido et al. 2008 Crisci et al. 2011 2001 Tavolara Island (Tyrrhenian Sea) Local 10 to 45 Paramuricea Calvisi et al. 2003 clavata Eunicella cavolini 2002 Ischia and Procida Islands Local 15 to 20 Paramuricea clavata Gambi et al.
    [Show full text]
  • Phylogenetic Relationships of Serpulidae (Annelida: Polychaeta) Based on 18S Rdna Sequence Data, and Implications for Opercular Evolution Janina Lehrkea,Ã, Harry A
    ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2007) 195–206 www.elsevier.de/ode Phylogenetic relationships of Serpulidae (Annelida: Polychaeta) based on 18S rDNA sequence data, and implications for opercular evolution Janina Lehrkea,Ã, Harry A. ten Hoveb, Tara A. Macdonaldc, Thomas Bartolomaeusa, Christoph Bleidorna,1 aInstitute for Zoology, Animal Systematics and Evolution, Freie Universitaet Berlin, Koenigin-Luise-Street 1-3, 14195 Berlin, Germany bZoological Museum, University of Amsterdam, P.O. Box 94766, 1090 GT Amsterdam, The Netherlands cBamfield Marine Sciences Centre, Bamfield, British Columbia, Canada, V0R 1B0 Received 19 December 2005; accepted 2 June 2006 Abstract Phylogenetic relationships of (19) serpulid taxa (including Spirorbinae) were reconstructed based on 18S rRNA gene sequence data. Maximum likelihood, Bayesian inference, and maximum parsimony methods were used in phylogenetic reconstruction. Regardless of the method used, monophyly of Serpulidae is confirmed and four monophyletic, well- supported major clades are recovered: the Spirorbinae and three groups hitherto referred to as the Protula-, Serpula-, and Pomatoceros-group. Contrary to the taxonomic literature and the hypothesis of opercular evolution, the Protula- clade contains non-operculate (Protula, Salmacina) and operculate taxa both with pinnulate and non-pinnulate peduncle (Filograna vs. Vermiliopsis), and most likely is the sister group to Spirorbinae. Operculate Serpulinae and poorly or non-operculate Filograninae are paraphyletic. It is likely that lack of opercula in some serpulid genera is not a plesiomorphic character state, but reflects a special adaptation. r 2007 Gesellschaft fu¨r Biologische Systematik. Published by Elsevier GmbH. All rights reserved. Keywords: Serpulidae; Phylogeny; Operculum; 18S rRNA gene; Annelida; Polychaeta Introduction distinctive calcareous tubes and bilobed tentacular crowns, each with numerous radioles that bear shorter Serpulids are common members of marine hard- secondary branches (pinnules) on the inner side.
    [Show full text]
  • An Ecosystem Model of the North Sea to Support an Ecosystem Approach to Fisheries Management: Description and Parameterisation
    Science Series Technical Report no.142 An ecosystem model of the North Sea to support an ecosystem approach to fisheries management: description and parameterisation S. Mackinson and G. Daskalov Science Series Technical Report no.142 An ecosystem model of the North Sea to support an ecosystem approach to fisheries management: description and parameterisation S. Mackinson and G. Daskalov This report should be cited as: Mackinson, S. and Daskalov, G., 2007. An ecosystem model of the North Sea to support an ecosystem approach to fisheries management: description and parameterisation. Sci. Ser. Tech Rep., Cefas Lowestoft, 142: 196pp. This report represents the views and findings of the authors and not necessarily those of the funders. © Crown copyright, 2008 This publication (excluding the logos) may be re-used free of charge in any format or medium for research for non-commercial purposes, private study or for internal circulation within an organisation. This is subject to it being re-used accurately and not used in a misleading context. The material must be acknowledged as Crown copyright and the title of the publication specified. This publication is also available at www.Cefas.co.uk For any other use of this material please apply for a Click-Use Licence for core material at www.hmso.gov.uk/copyright/licences/ core/core_licence.htm, or by writing to: HMSO’s Licensing Division St Clements House 2–16 Colegate Norwich NR3 1BQ Fax: 01603 723000 E-mail: [email protected] List of contributors and reviewers Name Affiliation
    [Show full text]
  • Biomineralization of Polychaete Annelids in the Fossil Record
    minerals Review Biomineralization of Polychaete Annelids in the Fossil Record Olev Vinn Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu, Estonia; [email protected]; Tel.: +372-5067728 Received: 31 August 2020; Accepted: 25 September 2020; Published: 29 September 2020 Abstract: Ten distinct microstructures occur in fossil serpulids and serpulid tubes can contain several layers with different microstructures. Diversity and complexity of serpulid skeletal structures has greatly increased throughout their evolution. In general, Cenozoic serpulid skeletal structures are better preserved than Mesozoic ones. The first complex serpulid microstructures comparable to those of complex structures of molluscs appeared in the Eocene. The evolution of serpulid tube microstructures can be explained by the importance of calcareous tubes for serpulids as protection against predators and environmental disturbances. Both fossil cirratulids and sabellids are single layered and have only spherulitic prismatic tube microstructures. Microstructures of sabellids and cirratulids have not evolved since the appearance of calcareous species in the Jurassic and Oligocene, respectively. The lack of evolution in sabellids and cirratulids may result from the unimportance of biomineralization for these groups as only few species of sabellids and cirratulids have ever built calcareous tubes. Keywords: biominerals; calcite; aragonite; skeletal structures; serpulids; sabellids; cirratulids; evolution 1. Introduction Among polychaete annelids, calcareous tubes are known in serpulids, cirratulids and sabellids [1–3]. The earliest serpulids and sabellids are known from the Permian [4], and cirratulids from the Oligocene [5]. Only serpulids dwell exclusively within calcareous tubes. Polychaete annelids build their tubes from calcite, aragonite or a mixture of both polymorphs. Calcareous polychaete tubes possess a variety of ultrastructural fabrics, from simple to complex, some being unique to annelids [1].
    [Show full text]
  • Phylum MOLLUSCA
    285 MOLLUSCA: SOLENOGASTRES-POLYPLACOPHORA Phylum MOLLUSCA Class SOLENOGASTRES Family Lepidomeniidae NEMATOMENIA BANYULENSIS (Pruvot, 1891, p. 715, as Dondersia) Occasionally on Lafoea dumosa (R.A.T., S.P., E.J.A.): at 4 positions S.W. of Eddystone, 42-49 fm., on Lafoea dumosa (Crawshay, 1912, p. 368): Eddystone, 29 fm., 1920 (R.W.): 7, 3, 1 and 1 in 4 hauls N.E. of Eddystone, 1948 (V.F.) Breeding: gonads ripe in Aug. (R.A.T.) Family Neomeniidae NEOMENIA CARINATA Tullberg, 1875, p. 1 One specimen Rame-Eddystone Grounds, 29.12.49 (V.F.) Family Proneomeniidae PRONEOMENIA AGLAOPHENIAE Kovalevsky and Marion [Pruvot, 1891, p. 720] Common on Thecocarpus myriophyllum, generally coiled around the base of the stem of the hydroid (S.P., E.J.A.): at 4 positions S.W. of Eddystone, 43-49 fm. (Crawshay, 1912, p. 367): S. of Rame Head, 27 fm., 1920 (R.W.): N. of Eddystone, 29.3.33 (A.J.S.) Class POLYPLACOPHORA (=LORICATA) Family Lepidopleuridae LEPIDOPLEURUS ASELLUS (Gmelin) [Forbes and Hanley, 1849, II, p. 407, as Chiton; Matthews, 1953, p. 246] Abundant, 15-30 fm., especially on muddy gravel (S.P.): at 9 positions S.W. of Eddystone, 40-43 fm. (Crawshay, 1912, p. 368, as Craspedochilus onyx) SALCOMBE. Common in dredge material (Allen and Todd, 1900, p. 210) LEPIDOPLEURUS, CANCELLATUS (Sowerby) [Forbes and Hanley, 1849, II, p. 410, as Chiton; Matthews. 1953, p. 246] Wembury West Reef, three specimens at E.L.W.S.T. by J. Brady, 28.3.56 (G.M.S.) Family Lepidochitonidae TONICELLA RUBRA (L.) [Forbes and Hanley, 1849, II, p.
    [Show full text]
  • A Bioturbation Classification of European Marine Infaunal
    A bioturbation classification of European marine infaunal invertebrates Ana M. Queiros 1, Silvana N. R. Birchenough2, Julie Bremner2, Jasmin A. Godbold3, Ruth E. Parker2, Alicia Romero-Ramirez4, Henning Reiss5,6, Martin Solan3, Paul J. Somerfield1, Carl Van Colen7, Gert Van Hoey8 & Stephen Widdicombe1 1Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, U.K. 2The Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, NR33 OHT, U.K. 3Department of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, U.K. 4EPOC – UMR5805, Universite Bordeaux 1- CNRS, Station Marine d’Arcachon, 2 Rue du Professeur Jolyet, Arcachon 33120, France 5Faculty of Biosciences and Aquaculture, University of Nordland, Postboks 1490, Bodø 8049, Norway 6Department for Marine Research, Senckenberg Gesellschaft fu¨ r Naturforschung, Su¨ dstrand 40, Wilhelmshaven 26382, Germany 7Marine Biology Research Group, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium 8Bio-Environmental Research Group, Institute for Agriculture and Fisheries Research (ILVO-Fisheries), Ankerstraat 1, Ostend 8400, Belgium Keywords Abstract Biodiversity, biogeochemical, ecosystem function, functional group, good Bioturbation, the biogenic modification of sediments through particle rework- environmental status, Marine Strategy ing and burrow ventilation, is a key mediator of many important geochemical Framework Directive, process, trait. processes in marine systems. In situ quantification of bioturbation can be achieved in a myriad of ways, requiring expert knowledge, technology, and Correspondence resources not always available, and not feasible in some settings. Where dedi- Ana M. Queiros, Plymouth Marine cated research programmes do not exist, a practical alternative is the adoption Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, U.K.
    [Show full text]
  • Anali Za Istrske in Mediteranske Študije Annali Di Studi Istriani E Mediterranei Annals for Istrian and Mediterranean Studies Series Historia Naturalis, 30, 2020, 2
    Anali za istrske in mediteranske študije Annali di Studi istriani e mediterranei Annals for Istrian and Mediterranean Studies Series Historia Naturalis, 30, 2020, 2 UDK 5 Annales, Ser. hist. nat., 30, 2020, 2, pp. 131-290, Koper 2020 ISSN 1408-533X UDK 5 ISSN 1408-533X e-ISSN 2591-1783 Anali za istrske in mediteranske študije Annali di Studi istriani e mediterranei Annals for Istrian and Mediterranean Studies Series Historia Naturalis, 30, 2020, 2 KOPER 2020 ANNALES · Ser. hist. nat. · 30 · 2020 · 2 Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies ISSN 1408-533X UDK 5 Letnik 30, leto 2020, številka 2 e-ISSN 2591-1783 Alessandro Acquavita (IT), Nicola Bettoso (IT), Christian Capapé (FR), UREDNIŠKI ODBOR/ Darko Darovec, Dušan Devetak, Jakov Dulčić (HR), Serena Fonda COMITATO DI REDAZIONE/ Umani (IT), Andrej Gogala, Daniel Golani (IL), Danijel Ivajnšič, BOARD OF EDITORS: Mitja Kaligarič, Marcelo Kovačič (HR), Andrej Kranjc, Lovrenc Lipej, Vesna Mačić (ME), Alenka Malej, Patricija Mozetič, Martina Orlando- Bonaca, Michael Stachowitsch (AT), Tom Turk, Al Vrezec Glavni urednik/Redattore capo/ Editor in chief: Darko Darovec Odgovorni urednik naravoslovja/ Redattore responsabile per le scienze naturali/Natural Science Editor: Lovrenc Lipej Urednica/Redattrice/Editor: Martina Orlando-Bonaca Lektor/Supervisione/Language editor: Petra Berlot Kužner (angl.) Prevajalci/Traduttori/Translators: Martina Orlando-Bonaca (sl./it.) Oblikovalec/Progetto grafico/ Graphic design:
    [Show full text]
  • Seasearch North Wales 2019 Summary Report
    Seasearch North Wales 2019 Summary Report Report prepared by Lucy Kay, Seasearch Tutor Seasearch Gogledd Cymru 2019 Cynllun gwirfoddol sy’n arolygu rhywogaethau a chynefinoedd morol yw Seasearch ar gyfer deifwyr sy’n deifio yn eu hamser hamdden ym Mhrydain ac Iwerddon. Mae’r cynllun yn cael ei gydlynu yn genedlaethol gan y Gymdeithas Cadwraeth Forol. Mae’r adroddiad hwn yn crynhoi gweithgareddau Seasearch yng Ngogledd Cymru yn ystod 2019. Mae’n cynnwys crynodebau o’r safleoedd a arolygwyd ac yn nodi rhywogaethau a chynefinoedd prin neu anghyffredin a welwyd. Mae’r rhain yn cynnwys nifer o gynefinoedd a rhywogaethau â blaenoriaeth yng Nghymru. Nid yw’r adroddiad hwn yn cynnwys yr holl fanylion data gan fod y rhain wedi eu cofnodi yn y gronfa ddata Marine Recorder a gyflwynwyd i Cyfoeth Naturiol Cymru i’w defnyddio yn ei weithgareddau cadwraeth forol. Mae’r data rhywogaethau hefyd ar gael ar-lein drwy Rwydwaith Bioamrywiaeth Cenedlaethol Atlas. Yn ystod 2019, roedd Seasearch yng Ngogledd Cymru yn parhau i ganolbwyntio ar rywogaethau a chynefinoedd â blaenoriaeth yn ogystal â chasglu gwybodaeth am wely’r môr a bywyd morol ar gyfer safleoedd nad oeddent wedi cael eu harolygu yn flaenorol. Mae’r data o Ogledd Cymru yn 2019 yn cynnwys 15 o Ffurflenni Arolygu a 34 o Ffurflenni Arsylwi, sef 49 ffurflen i gyd. Yn 2019 cyflawnwyd gwaith Seasearch yng Ngogledd Cymru gan Holly Date, cydlynydd rhanbarthol Seasearch yng Ngogledd Cymru; mae ardal Seasearch Gogledd Cymru yn ymestyn o Aberystwyth i Afon Dyfrdwy. Mae’r cydlynydd yn cael ei gynorthwyo gan nifer o Diwtoriaid gweithredol Seasearch, Tiwtoriaid Cynorthwyol a Threfnwyr Deifio.
    [Show full text]